資源簡介 1.(2014?巴中市,第 22題,6分)定義新運算:對于任意實數(shù)a,b都有a△b=ab﹣a﹣b+1,等式右邊是通常的加法、減法及乘法運算,例如:2△4=2×4﹣2﹣4+1=8﹣6+1=3,請根據(jù)上述知識解決問題:若3△x的值大于5而小于9,求x的取值范圍.2.(2014?巴中市,第 20題,3分) 如圖是我國古代數(shù)學(xué)家楊輝最早發(fā)現(xiàn)的,稱為“楊輝三角”.它的發(fā)現(xiàn)比西方要早五百年左右,由此可見我國古代數(shù)學(xué)的成就是非常值得中華民族自豪的!“楊輝三角”中有許多規(guī)律,如它的每一行的數(shù)字正好對應(yīng)了(a+b)n(n為非負(fù)整數(shù))的展開式中a按次數(shù)從大到小排列的項的系數(shù).例如,(a+b)2=a2+2ab+b2展開式中的系數(shù)1、2、1恰好對應(yīng)圖中第三行的數(shù)字;再如,(a+b)3=a3+3a2b+3ab2+b3展開式中的系數(shù)1、3、3、1恰好對應(yīng)圖中第四行的數(shù)字.請認(rèn)真觀察此圖,寫出(a+b)4的展開式,(a+b)4= ?。?br/>3.(2014?宜賓市,第 16題,3分)規(guī)定:sin(﹣x)=﹣sinx,cos(﹣x)=cosx,sin(x+y)=sinx?cosy+cosx?siny.據(jù)此判斷下列等式成立的是 (寫出所有正確的序號)①cos(﹣60°)=﹣;②sin75°=;③sin2x=2sinx?cosx;④sin(x﹣y)=sinx?cosy﹣cosx?siny.4.(2014?宜賓市,第 21題,8分) 在平面直角坐標(biāo)系中,若點P(x,y)的坐標(biāo)x、y均為整數(shù),則稱點P為格點,若一個多邊形的面積記為S,其內(nèi)部的格點數(shù)記為N,邊界上的格點數(shù)記為L,例如圖中△ABC是格點三角形,對應(yīng)的S=1,N=0,L=4.(1)求出圖中格點四邊形DEFG對應(yīng)的S,N,L.(2)已知格點多邊形的面積可表示為S=N+aL+b,其中a,b為常數(shù),若某格點多邊形對應(yīng)的N=82,L=38,求S的值. 5.(2014?自貢市,第 23題,12分)閱讀理解:如圖①,在四邊形ABCD的邊AB上任取一點E(點E不與A、B重合),分別連接ED、EC,可以把四邊形ABCD分成三個三角形,如果其中有兩個三角形相似,我們就把E叫做四邊形ABCD的邊AB上的“相似點”;如果這三個三角形都相似,我們就把E叫做四邊形ABCD的邊AB上的“強(qiáng)相似點”.解決問題:(1)如圖①,∠A=∠B=∠DEC=45°,試判斷點E是否是四邊形ABCD的邊AB上的相似點,并說明理由;(2)如圖②,在矩形ABCD中,A、B、C、D四點均在正方形網(wǎng)格(網(wǎng)格中每個小正方形的邊長為1)的格點(即每個小正方形的頂點)上,試在圖②中畫出矩形ABCD的邊AB上的強(qiáng)相似點;(3)如圖③,將矩形ABCD沿CM折疊,使點D落在AB邊上的點E處,若點E恰好是四邊形ABCM的邊AB上的一個強(qiáng)相似點,試探究AB與BC的數(shù)量關(guān)系.6. (2014?成都市,第 23題,4分) 在邊長為1的小正方形組成的方格紙中,稱小正方形的頂點為“格點”,頂點全在格點上的多邊形為“格點多邊形”.格點多邊形的面積記為S,其內(nèi)部的格點數(shù)記為N,邊界上的格點數(shù)記為L,例如,圖中的三角形ABC是格點三角形,其中S=2,N=0,L=6;圖中格點多邊形DEFGHI所對應(yīng)的S,N,L分別是 _.經(jīng)探究發(fā)現(xiàn),任意格點多邊形的面積S可表示為S=aN+bL+c,其中a,b,c為常數(shù),則當(dāng)N=5,L=14時,S= .(用數(shù)值作答)1.(2014?巴中市,第 22題,6分)定義新運算:對于任意實數(shù)a,b都有a△b=ab﹣a﹣b+1,等式右邊是通常的加法、減法及乘法運算,例如:2△4=2×4﹣2﹣4+1=8﹣6+1=3,請根據(jù)上述知識解決問題:若3△x的值大于5而小于9,求x的取值范圍.2.