資源簡介 中小學教育資源及組卷應用平臺北師大版六年級數學上冊第六單元比的認識(知識點梳理+能力百分練)四知識點梳理1、兩個數相除又叫作兩個數的比。“:”叫作比號,讀作“比”。在一個比中,比號前面的數是比的前項,比號后面的數是比的后項。比的前項除以比的后項的商就是這個比的比值。2、比與除法、分數既有聯系,又有區別,它們之間的關系可以表示為a: b=a÷b=。3、比的前項和后項都是整數,并且比的前項和后項互為質數,這樣的比叫作最簡整數比。把一個比化成最簡整數比的過程,叫作化簡比。4、根據商不變的規律化簡比時,先把比改寫成除法算式,再把被除數和除數同時除以它們的最大公因數,最后再化成比的形式。根據分數的基本性質化簡比時,先把比改寫成分數的形式,再把這個分數進行約分,最后改寫成比的形式。比的前項和后項同時乘或除以同一個不為0的數,比值的大小不變,這就是比的基本性質。利用比的基本性質化簡比時,把比的前項和后項同時除以它們的最大公因數即可。5、解決按一定的比進行分配的問題時,有三種解決問題的方法。一是把比看作分得的份數,轉化成整數乘除法解答,先求出總份數,再求出每份是多少,最后求出各部分量。二是轉化為分數乘法解答,仍然是先求出總份數﹐再求出各部分量占總量的幾分之幾,最后用總份數乘相應的分數求出各部分量。三是列方程解答,先設每份的量為x,再用份數乘每份的量,利用各部分量的和一總量列方程求解。能力百分練一、選擇題(滿分16分)1.有甲乙丙三箱水果,甲箱質量與乙丙兩箱質量和的比是1∶5,乙箱質量與甲丙兩箱質量和的比是1∶2,甲箱和乙箱的質量比是( )。A.1∶2 B.1∶3 C.2∶5 D.1∶12.一粒玉米種子,發芽粒數與沒有發芽粒數的比是4∶1,這批種子的發芽率是( )。A.25% B.75% C.80% D.85%3.甲、乙兩人擁有彈珠顆數比是4∶1,如果甲送給乙15顆彈珠后,甲、乙兩人彈珠數量比為7∶8,那么兩人共有彈珠( )顆。A.35 B.40 C.45 D.504.樂樂把自己壓歲錢的給妹妹,這時兩人的壓歲錢同樣多。原來樂樂和妹妹的壓歲錢的比是( )。A.4∶3 B.6∶5 C.5∶4 D.5∶35.某校六年級男生比女生多30人,六年級女生人數與男生人數的比是4∶5,六年級人數占全校人數的20%,全校有( )名學生。A.1050 B.1150 C.1250 D.13506.學校合唱隊人數在20~30人之間,男女生人數的比是3∶5,這個合唱隊有( )人。A.21 B.24 C.25 D.277.圖書閱覽室里有120名學生,男、女生人數的比不可能是( )。A. B. C. D.8.在9∶4這個比中,如果前項加上18,要使比值不變,后項應該加上( )。A.18 B.12 C.8 D.4二、填空題(滿分16分)9.兩個相同的杯里裝滿了酒精溶液,酒精和水的體積比分別是1∶4和3∶7,如果將這兩杯溶液在大容器里完全混合,混合后的酒精溶液中酒精和水的體積最簡整數比是( )。10.兩輛汽車同時從相距360千米的兩地相對開出,2.4時后相遇,已知兩輛車的速度比是12∶13,較慢的一輛車每時行( )千米。11.2022年供暖前一月,西安某居民小區陸續繳納暖氣費,該小區共有270戶,已繳費的住戶與未繳費的住戶數量比是8∶1,供暖前一周該小區有( )戶已繳暖氣費,有( )戶未繳暖氣費。12.用180米長的籬笆圍出一塊長方形菜地,使菜地長與寬的比為6∶4,那么長方形菜地的長是( )米,寬是( )米。13.學校圖書館新進了一批圖書,按4∶3分給五年級和六年級。