中文字幕精品无码一区二区,成全视频在线播放观看方法,大伊人青草狠狠久久,亚洲一区影音先锋色资源

無機化學競賽講義 chapter20 鑭系元素和錒系元素

資源下載
  1. 二一教育資源

無機化學競賽講義 chapter20 鑭系元素和錒系元素

資源簡介

第二十章 鑭系元素和錒系元素
Chapter 20 The Lanthanides and Actinides
鑭系元素
La、 Ce、 Pr、 Nd、 Pm、 Sm、 Eu、 Gd、 Tb、 Dy、 Ho、 Er、 Tm、 Yb、 Lu
(鑭) (鈰) (鐠) (釹) (钷) (釤) (銪) (釓) (鋱) (鏑) (鈥) (鉺) (銩 )(鐿) (镥)
錒系元素
Ac、 Th、 Pa、 U、 Np、 Pu、 Am、 Cm、 Bk、 Cf、 Es、 Fm、 Md、 No、 Lr
(錒) (釷) (鏷) (鈾) (镎) (钚) (镅) (鋦) (锫) (锎) (锿) (鐨) (鍆) (锘) (鐒)
§20-1 鑭系元素(Ln)
The Lanthanides
一、General Properties:
 1.鑭系元素 從57號元素鑭到第71號元素镥,共十五種元素,稱為鑭系元素,用Ln表示。
 2.稀土元素 周期表 ⅢB族中的鈧(Sc)、釔(Y)和鑭系元素在性質上都非常相似并在礦物中共生,由于鑭系收縮,Y3+離子的半徑落在Er3+附近,Sc3+離子的半徑接近于Lu3+,所以Sc、Y可以看作鑭系元素的成員。在化學上把Sc、Y和鑭系元素統稱為稀土元素(rare earth’s elements),用RE表示。
 3.Oxidation states (以+3為特征氧化態,其他還有+2或+4氧化態)
4f 6、4f 7 4f 13、4f 14
Sm2+、Eu2+ Tm2+、Yb2+
4f 0、4f 1、4f 2、4f 3、4f 4、4f 5、4f 6、4f 7、4f 8、4f 9、4f 10、4f 11、4f 12、4f 13、4f 14
La3+、Ce3+、Pr3+、Nd3+、Pm3+、Sm3+、Eu3+、Gd3+、Tb3+、Dy3+、Ho3+、Er3+、Tm3+、Yb3+、Lu3+
4f 0、4f 1 4f 7、4f 8
Ce4+、Pr4+ Tb3+、Dy3+
溶液中能穩定存在的氧化態有:Ln3+、Eu2+(4f 7)、Yb2+(4f 14)、Ce(IV)(4f 0)
 4.原子半徑和離子半徑
(1) 鑭系收縮 鑭系元素的原子半徑和離子半徑在總的趨勢上都是隨著原子序數的增加而逐漸地縮小,這種原子半徑依次縮小的積累,稱為鑭系收縮。
(2) 鑭系收縮的影響
(a) Sc、Y與鑭系元素共生;
(b) Zr、Hf,Nb、Ta,Mo、W,Tc、Re在原子半徑上非常接近,造成分離極其困難。
 5.離子的顏色
(1) 電子構型全空,半滿和全滿,或接近全空,半滿和全滿的4f電子的離子是穩定的或比較穩定,難以實現4f電子激發,故是無色的。
∴ La3+ (4f 0 )、Gd3+ (4f 7 )、Lu3+ (4f 14 )、Ce3+ (4f 1 )、Eu3+ (4f 6 )、Tb3+ (4f 8 )、
Yb3+ (4f 13 )都是無色
(2) 具有4f x和4f 14x的+3價離子顯示的顏色相同或相近。
(3) f電子相同,離子電荷不同的離子,其顏色不同。
Ce4+ (4f 0 ) 橙紅 Sm2+ (4f 6 ) 淺紅 Eu2+ (4f 7 ) 草黃 Yb2+ (4f 14 ) 綠
 6.標準還原電位
(1) 很負,而且與pH無關,所以不管在H+或OH-介質中,鑭系元素都是較
強的還原劑。
(2)
這說明Ce(IV)在HClO4中不形成配離子,而在HNO3、H2SO4、HCl中都不同程度地形成配離子。
 7.[+4] O.S.
只有Ce(IV)在水溶液中是最穩定的,由于Ce3+是鈰的特征氧化態,所以Ce(IV)是強氧化劑。
Ce(IV)與NaOH反應,生成Ce(OH)3↓(黃色)并放出O2
4Ce(NO3)4 + 16NaOH4Ce(OH)3↓ + 16NaNO3 + O2 + 2H2O
CeO2與H2SO4反應,同樣放出氧氣
4CeO2 + 6H2SO42Ce2(SO4)3 + O2↑+ 6H2O
CeO2與鹽酸反應,放出氯氣
2CeO2 + 8HCl2CeCl3 + Cl2↑+ 4H2O
 8.鑭系元素氫氧化物Ln(OH)3的堿性接近堿土金屬氫氧化物的堿性,但溶解度較堿土金屬氫氧化物小。
Ln(OH)3的堿性隨Ln3+離子的半徑的遞減而有規律的減小。
∵ 由 = Z / r或知,從La3+ → Lu3+的離子半徑減小, 增大,∴ M-O鍵增強,因此,鑭系元素氫氧化物的堿式電離從La(OH)3到Lu(OH)3是減小的。
§20-2 錒系元素
The Actinides
我們只介紹鈾及其化合物的性質。
鈾的重要化合物 UO2(暗棕色)  U3O8(墨綠色)  UO3(橙黃色)
一、鈾的氧化物
 1.UO3
(1) amphoteric oxide 
(2) decomposition 2UO32UO2 + O2
(3) preparation 2UO2(NO3)22UO3 + 4NO2 + O2
 2.U3O8
preparation:3U(C2O4)2U3O8 + 8CO + 4CO2
或者:3U + 4O2U3O8
U3O8不溶于水,但溶于酸,生成。
二、硝酸鈾酰[UO2(NO3)2]
1. Preparation UO3 + 2HNO3UO2(NO3)2 + H2O
2. Properties 水解生成
加堿生成Na2U2O7·6H2O(黃色),加熱脫水,生成無水Na2U2O7,俗稱鈾黃。
3. Structure UO2(NO3)2·2H2O(六角雙錐)
三、UF6(八面體)
1. Preparation UO3 + 3SF4UF6 + 3SOF2
2. Hydrolysis UF6 + 2H2OUO2F2 + 4HF
Superconductivity
H. Kammerling Onnes (Nobel Prize for Physics, 1913) discovered superconductivity in Leiden in 1911 when he cooled mercury to the temperature of liquid helium; Many other materials, mostly metals and alloys, were subsequently found to display superconductivity at very low temperatures.
