資源簡介 中小學教育資源及組卷應用平臺第六章 圓周運動問題1.什么是勻速圓周運動?運動性質是什么?答(1)定義:物體沿著圓周運動,并且線速度的大小處處相等,這種運動叫作勻速圓周運動.(2)性質:勻速圓周運動的線速度方向是在時刻變化的,所以它是一種變速運動,這里的“勻速”是指速率不變.問題2、圓周運動中什么是周期T?什么是頻率f?它們之間有什么關系?答 ①周期:做圓周運動的物體運動一周所用的時間。②頻率:做圓周運動的物體單位時間內沿圓周繞圓心轉過的圈數 又叫轉速,不過轉速的單位是n/s,頻率的單位是Hz。周期與頻率的關系是T=1/f 即周期和頻率互為倒數關系。問題3、什么是線速度?它的物理意義什么?線速度的方向怎么確定 線速度的計算公式什么?答:①線速度指物體單位時間內劃過弧長的多少。 ②物理意義是描述質點沿圓周運動的快慢物理量。③線速度方向:該點的切線方向。 ③大小:v=(Δl是Δt時間內通過的弧長)。④線速度與周期:v=r 。(因為圓周長2πr)問題4、什么是角速度?它的物理意義什么?角速度的計算公式什么?與周期什么關系答:①角速度指單位時間內物體轉過的角度。 ②角速度物理意義:描述質點繞圓心轉動的快慢。④角速度大小:ω=(rad/s)(Δθ是Δt時間內通過角度)。 ④角速度與周期:v= (圓的周角是2π)練習4做勻速圓周運動的物體,10 s內沿半徑為20 m的圓周運動了100 m,試求物體做勻速圓周運動時:(1)線速度的大小; (2)角速度; (3)周期.練習4答案(1)根據線速度的定義式可得v== m/s=10 m/s;(2)根據v=ωr可得,ω== rad/s=0.5 rad/s;(3)T== s=4π s.問題5.什么是勻速圓周運動?勻速圓周運動的條件是什么?是速度不變的運動嗎?答:①做圓周運動的物體,若在相等的時間內通過的圓弧長 相等 ,就是勻速圓周運動。②勻速圓周運動條件是:當物體所受的合外力(大小恒定)始終與速度方向垂直時,物體做勻速圓周運動③勻速圓周運動特點:勻速圓周運動是線速度大小不變的運動,角速度、周期和頻率都是恒定不變的,物體受的合外力提供向心力。④勻速圓周運動條件:合外力大小不變,方向始終與速度方向垂直,且指向圓心。練習5(多選)關于勻速圓周運動,下列說法正確的是( )A.勻速圓周運動是勻速運動 B.勻速圓周運動是變速運動C.勻速圓周運動是線速度不變的運動 D.勻速圓周運動是線速度大小不變的運動練習5、答案 BD解析 這里的“勻速”,不是“勻速度”,也不是“勻變速”,而是速率不變,勻速圓周運動實際上是一種速度大小不變、方向時刻改變的變速運動,故B、D正確.問題5(1)線速度v、角速度ω、周期T、頻率f的關系式有哪些 問題6、描述圓周運動的物理量之間的關系是什么?1.線速度與角速度的關系式:線速度是一秒轉過的弧長v=2πr/T,角速度是一秒轉過的弧度ω=2π/T,故v = rω.結論:(1)當v一定時,ω與r成反比; (2)當ω一定時,v與r成正比.2.線速度與周期、轉速的關系式:v==2πrn.3.角速度與周期、轉速的關系式:ω==2πn.[深度思考] 做勻速圓周運動的物體角速度大,線速度一定大嗎?周期和轉速呢?答: 角速度大,線速度不一定大,周期一定小,轉速一定大.(多選)質點做勻速圓周運動時,下列說法正確的是( )A.因為v=ωr,所以線速度大小v與軌道半徑r成正比 B.因為ω=,所以角速度ω與軌道半徑r成反比C.因為ω=2πn,所以角速度ω與轉速n成正比 D.因為ω=,所以角速度ω與周期T成反比答案 CD 解析 當ω一定時,線速度大小v才與軌道半徑r成正比,所以A錯誤;當v一定時,角速度ω才與軌道半徑r成反比,所以B錯誤;在用轉速或周期表示角速度時,角速度與轉速成正比,與周期成反比,所以C、D正確.知識深化 對勻速圓周運動的理解 2.