(2014?巴中市,第 20題,3分) 如圖是我國古代數(shù)學(xué)家楊輝最早發(fā)現(xiàn)的,稱為“楊輝三角”.它的發(fā)現(xiàn)比西方要早五百年左右,由此可見我國古代數(shù)學(xué)的成就是非常值得中華民族自豪的!“楊輝三角”中有許多規(guī)律,如它的每一行的數(shù)字正好對應(yīng)了(a+b)n(n為非負(fù)整數(shù))的展開式中a按次數(shù)從大到小排列的項的系數(shù).例如,(a+b)2=a2+2ab+b2展開式中的系數(shù)1、2、1恰好對應(yīng)圖中第三行的數(shù)字;再如,(a+b)3=a3+3a2b+3ab2+b3展開式中的系數(shù)1、3、3、1恰好對應(yīng)圖中第四行的數(shù)字.請認(rèn)真觀察此圖,寫出(a+b)4的展開式,(a+b)4= ?。?br/>3.(2014?宜賓市,第 16題,3分)規(guī)定:sin(﹣x)=﹣sinx,cos(﹣x)=cosx,sin(x+y)=sinx?cosy+cosx?siny.據(jù)此判斷下列等式成立的是 (寫出所有正確的序號)①cos(﹣60°)=﹣;②sin75°=;③sin2x=2sinx?cosx;④sin(x﹣y)=sinx?cosy﹣cosx?siny.4.(2014?宜賓市,第 21題,8分) 在平面直角坐標(biāo)系中,若點P(x,y)的坐標(biāo)x、y均為整數(shù),則稱點P為格點,若一個多邊形的面積記為S,其內(nèi)部的格點數(shù)記為N,邊界上的格點數(shù)記為L,例如圖中△ABC是格點三角形,對應(yīng)的S=1,N=0,L=4.(1)求出圖中格點四邊形DEFG對應(yīng)的S,N,L.(2)已知格點多邊形的面積可表示為S=N+aL+b,其中a,b為常數(shù),若某格點多邊形對應(yīng)的N=82,L=38,求S的值. 5.(2014?自貢市,第23題,12分)閱讀理解:如圖①,在四邊形ABCD的邊AB上任取一點E(點E不與A、B重合),分別連接ED、EC,可以把四邊形ABCD分成三個三角形,如果其中有兩個三角形相似,我們就把E叫做四邊形ABCD的邊AB上的“相似點”;如果這三個三角形都相似,我們就把E叫做四邊形ABCD的邊AB上的“強(qiáng)相似點”.解決問題:(1)如圖①,∠A=∠B=∠DEC=45°,試判斷點E是否是四邊形ABCD的邊AB上的相似點,并說明理由;(2)如圖②,在矩形ABCD中,A、B、C、D四點均在正方形網(wǎng)格(網(wǎng)格中每個小正方形的邊長為1)的格點(即每個小正方形的頂點)上,試在圖②中畫出矩形ABCD的邊AB上的強(qiáng)相似點;(3)如圖③,將矩形ABCD沿CM折疊,使點D落在AB邊上的點E處,若點E恰好是四邊形ABCM的邊AB上的一個強(qiáng)相似點,試探究AB與BC的數(shù)量關(guān)系.6. (2014?成都市,第 23題,4分) 在邊長為1的小正方形組成的方格紙中,稱小正方形的頂點為“格點”,頂點全在格點上的多邊形為“格點多邊形”.格點多邊形的面積記為S,其內(nèi)部的格點數(shù)記為N,邊界上的格點數(shù)記為L,例如,圖中的三角形ABC是格點三角形,其中S=2,N=0,L=6;圖中格點多邊形DEFGHI所對應(yīng)的S,N,L分別是 _.經(jīng)探究發(fā)現(xiàn),任意格點多邊形的面積S可表示為S=aN+bL+c,其中a,b,c為常數(shù),則當(dāng)N=5,L=14時,S= .(用數(shù)值作答)【答案】7、3、10; 11. 展開更多...... 收起↑ 資源列表 專題17 閱讀理解型問題-四川省12市2014年中考數(shù)學(xué)試題分類解析匯編(原卷版).doc 專題17 閱讀理解型問題-四川省12市2014年中考數(shù)學(xué)試題分類解析匯編(解析版).doc 縮略圖、資源來源于二一教育資源庫