中文字幕精品无码一区二区,成全视频在线播放观看方法,大伊人青草狠狠久久,亚洲一区影音先锋色资源

無機化學競賽講義 chapter3 化學動力學基礎

資源下載
  1. 二一教育資源

無機化學競賽講義 chapter3 化學動力學基礎

資源簡介

第三章 化學動力學基礎
Chapter 3 The Basis of Chemical Dynamics
化學熱力學成功預測了化學反應自發進行的方向,如:
2K(s) + 2H2O(l)2K+(aq) + 2OH-(aq) + H2(g) Δ rGm, 298K = 404.82 kJ·mol1
Δ rGm, 298K = 228.59 kJ·mol1
  這兩個反應的ΔG298<0,所以此兩個反應在298K時向正反應方向進行有利,但它們的化學反應速率卻相差十萬八千里:鉀在水中的反應十分迅速劇烈,以至于燃燒;而把H2和O2的混合物于常溫、常壓下放置若干年,也觀測不出反應的進行。前一類化學反應屬于熱力學控制的反應;后一類化學反應屬于動力學控制的反應。
研究化學反應速率有著十分重要的實際意義。若炸藥爆炸的速率不快,水泥硬化的速率很慢,那么它們就不會有現在這樣大的用途;相反,如果橡膠迅速老化變脆,鋼鐵很快被腐蝕,那么它們就沒有了應用價值。研究反應速率對生產和人類生活都是十分重要的。
在中學,我們已學過影響化學反應速率的因素:
 1.The concentrations of the reactants:
Steel wool burns with difficulty in air, which contains 20 percents O2 , but burst into a brilliant white flame in pure oxygen.
2.The temperature at which the reaction occur:
The rates of chemical reactions increase as temperature is increased. It’s for this reason that we refrigerate perishable food such as milk.
3.The presence of a catalyst:
The rates of many reactions can be increased by adding a substance known as a catalyst. The physiology of most living species depends crucially on enzymes, protein molecules that act as catalysts, which increase the rates of selected biochemical reactions.
4.The surface area of solid or liquid reactants or catalysts:
Reactions that involve solids often proceed faster as the surface area of the solid is increased. For example, a medicine in the form of a tablet will dissolve in the stomach and enter the bloodstream more slowly than the same medicine in the form of a fine powder.
§3-1 化學反應速率
The Rates of Chemical Reactions
一、化學反應速率表示法
1.Definition:通常以單位時間內反應物濃度的減少或生成物濃度的增加來表示。根據時間的長短,單位時間可用s、min、hr、day、year等不同單位表示,它由反應的快慢而
定。以反應為例:
化學反應速率可以表示成:d [N2O5] / dt或者d [NO2] / dt
2.Units:mol · dm3 · s1、mol · dm3 · min1 或者mol · dm3 · hr 1
3.Average rate(平均速率) = Δ[反應物] / Δt
4.Instantaneous rate(瞬時速率):
對一般反應而言,
用d[A] / dt、d[B] / dt、d[G] / dt和d[H] / dt中任何一種表示均可。實際上采用其中較易觀察或測定者,如放出氣體、自身顏色的變化、使指示劑變色等物質的濃度變化,來表示該反應的速率。
在一般情況下,上面各種速率不盡相同。但在等容條件下,
證明:由反應方程式得:(dnA) (dnB) dnG dnH = a b g h,
在等容條件下,濃度之比就等于物質的量之比:


Sample Exercise:The decomposition of N2O5 proceeds according to the equation:
2N2O5(g) 4NO2(g) + O2(g)
If the rate of decomposition of N2O5 at a particular instant in a reaction vessel is 4.2107 mol · dm3 · s1,what is the rate of appearance of (a) NO2; (b) O2
Solution:∵
∴ mol · dm3 · s1
mol · dm3 · s1
When we speak of the rate of a reaction without specifying a particular reactant or product, we will mean it in this sense.
二、反應活化能(Activation Energy)
In 1888 the Swedish chemist Svante Arrhenius suggested that molecules must possess a certain minimum amount of energy in order to react. According to the collision model, this energy comes from the kinetic energies of the colliding molecules.
