資源簡介 2012中考數學《統計與概率》試題解析河北省保定市唐縣北店頭中學 馬玉濤統計與概率是初中數學的重要內容之一,是新課程改革實施以來新課程標準對學生提出的新的要求。在歷年中考試題中都能見到其身影,并逐漸成為中考命題的熱點之一。一、統計部分主要研究如何收集解決問題所需要的數據,怎樣整理數據和表示數據,通過對數據的分析和計算,從而發現規律,并幫助人們對實際問題做出合理的判斷及正確的決策。(1)關于統計意識考查(2012,南京中考)為了解某初中學校學生的視力情況,需要抽取部分學生進行調查,下列抽取學生的方法最合適的是A.隨機抽取該校一個班級的學生 B.隨機抽取該校一個年級的學生 C.隨機抽取該校一部分男生 D.分別從該校初一、初二、初三年級中各班隨機抽取10%的學生 答案:D(2012,泰州中考)為了了解某市八年級學生的肺活量,從中抽樣調查了500名學生的肺活量,這項調查中的樣本是A.某市八年級學生的肺活量 B.從中抽取的500名學生的肺活量 C.從中抽取的500名學生 D.500答案:答案:B評注:抽樣調查是初中統計學習的核心方法,如何針對具體情境合理抽樣是數據收集階段需要考慮的基本且重要的問題,其中樣本的典型性與代表性是抽樣調查成功與否的關鍵,需要學生對其有深刻的認識。也是中考試題中的常考點之一。(2)關于針對統計圖的考查各種統計圖表是呈現和描述數據較為直觀的方式,便于了解數據全貌,分析數據背后蘊含的信息和規律,從而為決策提供依據.(2012,陜西中考)某校有三個年級,各年級的人數分別為七年級600人,八年級540人,九年級565人,學校為了解學生生活習慣是否符合低碳觀念,在全校進行了一次問卷調查,若學生生活習慣符合低碳觀念,則稱其為“低碳族”;否則稱其為“非低碳族”,經過統計,將全校的低碳族人數按照年級繪制成如下兩幅統計圖:(1)根據圖①、圖②,計算八年級“低碳族”人數,并補全上面兩個統計圖;評注:此題的素材能引導師生關注社會、關注環保。關于兩張統計圖的設計自然合理,通過這兩張內容相關的統計圖,本題既考查學生直接從單張圖中獲取所需信息的能力,又能考查學生綜合利用兩張統計圖處理信息做出判斷的能力. .并且能幫助學生養成用數據、圖表說話的習慣,培養學生的統計素養.(3)關于針對統計量的考查各種描述數據集中趨勢的量數(眾數、中位數和平均數)和離散趨勢的量數(極差、方差、標準差)為數據分析和統計推斷提供了量化工具.(2012,貴州中考)今年5月,某校舉行“唱紅歌”歌詠比賽,有17位同學參加選拔賽,所得分數互不相同,按成績取前8名進入決賽,若知道某同學分數,要判斷他能否進入決賽,只需知道17位同學分數的( )A.中位數 B.眾數 C.平均數 D.方差答案:A評注:本題要求學生結合具體情境辨析不同集中量數的作用,從而選擇恰當的統計量估計給定一組數據的集中程度,進而為現實問題的決策提供依據。.與單純考查統計量的計算相比較,這樣的考法更能考查出學生對統計量統計意義的認識程度.(2012,宿遷)(本題滿分8分)省射擊隊為從甲、乙兩名運動員中選拔一人參加全國比賽,對他們進行了六次測試,測試成績如下表(單位:環):第一次第二次第三次第四次第五次第六次甲10898109乙107101098(1)根據表格中的數據,計算出甲的平均成績是 環,乙的平均成績是 環;(2)分別計算甲、乙六次測試成績的方差;(3)根據(1)、(2)計算的結果,你認為推薦誰參加全國比賽更合適,請說明理由.解:(1)9;9.(2)s2甲===;s2乙===.(3)推薦甲參加全國比賽更合適,理由如下:兩人的平均成績相等,說明實力相當;但甲的六次測試成績的方差比乙小,說明甲發揮較為穩定,故推薦甲參加比賽更合適評注:本題要求學生利用統計量來分析數據所蘊含的統計信息。這樣的考題設計,來源于教科書,突出了統計量在現實情境下的實際意義,能有效地凸現出學生對集中量數和離散量數的本質理解.