描述圓周運動的物理量速度方向 其速度方向沿著圓周上各點的切線方向, 所以速度的方向時刻在變化.“勻速”的含義: 速度的大小不變,即速率不變.(3)運動性質: 勻速圓周運動是曲線運動,勻速圓周運動是一種變速運動,合外力 做勻速圓周運動的物體所受合外力不為零.練習3、下列關于甲、乙兩個做勻速圓周運動的物體的有關說法中正確的是( )A.若甲、乙兩物體的線速度相等,則角速度一定相等B.若甲、乙兩物體的角速度相等,則線速度一定相等C.若甲、乙兩物體的周期相等,則角速度一定相等D.若甲、乙兩物體的周期相等,則線速度一定相等3、答案 C解析 由v=ωr可知,只有在半徑r一定時,線速度相等,角速度一定相等,角速度相等,則線速度一定相等,故選項A、B均錯誤;由ω=可知,甲、乙兩物體的周期相等時,角速度一定相等,故選項C正確;由v=ωr=r可知,因半徑r不確定,故周期相等時,線速度不一定相等,選項D錯誤.答案為C.練習4、自行車車輪每2秒轉4周,車輪半徑為2m,則1)、自行車轉速的是多大 2)周期是多少 3)、角速度是多大 4) 線速度是多大 練習4答案答(1)車輪每2秒轉4周,一秒轉幾周就是轉速,即n=2r/s ;(2) 轉一周使用時間T=1/n=1/2s=0.5s3).一秒轉過的弧度:由ω=2π/T得,ω=4rad/s(4).一秒轉過的弧長v=2πr/T,ω=2π/T得v = rω得v=4*2m/s=8m/s問題7、同軸轉動和皮帶傳動的區別是什么?答:線速度與角速度的關系式:v=ωr.(1)當v一定時,ω與r成反比;(2)當ω一定時,v與r成正比.①同軸傳動:當角速度相等時,線速度與半徑成正比,v∝r例如:半徑越大,線速度越大;②皮帶傳動或齒輪傳動:線線速度大小相同,角速度與半徑成反比。ω=1/r同軸傳動:角速度、周期相同 皮帶傳動:線速度大小相同 齒輪傳動線:速度大小相同裝置 A、B兩點在同軸的一個圓盤上 兩個輪子用皮帶連接,A、B兩點分別是兩個輪子邊緣的點 兩個齒輪嚙合,A、B兩點分別是兩個齒輪邊緣上的點練習7-1如圖1所示,轉筆深受廣大中學生的喜愛.某一時刻,筆繞手指上的某一點O做勻速轉動,OA∶OB=1∶2,設A、B線速度大小分別為vA和vB,角速度分別為ωA和ωB,則vA∶vB=________,ωA∶ωB=________.練習7-1答案 1∶2 1∶1 當角速度相等時,線速度與半徑成正比,v∝r例如:半徑越大,線速度越大;圖1 圖3練習7-2如圖3所示,當用扳手擰螺母時,扳手上P、Q兩點的角速度分別為ωP和ωQ,線速度大小分別為vP和vQ,則( )A.ωP<ωQ,vP練習7-2答案 B 解析 由于P、Q兩點是共軸轉動的,則角速度相等,根據v=ωr知,角速度相同,線速度與半徑成正比,故Q點的線速度大小與P點的線速度大小的關系為vP問題8、什么是向心加速度?物理意義是什么 公式是什么?方向指向哪里 答:①物理意義:向心加速度是描述線速度改變快慢的物理量。③方向:總是指向圓心 ,與線速度方向 垂直。②向心加速度大小公式:a==ω2r=4π2f2r=r練習8-1.[皮帶傳動](多選)如圖2所示,有一皮帶傳動裝置,A、B、C三點到各自轉軸的距離分別為RA、RB、RC,已知RB=RC=,若在傳動過程中,皮帶不打滑.則( )圖2A.A點與C點的角速度大小相等 B.A點與C點的線速度大小相等C.B點與C點的角速度大小之比為2∶1 D.B點與C點的向心加速度大小之比為1∶4練習8-1.答案 BD解析 處理傳動裝置類問題時,對于同一根皮帶連接的傳動輪邊緣的點,線速度相等;同軸轉動的點,角速度相等.