 1.分子運動速率分布(Maxwell-Boltzmann
distribution)
(1) 圖3.1中橫坐標為動能(kinetic energy),縱坐標為ΔE *之間(即E1→E2之間)所具有的分子分數,所以整條曲線與橫坐標所圍成的面積應為,即S t = 1。圖3.1中陰影部分面積為Sabcd = N */N,即在溫度T時,具有E1~E2能量的分子分數。Ec表示發生反應所需要的臨界能量(critical energy)。E平表示T溫度時的平均能量。
      在大多數碰撞中,一個分子由于另一個分子消耗能量而獲得能量,因此就有可能經過幾次碰撞之后,一些分子就能獲得比平均值高的能量,而另一些分子則具有比平均值低的能量。
(2) 升高溫度(如圖3.2),大動能的分子分數增加,小動能的分子分數減少,所以分子的平均動能變大。
 2.活化能(Activation energy) Ea
通常把化學反應所需要的臨界能量(Ec)與一般分子的平均能量(E平)之差稱為活化能。即 Ea = Ec E平
活化能的定義到目前為止有兩種:
  Lewis定義:能夠進行化學反應的活化反應物所具有的最低能量稱為“臨界能量”,所以他把“具有完成化學反應最小的、必須的能量,稱為活化能”。
  Tolman(托爾曼)定義:活化能是活化分子的平均能量與全部反應物分子平均能量之差。
  我們是否可以這樣認為:The minimum energy required to initiate a chemical reaction is called the activation energy, Ea . The value of Ea varies from reaction to reaction.
 3.活化分子(Activated molecule)
凡能量高于臨界能量的反應物分子,稱為活化分子。從圖3.2中可以看出:隨著溫度的升高,活化分子分數增加;對于不同的反應,臨界能量(Ec)不同,含有的活化分子分數也不同。
 4.有效碰撞(Effective collision)
粒子之間碰撞數目的計算表明:粒子之間碰撞頻率是格外地高,在STP下,含1mol A和1 mol B的氣態混合物中,A和B之間分子的碰撞數目達1030次 / 秒。如果A與B之間的每一次碰撞都能導致化學反應的話,那么,反應會在極短的時間內完成。正因為許多碰撞不是活化分子之間的碰撞,是屬于無效的碰撞,即使活化分子之間的碰撞,也有“無效”碰撞(如圖3.3c所示),所以在不同溫度下,同一個化學反應也會有不同的反應速率。我們把能發生化學反應的碰撞,稱為有效碰撞。
 5.從定性角度來看,影響化學反應速率的因素
(1) 內因:a.取決于反應劑的性質,b.取決于反應劑參與的反應類型。
(2) 外因:a.濃度(或壓力,對氣體反應物而言):雖然未改變活化分子的分數,但濃度增加,意味著增加了單位體積的活化分子總數,所以也增加了單位體積的活化分子數,導致有效碰撞次數增加,反應速率加快。
b.溫度:升高溫度,活化分子分數增加,有效碰撞次數增加,反應速率加快。
   c.加入催化劑:使化學反應所需的臨界能量變小(或變大 —— 指負催化劑),增加了活化分子分數,有效碰撞次數增加,反應速率增大。這些都可從圖3.1的動能(Ek) ── N* / (NΔE*)圖得到解釋。
三、化學反應速率與濃度的關系(The Relationship of Chemical Reaction Rates and Concentrations)
 1.反應速率與濃度的關系(The relationship of rate and concentration)
(1) 對于異相反應(heterogeneous reactions):反應速率取決于相界面的接觸面積。
(2) 對于均相反應 (homogeneous reactions):反應速率取決于該相中反應物的濃度(或壓強)。
(3) 反應速率與濃度的關系只有通過實驗來測定。實驗證明,反應物濃度與反應速率呈如下函數關系:aA + bB eE + f F
  rate = k [A]x [B]y,該式稱為反應速率方程或質量作用定律(mass action law)。式中k:速率常數(rate constant),x:反應物A的級數(order),y:反應物B的級數,x + y:反應的(總)級數,x、y可以是正整數、負整數或分數。
For example:
Rate Data of the Reaction of Ammonium and Nitrites Ions in Water at 25℃
Exp. Initial Initial Observed Initial
No. Conce.(mol·dm3) Conce.(mol·dm3) Rate(mol·dm3·s1)
1 0.0100 0.200 5.4107
2 0.0200 0.200 10.8107
3 0.0400 0.200 21.5107
4 0.0600 0.200 32.3107
5 0.200 0.0202 10.8107
6 0.200 0.0404 21.6107
7 0.200 0.0606 32.4107
8 0.200 0.0808 43.3107
The reaction order in is 1; the reaction is first order in. It is also first order in . The overall reaction order is 1 + 1 = 2, we say the reaction is second order overall.
rate
The following are some further examples of rate law:
2N2O5(g) 4NO2(g) + O2(g)         rate = k[N2O5]
CHCl3(g) + Cl2(g) CCl4(g) + HCl(g)     rate = k[CHCl3][Cl2]1/2
H2(g) + I2(g) 2HI(g)           rate = k[H2][I2]
N2O(g) N2(g) + 1/2O2(g) rate = k[N2O]0 = k
The values of these exponents are determined experimentally. However, we also occasionally encounter rate laws in which the reaction order is fractional or even negative , although reaction orders are 0、1 or 2 in most rate laws.
