資源簡介 - 1 -【例2】將物體放在焦距為f的主軸上,分別離透鏡20cm,14m和6cm時,各能得到縮小實像、放大的實像和放大的虛像,則該凸透鏡的焦距£應為〔)A、10cmf>6cmB、10cm>f>7cmC、14cmf10cmD、20cmf14cm考查凸透鏡成像規律及不等式在物理上的應用能力,由凸透鏡成像的規律可【解】當物距為20cm時,得到縮小實像,剛物距大于2倍焦距,即20cm>2f,得f<10cm①:當物距14cm時,得到放大的實像,則物距大于焦距,小于二倍焦距,即2f>14cm>f,得14cm>E>70em②:當物距為6cm時,得到放大的虛像,則物距小于焦距,即f>6cm③。將上述三個結論在數軸上取它們的公共部分可得:10cm>f>7cm.若搞不清凸透鏡成像規律,就不能確定物距與焦距的關系,從而造成錯解,解不出不等式或不取公共部分也會造成錯解。答:B解答此題目的關鍵是理解并記住凸透鏡成像規律。題中若已知焦距,可用同樣的方法求出物距的范圍。若已知物距和焦距求像的性質時,要運用不等式法確定兩者的關系,再根據凸透鏡成像規律即可得出像的位直,才能觀察像的性質和像距。【例3】如圖18一2所示,物體A被夾在兩塊豎直放置的粗糙木板之間,物A重為20牛,每塊木板對物A的最大摩擦力為5牛。為了使物A能保持靜止狀態,須施加一個多大的豎直向上的拉力F?X5(b)圖18一3本題施加的豎直向上的拉力F的大小不是唯一確定的,而是存在一個取值范圍。當拉力F較小時,物體A有向下運動的趨勢,木板對物體A有豎直向上的靜摩擦力,如圖18一3(a)所示,物體A保持靜止的可能性是存在的。當拉力F上比較大時,物體A有向上運動的趨勢,木板對物體A有向下的靜摩擦力,如圖18一3(b)圖所示,物體A保持靜止的可能性繼續存在。所以拉力F的大小存在許多可能,宜用不等式表示。【解】如圖18一2(a)所示,F1比較小,當豎直向上的靜摩擦力達到最大值時,F1即為能使物體A靜止的最小值。根據平衡條件有:F+2f=GF1=G一2f=20牛一(2×5牛)=10牛如圖18一3〔b)所示,F2比校大,當豎直向下的靜摩擦力達到最大值時,F2即為能使物體A靜止的最大值。根據平衡條件有:F2=G+2fF2=20牛+(2×5牛)=30牛因此,豎直向上的拉力F只需要在10牛與30牛之間,都能使物體A保持靜止狀態。10牛當求解的物理量不存在確定值而存在確定的區間時,只需考慮最大值和最小值這兩個狀態即可。一般而言,這兩個極值狀態并不顯而易見,需要根據物理情景,運動狀態變化分析得出。【例4】一根粗細均勻的杠桿B,在端A、B處分別作用豎直向下的力F1、Fz時,杠桿在水平位置處于平衡。若使力F、Fz同時各減小2牛頓,則杠桿失去平衡,且A端上升,B端下降,由此可以判斷杠桿B的支點位置。A、在杠桿的中點B、不在杠桿的中點,而靠近A端C、不在杠桿的中點,而靠近B端D、條件不足,無法判斷本題中杠桿共有兩個狀態,一個是平衡狀態,一個是不平衡狀態。根據平衡狀態,可以列出方程;根據不平衡狀態,可以列出不等式。然后,根據獲得的條件,運動不等式法即可求解。【解】由于施加力F1、F2時,杠桿平衡,所以根據杠桿平衡條件可得F1XOA=F2×OB.①由于當使力F、F2同時各減小2牛頓,則杠桿失去平衡,且A端上升,所以根據杠桿平衡條件,可得:(F1-2cm×0A<(F2-2cm×0B②即F1×0A-2cmX0A③③-①可得:2cm×0A<2cnm×0B即OA本題中綜合了杠桿平衡條件用不等式解法的應用,使用不等式解法,使解題過程更清晰,解決問題更迅速,更準確。 展開更多...... 收起↑ 資源預覽 縮略圖、資源來源于二一教育資源庫