對于本題,顯然vA=vC,ωA=ωB,選項B正確;根據vA=vC及關系式v=ωR,可得ωARA=ωCRC,又RC=,所以ωA=,選項A錯誤;根據ωA=ωB,ωA=,可得ωB=,即B點與C點的角速度大小之比為1∶2,選項C錯誤;根據ωB=及關系式a=ω2R,可得aB=,即B點與C點的向心加速度大小之比為1∶4,選項D正確.練習8-2.小金屬球質量為m,用長為L的輕繩固定于O點,在O點正下方處釘有一顆釘子P.把懸線沿水平方向拉直,無初速釋放后,當懸線碰到釘子的瞬間,則( )21教育名師原創作品A.小球的角速度突然增大 B.小球的線速度突然減小到零 C.小球的向心加速度突然增大 D.小球的向心加速度不變練習8-2.解析:小球的線速度不能發生突變,由于做圓周運動的半徑變為原來的一半,由v=ωr知,角速度變為原來的兩倍;由a=知,小球的向心加速度變為原來的兩倍,故A、C正確.答案:AC問題9、什么是向心力,它的作用效果是什么?方向指向哪里?答:1).向心力的來源:物體的受力與運動方向不共線,可以將力分解為垂直運動方向和沿著運動方向,垂直運動方向的力改變速度方向,切向的力改變速度大小,這里的垂直速度的方向我們把它叫做向心力。向心力是按力的作用效果命名的,向心力是效果力,不是一種性質的力,它可以由一個力或一個力的分力提供,也可以由幾個力的合力提供。可以是重力、彈力、摩擦力等各種力,也可以是幾個力的合力或某個力的分力,因此在受力分析中要避免再另外添加一個向心力.做圓周運動的物體肯定所受合外力不為零。2).向心力的確定:(1)確定圓周運動的軌道所在的平面,確定圓心的位置.(2)分析物體的受力情況,找出所有的力沿半徑方向指向圓心的合力,就是向心力.(3)向心力產生的效果是改變速度的方向。3).向心力的公式:根據牛頓第二定律:Fn=man=m=mω2r=mr=mr4π2f2.問題10、 進行受力分析?怎么確定正方向?答:圓周運動受力分析要注意不要把向心力當做一個力,而是要作為合力來表示,正方向的規定,一般以指向圓心的合力方向為正方向,這樣列式所得的加速度及合力都是正值,便于分析。練習10.如圖所示,一圓盤可繞一通過圓心且垂直于盤面的豎直軸轉動,在圓盤上放一塊橡皮,橡皮塊隨圓盤一起轉動(俯視為逆時針).某段時間圓盤轉速不斷增大,但橡皮塊仍相對圓盤靜止,在這段時間內,關于橡皮塊所受合力F的方向的四種表示(俯視圖)中,正確的是( )21世紀練習10.解析:橡皮塊做加速圓周運動,合力不指向圓心,但一定指向圓周的內側;合力的徑向分力提供向心力,切線分力產生切向加速度.由于做加速圓周運動,轉速不斷增加,故合力與速度的夾角小于90°;故選C.2答案:C問題11、幾種常見的圓周運動向心力的來源是什么?幾種常見的圓周運動向心力的來源(在勻速圓周運動中,由合力提供向心力).實例分析 圖例 向心力來源在勻速轉動的圓筒內壁上,有一物體隨圓筒一起轉動而未發生滑動 彈力提供向心力用細繩拴住小球在光滑的水平面內做勻速圓周運動 繩的拉力(彈力)提供向心力物體隨轉盤做勻速圓周運動,且物體相對于轉盤靜止 靜摩擦力提供向心力用細繩拴住小球在豎直平面內做圓周運動,當小球經過最低點時 拉力和重力的合力提供向心力小球在細繩作用下,在水平面內做勻速圓周運動時 繩的拉力的水平分力(或拉力與重力的合力)提供向心力練習11-1、 (多選)如圖4所示,用長為L的細線拴住一個質量為m的小球,使小球在水平面內做勻速圓周運動,細線與豎直方向的夾角為θ,重力加速度為g,關于小球的受力情況,下列說法正確的是( )圖4A.小球受到重力、細線的拉力和向心力三個力 B.向心力是細線對小球的拉力和小球所受重力的合力C.向心力的大小等于細線對小球拉力的水平分力 D.向心力的大小等于mgtan θ練習11-1、答案 BCD 解析 對小球受力分析可知,小球受到重力、細線的拉力兩個力,這兩個力的合力提供向心力,也可把拉力分解,拉力的水平分力提供向心力,如圖所示,A錯誤,B、C正確;向心力的大小Fn=mgtan θ,D正確.