(4) 速率常數的單位(units of rate constants)
a.因為k可看作反應物濃度為1mol·dm3時的反應速率,所以它只與溫度和催化劑有關,而與反應物濃度無關;
b.速率常數的單位:(mol·dm3)1(x + y) · 時間1;
c.通過k的單位可以判斷反應級數:
(i) 若的單位為時間1,則x + y = 1,該反應為first-order reactions;
(ii) 若k的單位為mol·dm3 · 時間1,該反應為zero-order reactions。
(5) 只有一步完成的反應,即基元反應(elementary reactions),其反應級數才等于此步驟中該反應物的系數的代數和。例如,某基元反應:mA + nB產物,則
rate = k[A]m[B]n 。
(6) 對于多步才能完成的反應,反應速率只取決于所有步驟中最慢的一步。
例如:反應C2H4Br2 + 3KI C2H4 + 2KBr + KI3的實際的反應步驟如下:
C2H4Br2 + KI C2H4 + KBr + I + Br (slow)
KI + I + Br 2I + KBr (fast)
KI + 2I KI3 (fast)
rate = k[C2H4Br2][KI]
所以一個反應的反應級數必須通過實驗來確定。
(7) 在異相反應中,對純固體或純液體來說,其密度是一定的,因此在質量作用定律表達式中,通常不包括純固體或純液體物質的濃度,或者說這些物質的濃度為常數,可以并入反應速率常數內。在氣相反應中,質量作用定律可以用分壓代替濃度。
 2.濃度與時間的關系(The relationship of concentration and time)
(1) 零級反應(zero-order reactions)
所謂零級反應是指反應速率與反應物濃度的零次方(即與反應物的濃度無關)成正比。零級反應較少,一些發生在固體表面上的反應屬于零級反應。如氨在鎢、鐵等催化劑表面上的分解反應,就是零級反應。
NH3(g)1/2N2(g) + 3/2H2(g)
a.The zero-order rate equation:
若對任何一個零級反應:A(g)產物,則d[A] / dt = k0[A]0 = k0,即d[A] = k0d t
當t = 0時,[A] = [A]0,當時間為t時,[A] = [A]t,兩邊積分
[A]t [A]0 = k0(t 0),整理得,[A]t = [A]0 k0t
b.以零級反應的反應物濃度對時間t作圖,呈直線關系,其斜率為( k0);
c.當剩余反應物的濃度為起始濃度的一半時,即[A]t = [A]0/2,反應的時間t1/2稱
為半衰期(half-life)。,所以零級反應的半衰期
與反應物的初始濃度成正比。
(2) 一級反應(first – order reactions)
一級反應就是反應速率與反應物濃度的一次方成正比。一級反應比較普遍,常見的一級反應有:大多數的放射性衰變,一般的熱分解反應及分子重排反應等。
     2N2O5(g) 4NO2(g) + O2(g) rate = k1[N2O5]
2H2O2(aq) 2H2O(l) + O2(g) rate = k1[H2O2]
SO2Cl2(l) SO2(g) + Cl2(g) rate = k1[SO2Cl2]
a.The first-order rate equation:
對任何一個“一級反應”:B(g)產物而言, d[B] / dt = k1[B]1
∴ , 兩邊積分 得
, 或者 , 或者 ln [B]t = ln [B]0 k1t
b.在一級反應中,以反應物濃度的對數對時間t作圖,呈一條直線。其斜率為(k1)(用自然對數表達式)或(k1 / 2.303)(用常用對數)。
c.一級反應的半衰期(t1/2):ln[B]0 ln([B]0 / 2) = k1·t1 / 2 ∴ t1 / 2 = ln2 / k1 = 0.693 / k1
即一級反應的半衰期t1 / 2是一個常數,它與反應物的初始濃度無關。
Sample Exercise 1:The first-order rate constant for the decomposition of a certain insecticide in water at 12℃ is 1.45 yr 1, A quantity of this insecticide is washed into a lake on June 1, leading to a concentration of 5.0 107 g·cm3 of water. Assume that the effective temperature of the lake is 12℃. (a) What is the concentration of the insecticide on June 1 of the following year (b) How long will it take for the concentration of the insecticide to drop to 3.0 107 g·cm3
Solution:(a) Substituting k = 1.45 yr 1,t = 1.00 yr and [insecticide]0 = 5.0 107 g·cm3 into equation ln[insecticide]t = l yr = ln(5.0 107) 1.45 1.00 = 15.96
∴ [insecticide] t = l yr = 1.2 107 g·cm3 ( 即[A]t ,[A]0單位必須相同)
(b) Again substitution into equation with [insecticide]t = 3.0 107 g·cm3,
ln(3.0 107 ) = 1.45t + ln(5.0 107 )
t = { ln(3.0 107 ) + ln(5.0 107 )} / 1.45 = 0.35 (yr)
Sample Exercise 2:已知過氧化氫分解成水和氧氣的反應是一級反應:2H2O2(l)
2H2O(l) + O2(g),反應速率常數為0.0410min,求:(a) 若[H2O2]0 = 0.500mol·dm3,10.0 min后,[H2O2]t = 10 min是多少?(b) H2O2分解一半所需時間是多少?