(4)統計知識的的綜合應用及統計能力的考查(2012,益陽中考)某校宣傳欄中公示了擔任下學期七年級班主任的12位老師的情況(見下表),小鳳準備到該校就讀七年級,請根據表中信息幫小鳳進行如下統計分析:姓名性別年齡學歷職稱姓名性別年齡學歷職稱王雄輝男35本科高級蔡 波男45大專高級李 紅男40本科中級李 鳳女27本科初級劉梅英女40中專中級孫 焰男40大專中級張 英女43大專高級彭朝陽男30大專初級劉 元男50中專中級龍 妍女25本科初級袁 桂男30本科初級楊 書男40本科中級(1)該校下學期七年級班主任老師年齡的眾數是多少?(2)在圖7(1)中,將反映老師學歷情況的條形統計圖補充完整;(3)在圖7(2)中,標注扇形統計圖中表示老師職稱為初級和高級的百分比;(4)小鳳到該校就讀七年級,班主任老師是女老師的概率是多少?解:⑴ 該校下學期七年級班主任老師年齡的眾數是40; ⑵ 大專4人,中專2人(圖略); ⑶ ; ⑷班主任老師是女老師的概率是. 評注:題目在設計時給出了原始數據,突出了對原始數據的呈現、描述和分析過程,加強學生對作統計決策需要數據支持的意識,具有較好的信度、效度和可推廣性.試題綜合性較大,既考查了學生利用統計圖(表)進行統計分析的能力,又考查了統計量(眾數)的計算,尤以第4小題的設計,把統計知識與概率相結合進行考查,突出了二者的聯系。二、概率部分現實生活中充斥著大量隨機現象.初中數學的概率內容與現實生活緊密相連,要求學生了解隨機現象,學會計算簡單隨機事件發生的可能性和從頻率的角度理解概率,進而為決策判斷提供依據.因此,從概率的現實價值來看,它是初中數學中不可缺少的組成部分.(1)關于針對概念性的考查(2012,涼山中考)下列說法正確的是( )A.隨機拋擲一枚均勻的硬幣,落地后反面一定朝上. B.從1,2,3,4,5中隨機取一個數,取得奇數的可能性較大. C.某彩票中獎率為,說明買100張彩票,有36張中獎. D.打開電視,中央一套正在播放新聞聯播. 答案:B評注:要解決這類問題,學生就要明確必然事件、不可能事件、隨機事件、概率的意義,以及對所涉問題的正確認識。(2)關于針對概率的簡單計算的考查(2012,宜賓中考)(本小題8分)某校開展了以“人生觀、價值觀”為主題的班隊活動,活動結束后,初三(2)班數學興趣小組提出了5個主要觀點并在本班50名學生中進行了調查(要求每位同學只選自己最認可的一項觀點),并制成了如下扇形統計圖.(1)該班學生選擇“和諧”觀點的有 人,在扇形統計圖中,“和諧”觀點所在扇形區域的圓心角是 度.(2)如果該校有1500名初三學生,利用樣本估計選擇“感恩”觀點的初三學生約有 人.(3)如果數學興趣小組在這5個主要觀點中任選兩項觀點在全校學生中進行調查,求恰好選到“和諧”和“感恩”觀點的概率(用樹狀圖或列表法分析解答)19.(1)5,36; (2)420; (3)(用列表法)平等進取和諧感恩互助平等平等、進取平等、和諧平等、感恩平等、互助進取進取、平等進取、和諧進取、感恩進取、互助和諧和諧、平等和諧、進取和諧、感恩和諧、互助感恩感恩、平等感恩、進取感恩、和諧感恩、互助互助互助、平等互助、進取互助、和諧互助、感恩∴恰好選到“和諧”和“感恩”觀點的概率是 評注:試題關注了對統計與概率核心思想的理解和考查,屬于概率與統計知識的綜合應用,題目所有的數據信息都包含在扇形統計圖中,很好地考查了學生的讀圖識圖以及對概率的意義及計算等知識的理解.縱觀2012各地市中考試題,我們發現,無論是統計還是概率,都會設置靈活多樣,具有現實意義的情景,引入對問題的探討與分析。因此,我們在今后的教學中,一要注重對課本基礎知識與學生基本技能的教學,還要注重運用,體現統計觀念與隨機思想的現實價值。 展開更多...... 收起↑ 資源預覽 縮略圖、資源來源于二一教育資源庫