練習11-2.如圖所示,一個內壁光滑的圓錐筒的軸線垂直于水平面,圓錐筒固定不動,有兩個質量相同的小球A和B緊貼著內壁分別在圖中所示的水平面內做勻速圓周運動.則下列說法中正確的是( )A.球A的線速度必定大于球B的線速度 B.球A的角速度必定小于球B的角速度C.球A的運動周期必定小于球B的運動周期 D.球A對筒壁的壓力必定大于球B對筒壁的壓力練習11-2.解析:兩球均貼著圓錐筒的內壁,在水平面內做勻速圓周運動,它們均受到重力和筒壁對它們的彈力作用,其合力必定在水平面內時刻指向圓心,如圖所示.由圖可知,筒壁對球的彈力為,對于A、B兩球,因質量相等,θ角也相等,所以A、B兩球受到筒壁的彈力大小也相等,由牛頓第三定律知,A、B兩球對筒壁的壓力大小也相等,D選項不正確.【來源:21·世 練習2問題12 水平方向圓周運動規律有哪些?答:一)、火車轉彎;(1)向心力來源:向心力幾乎完全由重力G和支持力FN的合力提供,即F=mgtan_α.(2)規定速度:若火車轉彎時,火車輪緣不受軌道壓力,則mgtan α=,故v0=①當v=v0時,支持力Fn=F,即轉彎時所需向心力等于支持力和重力的合力,這時內、外軌均無側壓力②當v>v0時,支持力Fn>F,即所需向心力大于支持力和重力的合力,這時外軌對車輪有側壓力,③當v說明:火車轉彎時受力情況和運動特點與圓錐擺或漏斗斜面類似.相信加速度都是a=gtanθ。練習13(多選)關于火車轉彎,下列說法中正確的是( )A.軌道的彎道應是外軌略高于內軌 B.軌道的彎道應是內軌略高于外軌C.按規定速率轉彎內外軌對車輪均無側向壓力 D.按規定速率轉彎內外軌對車輪均有側向壓力練習13、答案 AC 解析 在轉彎過程中,要有力提供向心力,為了減小火車對輪緣的壓力作用,通常做得外軌高于內軌,選項A正確;同理選項C正確.故選A、C.圖2問題13、非勻速圓周運動類型題怎么解決?1.變速圓周運動:(1)受力特點:變速圓周運動中合力不指向圓心,合力F產生改變線速度大小和方向兩個作用效果.(2)某一點的向心力仍可用公式Fn=m=mω2r求解.練習13、蕩秋千是小朋友很喜歡的游戲,當秋千由上向下蕩時:(1)此時小朋友做的是勻速圓周運動還是變速圓周運動?(2)繩子拉力與重力的合力指向懸掛點嗎?運動過程中,公式Fn=m=mω2r還適用嗎?練習13、答案 (1)小朋友做的是變速圓周運動.(2)小朋友蕩到最低點時,繩子拉力與重力的合力指向懸掛點,在其他位置,合力不指向懸掛點.運動過程中,公式Fn=m=mω2r仍然適用于向心力的求解.問題14、一般的曲線運動的類型題怎么解決?答:一般的曲線運動:曲線軌跡上每一小段看成圓周運動的一部分,在分析其速度大小與合力關系時,可采用圓周運動的分析方法來處理.(1)合力方向與速度方向夾角為銳角時,力為動力,速率越來越大.(2)合力方向與速度方向夾角為鈍角時,力為阻力,速率越來越小.練習14-1、如圖6所示,物塊P置于水平轉盤上隨轉盤一起運動,圖中c方向沿半徑指向圓心,a方向與c方向垂直.當轉盤逆時針轉動時,下列說法正確的是( )圖6A.當轉盤勻速轉動時,P所受摩擦力方向為c B.當轉盤勻速轉動時,P不受轉盤的摩擦力C.當轉盤加速轉動時,P所受摩擦力方向可能為a D.當轉盤減速轉動時,P所受摩擦力方向可能為b練習14-1、答案 A 解析 轉盤勻速轉動時,物塊P所受的重力和支持力平衡,摩擦力提供其做勻速圓周運動的向心力,故摩擦力方向為c,A項正確,B項錯誤;當轉盤加速轉動時,物塊P做加速圓周運動,不僅有沿c方向指向圓心的向心力,還有指向a方向的切向力,使線速度大小增大,故摩擦力可能沿b方向,不可能沿a方向,C項錯誤;當轉盤減速轉動時,物塊P做減速圓周運動,不僅有沿c方向指向圓心的向心力,還有與a方向相反的切向力,使線速度大小減小,故摩擦力可能沿d方向,不可能沿b方向,D項錯誤.