Solution:(a) ,∴ (mol·dm3)
(b) t1 / 2 = ln2 / k1 = 0.693 / 0.0410 = 16.9 (min)
(3) 二級反應(second -order reaction)
a.The second - order rate equation:1 / [A]t = 1 / [A]0 + k2t
若任何一個“二級反應”:A + B產物 或者 2A產物而言,
,或者
d[A] / [A]2 = k2dt ,兩邊積分得:
b.在二級反應中,以反應物濃度的倒數對時間t作圖,呈一條直線,其斜率為k2
c.二級反應的半衰期: ∴
  可見,二級反應半衰期與起始濃度的一次方呈反比,即反應物起始濃度越大,t1 / 2越小。下列反應均是二級反應:
NO2(g) + CO(g) NO(g) + CO2(g) rate = k2[NO2][CO]
CH3COOC2H5(aq) + OH-(aq) CH3COO-(aq) + C2H5OH(aq)
rate = k2[CH3COOC2H5][ OH-]
2NO2(g) 2NO(g) + O2(g) rate = k2[NO2]2
四、反應速率與溫度的關系(The Relationship of Rates and Temperature)
 1.根據許多實驗事實,總結出一條近似的經驗規則,溫度每升高10℃,反應速率大約增大2~4倍,即k t +10 / k t = 2~4。這是Van’t Hoff歸納出來的一個近似的經驗規律。有時又稱為Van’t Hoff’s rule.
 2.1889年瑞典科學家S. Arrhenius總結了大量的實驗數據,得出了如下結論:
化學反應的速率常數(k)與溫度之間呈指數關系。
3.公式:──The Arrhenius equation
式中Ea─ the activation energy A─ the frequency factor, it is related to the frequency of collisions and the probability that the collisions are favorably oriented for reaction.
公式也可以表示成k = A·exp ( Ea / RT ) (exp.:exponent)
一般化學反應的活化能在40~400 kJ · mol1范圍之內
Reactions Solvent Ea / kJ · mol1
CH3COOC2H5 + NaOH 水 47.3
n C5H11Cl + KI 丙酮 77.0
C2H5ONa + CH3I 乙醇 81.6
C2H5Br + NaOH 乙醇 89.5
2HI I2 + H2 氣相 184.1
H2 + I2 2HI 氣相 165.3
N2O5 N2O4 + 1/2O2 氣相 103.4
(CH2)3 CH3CH=CH2 氣相 272.0
  對Arrhenius公式兩邊取自然對數,得:,以lnk對1/T作圖,是一條直線,其斜率為 Ea / R,截距為lnA。因此活化能可以通過實驗來測定:用在不同溫度下觀察到的k值的自然對數對1/T作圖,斜率為 Ea / R,從而求得Ea(見圖3.5)。
 4.不同溫度下,速率常數之間的關系
已知溫度為T1時,速率常數為k1;溫度為T2時,速率常數為k2。由Arrhenius equation得: lnk1 = lnA Ea / RT1 ① , lnk2 = lnA Ea / RT2 ②
① ② 得:
或者
Sample Exercise 1:The following table shows the rate constants for the rearrangement of methyl isonitrile H3C-NC at various temperature at various temperatures (these are the data that are graphed in right figure:
Temperature (℃) k (s1 )
189.7 2.52 105
198.9 5.25 105
230.3 6.30 104
251.2 3.16 103
(a) From these data calculate the activation energy for the reaction.
(b) What is the value of the rate constant at 430.0 K
Solution:(a) We must first convert the temperatures from degrees Celsius to Kelvins. We then take the inverse of each temperature, 1 / T, and the natural log of each rate constant, lnk. This gives us the following table:
T( K ) 462.9 472.1 503.5 524.4
1 / T ( K1 ) 2.160 103 2.118 103 1.986 103 1.907 103
lnk 10.589 9.855 7.370 5.757
The slope of the line is obtained by choosing two well-separated points:
        Slope
     Slope = Ea / R ∴ Ea = 1.9 104 8.314 = 158 kJ·mol1
(b) To determine the rate constant, k1, at 430.0 K, we can use above equation with Ea, k2 = 2.52 105 s1, T2 = 462.9K, and T1 = 430K.