Two properties characterize a superconductor:
1. It is perfectly conducting, i.e. it has zero resistance.
2. It is perfectly diamagnetic, i.e. it completely excludes applied magnetic fields. This is the Meissner effect and is the reason why a superconductor can levitate a magnet.
Superconductivity exists within the boundaries of three limiting parameters which must not be exceeded:the critical temperature (Tc), the critical magnetic field (Hc) and the critical current density (Jc).
Until 1986 the highest recorded value of Tc was ~23K for Nb3Ge but in that year Bednorz and Muller, in pioneering work for which they received the 1987 Nobel Prize for Physics, reported Tc=30K in an entirely new Ba-La-Cu-O ceramic system quickly identified as La2-xBaxCuO4.This prompted an examination of other Cu-O systems and the technologically important breakthrough in 1987 by the Houston and Alabama teams of C.W. Chu and M. K. Wu, of superconductivity at temperatures attainable in liquid nitrogen, Tc=95K in a material subsequently shown to be YBa2Cu3O7, “YBCO". This , and other materials in which Y is replaced by a lanthanide, are referred to as "1,2,3" materials because of their stoichiometry. This produced a quite unprecedented explosion of activity amongst chemists, physicists and material scientists around the world. Though the highest Tc has been pushed up to 135K (or 164 K under 350 kbar pressure) in HgBa2Ca2Cu3O8, YBCO is still the archetypal high temperature superconductor.
In spite of its long history, it was not until 1957 that Bardeen, Cooper and Schrieffer provided a satisfactory explanation of superconductivity.This "BSC: theory" suggests that pairs of electrons (Cooper pairs) move together through. the lattice, the first electron polarizing the lattice in such a way that the second one can more easily follow it. The stronger the interaction of the two electrons the higher Tc, but it turns out as a consequence of this model that Tc should have an upper limit ~35K. The advent of high-temperature superconductors therefore necessitated a new, or at least modified, explanation for the pairing, mechanism. Various suggestions have been made but none has yet gained universal acceptance.
Fig. 20.1 The structure of UO2(NO3)2·2H2O
PAGE
278

展開更多......

收起↑

資源預覽

<pre id="tfb94"><li id="tfb94"></li></pre>

<bdo id="tfb94"><rt id="tfb94"></rt></bdo>
  • <menu id="tfb94"><dl id="tfb94"></dl></menu><i id="tfb94"><acronym id="tfb94"><sub id="tfb94"></sub></acronym></i>

    1. 主站蜘蛛池模板: 保亭| 高州市| 波密县| 石家庄市| 长沙市| 兴海县| 洪湖市| 平武县| 龙里县| 平利县| 德保县| 进贤县| 宜春市| 井陉县| 务川| 河北区| 台山市| 台中市| 克山县| 南陵县| 白玉县| 彝良县| 府谷县| 大竹县| 思茅市| 桂东县| 济宁市| 曲靖市| 怀柔区| 屏边| 京山县| 通州市| 阿瓦提县| 潜江市| 海兴县| 长丰县| 三门峡市| 崇州市| 武胜县| 广水市| 长沙县|