練習14-2 如圖7所示,某物體沿光滑圓弧軌道由最高點滑到最低點過程中,物體的速率逐漸增大,則( )圖7A.物體的合力為零 B.物體的合力大小不變,方向始終指向圓心OC.物體的合力就是向心力 D.物體的合力方向始終不與其運動方向垂直(最低點除外)練習14-2答案 D 解析 物體做加速曲線運動,合力不為零,A錯誤;物體做速度大小變化的圓周運動,合力不指向圓心(最低點除外),合力沿半徑方向的分力等于向心力,合力沿切線方向的分力使物體速度變大,即除在最低點外,物體的速度方向與合力方向的夾角始終為銳角,合力與速度不垂直,B、C錯誤,D正確.問題15、怎么理解航天器中的失重現象和離心運動?(1)航天器中的失重現象①質量為M的航天器在近地軌道運行時,航天器的重力提供向心力,滿足關系:Mg=M,則v=.②質量為m的航天員:航天員的重力和座艙對航天員的支持力提供向心力,滿足關系:mg-FN=.當v= 時,FN=mg-=0,即支持力為零,航天員處于完全失重狀態.③航天器內的任何物體都處于完全失重狀態.練習15.(多選)2013年6月11日至26日,“神舟十號”飛船圓滿完成了太空之行,期間還成功進行了人類歷史上第二次太空授課,女航天員王亞平做了大量失重狀態下的精美物理實驗.關于失重狀態,下列說法正確的是( )A.航天員仍受重力的作用 B.航天員受力平衡C.航天員所受重力等于所需的向心力 D.航天員不受重力的作用練習15、答案 AC解析 做勻速圓周運動的空間站中的航天員,所受重力全部提供其做圓周運動的向心力,處于完全失重狀態,并非航天員不受重力作用,A、C正確,B、D錯誤.(2)①離心運動的原因:合力突然消失或不足以提供所需的向心力,而不是物體又受到了“離心力”.②合力與向心力的關系對圓周運動的影響(如圖4所示)若F合=mω2r,物體做勻速圓周運動.若F合若F合=0時,物體沿切線方向飛出.若F合>mω2r,物體做近心運動.③離心運動的應用和防止應用:離心干燥器;洗衣機的脫水筒;離心制管技術.防止:汽車在公路轉彎處必須限速行駛;轉動的砂輪、飛輪的轉速不能太高.問題16怎么解決汽車過拱形橋問題?答:(1)汽車過拱形橋(如圖2)汽車在最高點滿足關系:mg-FN=m,即FN=mg-m.①當v=時,FN=0.②當0≤v<時,0時,汽車將脫離橋面做平拋運動,發生危險.(2)汽車過凹形橋(如圖3) 汽車在最低點滿足關系:FN-mg=,即FN=mg+.由此可知,汽車對橋面的壓力大于其自身重力,故凹形橋易被壓垮,因而實際中拱形橋多于凹形橋.練習16 當汽車駛向一拱形橋時,為使在通過橋頂時,減小汽車對橋的壓力,司機應( )A.以盡可能小的速度通過橋頂 B.增大速度通過橋頂C.以任何速度勻速通過橋頂 D.使通過橋頂的向心加速度盡可能小練習16、答案 B 解析 設質量為m的汽車以速度v經過半徑為R的橋頂,則汽車受到的支持力FN=mg-m,故汽車的速度v越大,汽車對橋的壓力越小.而an=,即FN=mg-man,向心加速度越大,汽車對橋的壓力越小,綜上所述,選項B符合題意.練習16-2、一輛質量m=9000kg的轎車,駛過半徑R=90 m的一段凸形橋面,g=10 m/s2,求:轎車以10 m/s的速度通過橋面最高點時,對橋面的壓力是多大?(2)在最高點對橋面的壓力等于零時,車的速度大小是多少?練習16-2、解析 (1)轎車通過凸形橋面最高點時,豎直方向受力分析如圖所示:合力F=mg-FN,由向心力公式得mg-FN=m,故橋面的支持力大小FN=mg-m=(9 000×10-9 000×) N≈8×104 N根據牛頓第三定律,轎車在橋面最高點時對橋面壓力的大小為8×104 N.(2)對橋面的壓力等于零時,向心力F′=mg=m,所以此時轎車的速度大小v′== m/s=30 m/s.