    ∴ k1 = 1.09 106 (s1)
Sample Exercise 2:五氧化二氮晶體具有很高的蒸氣壓,在氣相或惰性溶劑中都能全部分解,其分解反應為N2O5(s)1/2O2(g) + N2O4(g)2NO2(g)。此反應為一級反應。由于分解產物N2O4和NO2均溶于CCl4中,只能有O2放出,故N2O5在CCl4中的分解可用氣量管測定分解產物逸出O2的體積來量度。下表是0.7372克N2O5(s)在30℃和p 下的數據:
時間 t (s) 0 2400 9600 16800
體積 0 15.65 45.85 63.00
(a) 求算此反應的速率常數k及半衰期 t1 / 2。
(b) 30℃時,分解90.0% N2O5所需時間為多少秒?
(c) 已知該反應活化能為1.03105 J·mol1,若要求2400秒內收集60.00ml O2(30℃時的體積),問需在什么條件下進行實驗?(氣體按理想氣體處理)
Solution:(a) 由于N2O5的分解反應為一級反應,∴ lnc0 lnc = k t
  若以體積表示,則lnV∞ ln(V∞ Vt ) = k t,V∞應為0.7372g N2O5(s)完全分解所產生O2的體積,相當于N2O5(s)在CCl4中的起始濃度,而(V∞Vt )相當于時間t時CCl4中剩下的N2O5(s)的濃度。
∴ ,

∴ ,  
  (b) 設30℃時,分解90.0% N2O5(s)所需時間為t

  (c) 當30℃時,2400秒內只能收集到15.65ml O2,現要在此時間內收集到60.00ml O2,則需調節反應溫度。在調節溫度(T2)下,速率常數為:
根據Arrhenius equation:
代入數據,得  解得
五、催化劑對反應速率的影響(The Affect of Catalyst on Chemical Rate)
  升高溫度雖然能加快反應速率,但高溫有時會給反應帶來不利的影響。例如有的反應在高溫下會發生副反應,有的反應產物在高溫下會分解等等。人們通過使用催化劑選擇新的反應途徑,以達到降低反應的活化能,進而加快反應速率。可見催化劑在現代化工業中具有何等重要的地位和作用。
  考察化學反應動力學的另一種有效的方法是考察反應物變成生成物的位能變化。此理論稱為過渡態理論(transition state theory)
 1.過渡態理論:
  化學反應進行時,反應物分子首先形成一種中間過渡狀態的物質──活化絡合物(activated complex),在該活化絡合物中,反應物分子中的舊鍵已經松弛,而產物分子中的新鍵只初步形成,因此活化絡合物分子是不穩定的,該活化絡合物分子的位能比反應物分子及產物分子的位能高,其值由活化絡合物分子結構來決定。
Fig. 3.7 Energy profile for the H + HBr H2 + Br Fig. 3.8 Energy profile for the transition state theory
 2.化學反應的位能圖:
    以一個最簡單的直線型反應為例(圖3.7):
a + b c[a…b …c] a b + c,例如:H + HBrH … H … Br H H + Br。為簡便起見,假設碰撞沿著所有核,通過一條直線上發生的。
(1) 始態:H和H Br粒子離得相當遠,相互不發生影響,其位能恰好等于H本身和HBr本身的位能總和;
(2) 過渡狀態:當H和HBr靠近時,電子云的排斥力變得相當大,那就必須對體系作功,迫使粒子擠在一起,這意味著整個位能要增加,一直增加到相應的活化絡合物的位能;
(3) 終態:隨著活化絡合物分裂,H H和Br的分離,位能下降。
 3.過渡狀態理論中的活化能(圖3.8)(Activation energy in the transition state theory)
(1) 正反應活化能:Ea(正) = NA(活化絡合物 反應物) = E(II) E(I)
(2) 逆反應活化能:Ea(逆) = NA(活化絡合物 產物) = E(II) E(III)
(3) 化學反應熱:ΔrHm = Ea(正) Ea(逆)
 4.催化劑(Catalyst)
(1) 催化劑的第一個基本性質 ── 改變反應速率。這是由于改變了反應途徑,生成
了中間過渡產物,降低了活化絡合物的能量。例如:HCOOHCO + H2O。
在無催化劑時,HCOOH首先形成(活化絡合物),再轉變成,然后分解成CO和H2O(圖3.9)。在H+離子催化下
(圖3.10)
Fig. 3.9 The free energy profile for the Fig. 3.10 The free energy profile for the acid catalyzed
decomposition of formic acid decomposition of formic acid
(2) 催化劑的第二個基本性質 ── 專一性。催化分為均相催化(homogeneous catalysis) 和異相催化(heterogeneous catalysis)。例如:
