資源簡介 小結(jié)班級:_____________姓名:__________________組號:_________不等式與不等式組一、知識梳理:1.不等式(組)的有關(guān)概念:下列式子:①-3﹤0,②4x+3y>0,③x=3,④x2-y+1,⑤x≠5,⑥7x-3﹤2。其中是不等式的有___________________;一元一次不等式有___________________。2.不等式(組)的解及解集:(1)判斷下列數(shù)中,哪些是不等式x+4>7的解?并求出它的解集。-4,-3.5,1,2,。(2)不等式7-x>1的正整數(shù)解為: 。3.不等式的性質(zhì)(1)若x<y,則x-2 y-2。(填“<、>或=”號)根據(jù) 。(2)若,則3ɑ b。(填“<、或=”號)根據(jù) 。4.解法解不等式并把解集在數(shù)軸上表示出來。二、綜合運用下列結(jié)論:①若a<b,則<;②若>bc,則a>b;③若a>b且若c=d,則>bd;④若<,則a<b。正確的有( )。A.4個 B.3個 C.2個 D.1個2.不等式3x-2<7的非負整數(shù)解是 。3.若x=,y=,且x>2>y,則a的取值范圍是 。4.已知關(guān)于x的方程4a-7x=-3的解是非負數(shù),求a的取值范圍。5.已知方程組的解x、y滿足x+y<0,則m的取值范圍。三、課堂檢測1.在數(shù)軸上表示不等式x≥-2的解集,正確的是( )A. B. C. D.2.若不等式組無解,求a的取值范圍是 。3.解下列不等式(組)(1) (2)四、課堂小結(jié)五、拓展延伸(選做題)1.若不等式的正整數(shù)解是1和2,則k的取值范圍是 。2.關(guān)于x的方程ax=1-2x(a≠-2)的解是一個正數(shù),求a的取值范圍。【答案】【知識梳理】1.①②⑤⑥;⑤⑥2.(1)解:不等式x+4>7的解集為:x>3,它的解有。(2)1,2,3,4,53.(1)< 是不等式的性質(zhì)1(2)> 是不等式的性質(zhì)34.解:解不等式①,得x>3解不等式②,得x≤4把不等式①②的解集在數(shù)軸上表示出來(圖略)所以不等式組的解集是3<x≤4【綜合運用】1.D2.0,1,23.1<a<44.解:5.解:①+②得3x+3y=2+2m因為x+y<0所以<0M<-1【課堂檢測】1.C2.a(chǎn)≤23.(1) (2)解:解不等式①,得x<4解不等式②,得x>3所以不等式組的解集是3<x<4【課堂小結(jié)】略【拓展延伸】1.-1.5<k<-12.解:5 / 5 展開更多...... 收起↑ 資源預(yù)覽 縮略圖、資源來源于二一教育資源庫