離心運動問題17.怎么求解豎直平面內圓周運動的臨界問題?繩模型 桿或管道模型答(1)輕繩模型(內部無支撐) 最高點重力提供向心力,mg=m,得恰能過最高點速度(2)輕桿模型(內部有支撐)當速度時,剛好通過最高點。練習17、摩托車比賽轉彎時,轉彎處路面常是外高內低,摩托車轉彎有一個最大安全速度,若超過此速度,摩托車將發生滑動.關于摩托車滑動的問題,下列論述正確的是( )A.摩托車一直受到沿半徑方向向外的離心力作用 B.摩托車所受外力的合力小于所需的向心力C.摩擦車將沿其線速度的方向沿直線滑去 D.摩托車將沿其半徑方向沿直線滑去練習17、答案 B 解析 摩托車只受重力、地面支持力和地面的摩擦力作用,沒有離心力,A項錯誤;摩托車正常轉彎時可看做是做勻速圓周運動,所受的合力等于向心力,如果向外滑動,說明提供的向心力即合力小于需要的向心力,B項正確;摩托車將在沿線速度方向與半徑向外的方向之間做離心曲線運動,C、D項錯誤.練習17-2、一細繩與水桶相連,水桶中裝有水,水桶與細繩一起在豎直平面內做圓周運動,如圖6所示,水的質量m=10 kg,水的重心到轉軸的距離l=10m.(g取10 m/s2)(1)若在最高點水不流出來,求桶的最小速率;(小數點后保留兩位有效數字)(2)若在最高點水桶的速率v=20 m/s,求水對桶底的壓力.練習17-2、答案 (1)10 m/s (2)300N解析 (1)以水桶中的水為研究對象,在最高點恰好不流出來,說明水的重力恰好提供其做圓周運動所需的向心力,此時桶的速率最小.此時有:mg=m,則所求的最小速率為:v0=≈10m/s.(2)此時桶底對水有一向下的壓力,設為FN,則由牛頓第二定律有:FN+mg=m,代入數據可得:FN=m- mg =300 N.由牛頓第三定律,水對桶底的壓力:FN′=300 N.練習17-3.如圖8所示,質量m=2.0×104 kg 的汽車以不變的速率先后駛過凹形橋面,橋面的圓弧半徑為20 m.如果汽車允許的最大速度是)10 m/s,橋面承受的壓力是多少?(g取10 m/s2)練習17-3、解析 (1)汽車在凹形橋最低點時存在最大允許速度,由牛頓第二定律得:FN-mg=m得FN=m+mg 代入數據v=10 m/s解得FN=3.0×105 N練習18 如圖7所示,質量為1 kg的小球用細繩懸掛于O點,將小球拉離豎直位置釋放后,到達最低點時的速度為2m/s,已知球心到懸點的距離為1 m,重力加速度g=10 m/s2,求小球在最低點時對繩的拉力的大小.4 練習19練習18解析 小球在最低點時做圓周運動的向心力由重力mg和繩的拉力FT提供(如圖所示),即FT-mg= 所以FT=mg+=(1×10+) N=14 N 小球對繩的拉力與繩對小球的拉力是一對作用力和反作用力,所以小球在最低點時對繩的拉力大小為14 N.答案 14 N練習19.如圖,置于圓形水平轉臺邊緣的小物塊隨轉臺加速轉動,當轉速達到某一數值時,物塊恰好滑離轉臺開始做平拋運動.現測得轉臺半徑R=0.5 m,離水平地面的高度H=0.8 m,物塊平拋落地過程水平位移的大小s=0.4 m.設物塊所受的最大靜摩擦力等于滑動摩擦力,取重力加速度g=10 m/s2.求:物塊做平拋運動的初速度大小v0; (2)物塊與轉臺間的動摩擦因數μ.練習19(1)物塊做平拋運動,在豎直方向上有H=gt2,① 在水平方向上有s=v0t,② 由①②式解得v0=s,v0=1 m/s.(2)物塊離開轉臺時最大靜摩擦力提供向心力,有 F′fm=m,④ Ffm=F′fm=μN=μmg,⑤,由③④⑤式解得μ=,μ=0.2.第六章 圓周運動 物理作業學校:___________姓名:___________班級:___________考號:___________一、單選題(共66分)1.