  ,
  ,
    在生物學中,有一類很重要的催化劑稱為酶(enzymes)。在人體中,各種酶的催化非常專一:唾液酶(saliva)使淀粉轉化為糖,酵母酶(zymase)使糖轉化為醇和CO2。人體中還有脂酶、麥芽糖酶、胃朊酶、胰朊酶、蛋白酶、乳糖酶……一大串催化劑。沒有催化劑,就沒有生命和近代文明。
1969年科學家第一次在實驗室合成了一種酶 ── 核糖核酸酶。由于此工作,Stein、Moore和Anfinson獲得了1972年Nobel化學獎。
(3) 自催化(autocatalysis, selfcatalysis)
例如,的反應,生成的I-離子按照下列方程式催化:,
這是因為I2與H2SO3的反應要比與H2SO3的反應快得多。
§3-2 化學反應機理
Reaction Mechanisms
一、復雜反應(Complex Reactions):
 1.包含有兩個或兩個以上基元反應(elementary reactions)組合成的總反應,稱為復雜反應。
 2.典型的復雜反應有四類:對行反應(即對峙反應)、平行反應、連串反應及鏈反應。
(1) 對行反應 正向和逆向同時進行的反應,稱為對行反應,即可逆反應。實際上,絕大多數反應都是可逆反應。因此,既要考慮正反應速率,也要考慮逆反應速率。對于正、逆反應都為一級反應的對行反應:AB,凈反應速率( net rate ) = kf[A] kr[B]。
(2) 平行反應 相同反應條件下,反應物能同時進行幾種不同的反應。
例如:,設都為一級反應,
則d[A] / d t = k1[A] + k2[A] = (k1 + k2)[A],ln[A]0 ln[A]t = (k1 + k2) t
(3) 連串反應 凡反應所產生的物質能再起反應而產生其它物質的反應。
設連串反應ABC都為一級反應,
則d[A] / d t = k1[A],d[B] / d t = k1[A] k2[B]
(4) 鏈反應 用某種方法(光、熱、電等)使反應引發,產生自由基,發生一連串反應,反應自動進行下去,好像一條鏈一樣,一環扣一環,直至反應停止,這類反應稱為鏈反應。例如:H2 + Cl22HCl,其歷程為:
Cl22Cl·(鏈的引發)
Cl· + H2HCl + ·H
H· + Cl2HCl + ·Cl
Cl· + H2HCl + ·H
……………………………
2Cl-· + MCl2 + M(鏈的終止)
二、復雜反應的近似處理方法
 1.穩態近似法(steady state approximation):
(1) 基本思想:在連串反應中,若中間產物B很活躍,極易繼續反應,則k2>>k1,所以B在反應過程中的濃度很小,可視反應過程中B的濃度基本不變,那么
d[B] / dt = 0,稱B的濃度處于穩態。
(2) 所謂穩態就是指某中間物的生成速率與消耗速率相等,導致其濃度不隨時間而變化的狀態。例如自由基就可以作穩態處理。
(3) 處理方法:以H2 + Cl22HCl的歷程為例:
Cl22Cl · , Cl · + H2HCl + H ·
H · + Cl2HCl + Cl · , 2Cl ·Cl2
寫出此反應的速率方程式及反應級數。
解答:H · 與Cl · 都是自由基,它們都處于穩態
∴ d[H·] / dt = k2[Cl·][H2] k3[H·][Cl2] = 0
則 k2[Cl · ][H2] = k3[H · ][Cl2] ①
d[Cl·] / dt = 2k1[Cl2] + k3[H·][Cl2] k2[Cl·][H2] 2k4[Cl·]2 = 0 ②
(∵       ∴ )
①式代入②式得:2k1[Cl2] 2 k4[Cl·]2 = 0    ∴ [Cl·] = { (/)[Cl2]}1/2
∴ 
其中 k = k2 · (2k1 / k4)1/2,∴ 此反應的級數為1.5級
 2.平衡態近似法(pre equilibria)
對于機理A + BCD,   d[D] / dt = k2[C] ,
由于第一個反應很快達到平衡,則k1[A][B] = k 1 [C]
∴ d[D] / d t = (k1 k2 / k 1)[A][B]
三、已知反應速率方程,推測反應機理
Sample Example:Burns and Dainton have investigated the kinetics of the oxidation of CO by Cl2 to yield phosgene as in CO(g) + Cl2(g)COCl2(g) and found their experimental results to be represented by the rate equation : d[COCl2] / d t = k r[Cl2]3/2[CO]. Postulate a mechanism that is consistent with this rate equation.