(本題6分)下列關于勻速圓周運動的說法正確的是( )A.勻速圓周運動是勻加速曲線運動 B.做勻速圓周運動的物體所受合外力是保持不變的C.做勻速圓周運動的物體所受合外力就是向心力 D.隨圓盤一起勻速轉動的物體受重力、支持力和向心力的作用2.(本題6分)物體做勻速圓周運動時,2s內通過的弧長為4m,則線速度大小為( )A.2m/s B.6m/s C.8m/s D.1.2m/s3.(本題6分)A、B兩艘快艇在湖面上做勻速圓周運動,在相同時間內,它們通過的路程之比是4∶3,運動方向改變的角度之比是3∶2,則它們( )A.線速度大小之比為2∶3 B.角速度大小之比為3∶4 C.圓周運動的半徑之比為2∶1 D.轉速之比為3∶24.(本題6分)如圖所示,小物塊A與水平圓盤保持相對靜止,隨圓盤一起在水平面內做勻速圓周運動。關于小物塊A的受力情況,下列說法正確的是( )A.受重力、支持力 B.受重力、支持力和摩擦力 C.受重力、支持力、摩擦力和向心力 D.受到的合外力為零4 57 85.(本題6分)一質量為m的物體,沿半徑為R的向下凹的半圓形軌道滑行,如圖所示,經過最低點時的速度為v,物體與軌道之間的動摩擦因數為μ,則它在最低點時受到的摩擦力為( )A. B. C. D.6.(本題6分)下列關于向心加速度的說法中正確的是( )A.向心加速度表示做圓周運動的物體速率改變的快慢 B.向心加速度的方向不一定指向圓心C.向心加速度描述線速度方向變化的快慢 D.勻速圓周運動的向心加速度不變7.(本題6分)如圖所示為自行車皮帶傳動裝置,主動輪O1上兩輪的半徑分別為3r和r,從動輪O2的半徑為2r,A、B、C分別為輪緣上的三點,設皮帶不打滑,A、B、C三點 ( )A.加速度之比aA∶aB∶aC=6∶2∶1 B.線速度之比vA∶vB∶vC=3∶2∶2C.角速度之比ωA∶ωB∶ωC=1∶1∶2 D.加速度之比aA∶aB∶aC=3∶2∶18.(本題6分)把地球設想成一個半徑為地球半徑R=6 400km的拱形橋,如圖所示,汽車在最高點時,若恰好對“橋面”壓力為0,g=9.8m/s2,則汽車的速度為( )A.7.9m/s B.7.9m/h C.7.9km/s D.7.9km/h9.(本題6分)下列現象或措施中,與離心運動有關的是( )A.汽車行駛過程中,乘客要系好安全帶 B.廂式電梯張貼超載標識C.火車拐彎處設置限速標志 D.喝酒莫開車,開車不喝酒10.(本題6分)如圖所示,小球m在豎直放置的光滑圓形管道內做圓周運動,下列說法中錯誤的是( )A.小球通過最高點的最小速度為 C.小球在水平線ab以下管道中運動時,外側管壁對小球一定有作用力B.小球通過最高點的最小速度為0 D.小球在水平線ab以上管道中運動時,內側管壁對小球可能有作用力11.(本題6分)如圖所示,長為L的輕繩一端系一質量為m的小球A,另一端固定于O點,當繩豎直時小球靜止。現給小球一水平初速度v0,使小球在豎直平面內做圓周運動,且剛好能過最高點,重力加速度為g,則( )A.小球過最高點時,速度可能為零 B.小球過最高點時,繩的拉力為mgC.開始運動時,繩的拉力為m D.小球過最高點時,速度大小為二、解答題(共34分)12.(本題17分)一根長為0.1m的細繩,能承受的最大拉力為85N,用它吊起一質量為0.5kg的物體,當物體在豎直平面內做圓周運動經過最低點時,繩子恰好被拉斷。物體可視為質點,不計空氣阻力,取重力加速度大小。求:(1)繩斷時的速度大小;(2)若物體落地時的速度大小為5m/s,求繩斷后物體在空中運動的時間。13.(本題17分)如圖所示,固定在豎直平面內的光滑圓弧形軌道ABCD。圓的半徑為。A點與圓心高。D點為軌道的最高點。直徑BD為豎直線,直徑AC為水平線。現使可視為質點小球以某速度從A點進入圓形軌道。(重力加速度g取)(1)小球能運動到最高點D,小球到達D點的最小速度?(2)小球從小球D點平拋,計算說明小球能否再次落回圓形軌道?第六章 圓周運動 參考答案:1.C【詳解】C.做勻速圓周運動的物體,由于速度大小不變,所以所受合外力只改變速度方向,指向圓心提供向心力,C正確;2.A【詳解】線速度故選A。3.D【詳解】A.根據線速度定義式v=s/t,已知在相同時間內它們通過的路程之比是4∶3,則線速度大小之比為4∶3,故A錯B.根據角速度定義式ω=t,相同時間內它們轉過的角度之比為3∶2,則角速度之比為3∶2,故B錯誤;C.根據公式v=rω,可得圓周運動半徑r=,線速度大小之比為4∶3,角速度之比為3∶2,則圓周運動的半徑之比為8∶9,故C錯誤;D.根據T=得,周期之比為2∶3,再根據n=得轉速之比為3∶2,故D正確。故選D。4.B【詳解】小物塊在豎直方向上受重力和支持力,由于小物塊在水平面內做勻速圓周運動,則還一定受到摩擦力從而提供其向心力,所以小物塊受到的合力不為零。向心力是效果力,受力分析時不能將其與其他性質力并列分析,故ACD錯誤,B正確。故選B。5.C【詳解】在最低點由向心力公式得FN-mg= 得FN=mg+又由摩擦力公式有Ff=μFN=μm(g+)故選C。6.C【詳解】A.做勻速圓周運動的物體速率不變,向心加速度只改變速度的方向,故A錯誤;B.向心加速度的方向總是沿著圓周運動軌跡的半徑指向圓心,故B錯誤;C.勻速圓周運動中線速度的變化只表現為線速度方向的變化,作為反映速度變化快慢的物理量,向心加速度只描述線速度方向變化的快慢,故C正確;D.向心加速度的方向是變化的,故D錯誤。故選C。7.A【詳解】C.B點和C點具有相同大小的線速度,根據,知B、C兩點的角速度之比等于半徑之反比,所以而A點和B點具有相同的角速度,則故C錯誤;B.根據,知A、B的線速度之比等于半徑之比,所以 B、C線速度相等,所以故B錯誤;A、D.根據得故A正確,D錯誤。8.C【詳解】恰好汽車對“橋面”壓力為0,由重力提供向心力可得解得故選C。9.C火車拐彎處設置限速標志,是防止火車轉彎時速度過大出現離心現象而出現脫軌,C符合題意;10.A【詳解】AB.小球在圓形管道內做圓周運動,因此在最高點時,內壁可以給小球沿半徑向外的支持力,所以小球經最高點時的最小速度可以是零,A錯誤,符合題意;B正確,不符合題意;C.小球在水平線ab以下管道中運動時,豎直向下的重力沿半徑方向的分力向外,小球的向心力是沿半徑指向圓心的,因此小球與外側壁一定會有相互擠壓,所以外側管壁對小球一定有作用力,C正確,不符合題意;D.小球在水平線ab以上管道中運動時,當小球速度較小時,重力沿半徑方向的分力大于或等于小球做圓周運動需要的向心力,此時小球與外側壁不存在相互擠壓,則外側管壁對小球沒有作用力;當重力沿半徑方向的分力大于小球做圓周運動需要的向心力時,內側管壁對小球可能有作用力,D正確,不符合題意。故選A。11.D【詳解】ABD.小球剛好越過最高點,可知FT=0,根據牛頓第二定律得mg=m解得v=故AB錯誤,D正確;C.開始運動時,根據牛頓第二定律得FT-mg=m解得FT=mg+m故C錯誤。故選D。12.(1)m/s;(2)s【詳解】(1)根據牛頓第二定律 解得繩斷時物體速度大小m/s(2)繩斷后,物體做平拋運動,落地時豎直方向的速度 解得落地時物體豎直分速度大小m/s繩斷后,物體在豎直方向上做自由落體運動,有解得繩斷后物體在空中運動的時間s13.(1);(2)不能落回圓軌道(1)在最高點,重力提供向心力解得(2)恰好通過D點,且離開D點后,做平拋,以能否過A點為臨界點,根據解得從點拋出后,豎直方向;水平方向解得 所以不能落回圓軌道。 展開更多...... 收起↑ 資源預覽 縮略圖、資源來源于二一教育資源庫