  推測活化絡合物的方法:The atoms involved in the slow step of a reaction can be evaluated as the sum of those represented in the numerator of the rate equation minus those represented in the denominator of the rate equation.
Solution:按照上面規則,該反應的活化絡合物應為Cl3CO。因此最慢的步驟可以假設為
COCl(g) + Cl2(g)COCl2(g) + Cl(g)。但單獨一個方程不能組成反應機理,我們必須假設合理的快反應步驟:
Cl2(g) 2Cl(g) rapid equilibrium ①
Cl(g) + CO(g) COCl(g) rapid equilibrium ②
COCl(g) + Cl2(g)COCl2(g) + Cl(g) rate determining ③
由③得 ,由②得 
由①得    ∴
Practice Exercise:Propose a mechanism for the reaction  
That is consistent with the experimental rate equation  d[IO-] / dt = k r[I-][OCl-]/[OH-]
Depletion of Stratospheric Ozone
Much of our life in the United States today depends on refrigeration. We cool our homes, cars, offices, and shopping centers with air conditioners. We preserve our food and medicines with refrigerators. Until very recently all of these refrigeration units used chlorofluorocarbons, or CFCs, as the heat exchanging fluid. That situation has now changed dramatically, in part because of laboratory studies of the kinetics of the reactions that CFCs might undergo in the stratosphere.
Nonflammable, nontoxic CFCs such as CCl2F2 were discovered by scientists at the Frigidaire Division of General Motors in 1928. By 1988, the total worldwide consumption of CFCs was over 1×109 kilograms annually. In the United States
freon 12 freon 11t
dichlorodifluoromethane richlorofluoromethane
thousands of businesses produced CFC related goods and services worth more than $28 billion a year, and there were more than 700,000 CFC related jobs. CFCs were used in the United States mostly as refrigerants, foam blowing agents for polystyrene and polyurethane, aerosol propellants, and industrial solvents.
It is ironic that the very properties that led to the first use of CFCs are now causing worldwide concern. Once gaseous CFCs are released into the troposphere, that part of the earth’s atmosphere ranging from the surface to an altitude of about 10 km, they persist for a long time because there is no mechanism for their destruction. Through atmospheric mixing they riseto the stratosphere where they are eventually destroyed by solar radiation—but with significant consequences to our environment, as first recognized by M. J. Molina and F. S. Rowland in 1974 (Figure A). From laboratory experiments, they predicted that continued use of CFCs would lead eventually to a significant depletion of the ozone layer around the earth. This is a serious concern because, for every 1% loss of ozone from the stratosphere, an additional 2% of the sun’s high energy ultraviolet radiation can reach earth’s surface, resulting in increases in skin cancer, damage to plants, and possbibly other effects that we do not even suspect at this time.
Ozone is produced in the stratosphere when high energy ultraviolet radiation causes the photodissociation of oxygen to give O atms, which react with O2 molecules:
O2 (g) + radiation (λ < 280 nm)2O (g) O (g) + O2 (g)O3 (g)
The ozone produced by this mechanism in the stratosphere is quite abundant (10 ppm), which is fortunate because O3 is also photodissociated by sunlight, O3 (g)O (g) + O2 (g), And the O atoms produced react with more O2 to regenerate O3. The process keeps 95% to 99% of the sun’s ultraviolet radiation from reaching earth’s surface.
The problem with CFCs is that they disrupt the protective ozone layer by a “chlorine catalytic cycle.” The CFCs rise to the stratosphere where C Cl bonds are broken by high energy photons. The Cl atoms attack ozone to give ClO, chlorine oxide, and oxygen: Cl (g) + O3 (g)ClO (g) + O2 (g)
This would not necessarily be a problem, except that ClO can react with an O atom to give O2 and regenerates a Cl atome: ClO (g) + O (g)Cl (g) + O2 (g)
The Cl atom can then destroy still another O3, and so on and on in a “catalytic cycle.” The net reaction is the destruction of a significant quantity of ozone. It is estimated that each Cl atom can destroy as many as 100,000 ozone molecules before the Cl atom is inactivated or returned to the troposphere (probably as HCl).
At least two other major kinds of reactions are believed to interfere with ozone loss. In one case ClO reacts with nitrogen monoxide, NO, to release a Cl atom and form NO2. The NO2 goes on to regenerate a molecule of ozone. In another reaction, ClO forms chlorine nitrate (ClONO2), a compound that at least temporarily acts as a “chlorine reservoir.” Eventually, though, this compound also breaks apart and frees Cl atoms to resume their ozone destruction.
If these interference reactions are important, CFCs might have only a minimal effect on earth’s ozone layer. In the early spring in the southern hemisphere, however, the ozone layer over the Antarctic is significantly depleted, a fact clearly illustrated in satellite images of ozone concentration done in the early 1990s (Figure B). One theory used to explain this observation involves the high altitude clouds that are common over the Antarctic continent in the winter. Chlorine nitrate could condense in these extremely cold clouds, and chlorine atoms could also be trapped as HCl. Rowland and Molina estimate that one out of every three or four collisions of ClONO2 with HCl containing ice crystals leads to reactions such as ClONO2 + HClHNO3 + Cl2
The first sunlight of spring that warms the clouds can trigger the release of atomic chlorine by photodissociating chlorine molecues. Because nitrogen oxides are trapped in the clouds as nitric acid, the “chlorine catalytic cycle” can run unchecked for 5 or 6 weeks in the spring.
Whatever the theories for the springtime Antarctic ozone loss, the problem is real, and people around the world have taken steps to halt any further deterioration. Chemical companies in the United States have halted CFC production and are actively searching for substitutes. In January, 1989, 24 nations signed the Montreal Protocal, which calls for reductions in production and use of certain CFCs. Another meeting in Denmark in 1992 led to a complete ban on CFC production.
But there will be trade offs. For example, CFC substitutes now available are less efficient as refrigerants, so it is estimated that appliances will use 3% more electricity in the United States, and this will increase consumer costs. Furthermore, because electricity is mostly generated by burning fossil fuels, the amount of CO2 evolved will increase, which in turn will contribute to the “greenhouse” effect.
CFCs and their relation to ozone depletion is just one more example of the risks and benefits problem. In this case scientists and citizens have concluded that the risks of CFCs outweigh the benefits.
Figure A Mario J. Molina (left) and F. Sherwood Rowland (right). These scientists first recognized the potential for the depletion of the earth’s atmosphere by CFCs. Rowland is Professor of Chemistry at the University of California, Irvine, and Molina is Professor
of Environmental Sciences at the Massachusetts Institute of Technology. Molina and Rowland shared the 1995 Nobel Prize in Chemistry with Paul Crutzen of Germany for their studies of the earth’s ozone layer and the effect of pollutants on it. (The Bettmann Archive) Figure B This satellite image, acquired in September 1992, shows that the stratospheric ozone concentration is depleted near the South Pole. The image is color coded to indicate relative concentrations, blue being low and red being high. For more images and information on ozone in the atmosphere go to Web site http://daac.gsfc.nasa.gov ( http: / / daac.gsfc.nasa.gov ). (NASA)
Fig. 3.5 Plot of ln(k) versus 1/T for the reaction 2N2O5(g) → 4NO2(g) + O2(g). The value of the activation energy for this reaction can be obtained from the slope of the line, which equals Ea/R.
鏈的傳遞
Au
Fig. 3.4 A plot showing the exponential dependence of the rate constant on absolute temperature. The exact temperature dependence of k is different for each reaction. This polt represents the behavior of a rate constant that doubles for every increase in temperaute of 10 K.
Fig. 3.1 Distribution of kinetic energies in gas molecules
Fig. 3.2 Distribution of kinetic energies in a sample of gas
molecules at two different temperatures
Fig 3.6 The natural logarithm of the rate constant for the
rearrangement of methyl isonitrile as a function
of 1/T.
PAGE
58

展開更多......

收起↑

資源預覽

<pre id="tfb94"><li id="tfb94"></li></pre>

<bdo id="tfb94"><rt id="tfb94"></rt></bdo>
  • <menu id="tfb94"><dl id="tfb94"></dl></menu><i id="tfb94"><acronym id="tfb94"><sub id="tfb94"></sub></acronym></i>

    1. 主站蜘蛛池模板: 稷山县| 巩留县| 昭平县| 克山县| 永登县| 吴忠市| 奉新县| 师宗县| 石家庄市| 南岸区| 三都| 泰兴市| 彭州市| 栾川县| 大兴区| 桃园县| 怀化市| 汽车| 察哈| 成武县| 永吉县| 黄浦区| 泸西县| 清原| 蒙山县| 定日县| 阿鲁科尔沁旗| 临朐县| 安阳市| 彭山县| 东辽县| 保德县| 翼城县| 南投市| 甘泉县| 舞阳县| 乌苏市| 克什克腾旗| 卢湾区| 潮安县| 阿瓦提县|