五年級分了280本,六年級分了( )本。14.一個三角形,三個角的度數之比為,最小的角是( )度,這個三角形是( )三角形。15.5∶8的前項增加25,要使比值不變,后項應該( );如果比值擴大了2倍,前項不變,那么后項應該變成( )。16.某人騎自行車從小鎮到縣城,8時出發,計劃9時到達。走了一段路后,下車就地修車10分鐘,修車地點距離中點還差2千米,車速提高了,結果還是比預定時間晚了2分鐘到達縣城,騎車人原來每小時行( )千米。三、判斷題(滿分8分)17.大小兩個圓的周長之比是5∶2,它們半徑之比也是5∶2。( )18.如果,那么A比B少。( )19.給5∶8的前項加10,要使比值不變,后項應該加16。( )20.把美術小組人數的調入音樂小組,這時兩組人數相等。則原來美術小組和音樂小組的人數比是10∶9。( )四、計算題(滿分6分)21.(6分)化簡比。0.07∶4.2 時∶30分 4.5∶6五、作圖題(滿分6分)22.(6分)在方格圖中畫出兩個大小、形狀不同的梯形,使它們的下底和高的比都是3∶2。六、解答題(滿分48分)23.(6分)某工廠一、二月的平均產量是1500噸,已知一月和二月的產量的比是8∶7,一月份的產量是多少噸?24.(6分)新華書店要向兩所小學捐贈圖書500本,東山小學有120名學生,南嶺小學有280名學生,按學生數分配圖書,南嶺小學可以分得多少本圖書?25.(6分)在寒冷的天氣,為預防傷寒感冒,我國民間常用生姜、紅糖和水按2∶5∶75的質量配比煮成“姜湯”服用,如果要煮一碗410克的“姜湯”,需要準備生姜、紅糖各多少克?26.(6分)調制巧克力奶,巧克力與奶的質量比是2∶9 ,笑笑有巧克力240克,都用來調巧克力奶。她要準備多少克奶?27.(6分)一種什錦糖是由奶糖、水果糖和酥糖按2∶4∶3混合成的。要配制這樣的什錦糖270千克,需要的水果糖比奶糖多多少千克?28.(6分)兩地相距480千米,甲、乙兩輛汽車同時從兩地相向開出,4小時后相遇,已知甲、乙兩車速度的比是5∶3,甲車每小時行駛多少千米?29.(6分)用80厘米長的鐵絲做一個長方體框架(接頭處不計),長是6厘米,寬和高的比是3∶4,這個長方體的體積是多少立方厘米?30.(6分)原來,甲書架與乙書架書的本數比是5∶6,兩個書架上各借出88本后,甲書架上書的本數是乙書架的。乙書架上原來有多少本書?參考答案1.A【分析】根據題意,甲箱質量與乙丙質量和的比是1∶5,則甲箱占總質量的,同樣乙箱質量與甲丙兩箱質量和的比是1∶2,則乙箱占總箱質量的;再用甲箱占總質量的分率∶乙箱占總質量分率,化簡即可解答。【詳解】甲箱占總質量的乙箱占總值量的甲箱和乙箱的比是:∶=∶=(×6)∶(×6)=1∶2故答案為:A【點睛】本題考查比的意義,比的基本性質,以及按比例分配問題。2.C【分析】將發芽粒數看成4份,沒有發芽粒數看成1份,則種子總數是4+1=5份,帶入發芽率=×100%計算即可。【詳解】×100%=80%故答案為:C【點睛】本題主要考查百分率問題,理解比的意義是解題的關鍵。3.C【分析】根據甲、乙兩人彈珠顆的總數沒變,把彈珠顆的總數看作單位“1”,原來甲的個數占總個數的,甲送給乙15顆彈珠后,甲的個數占總個數的,根據分數除法的意義,用15÷(-),就是兩人共有彈珠的顆數。【詳解】15÷(-)=15÷(-)=15÷=45(顆)故答案為:C【點睛】關鍵是抓住甲、乙兩人彈珠的總顆數沒變,看作單位“1”,把比轉化成分數,進而求出15占兩人總顆數的幾分之幾,再根據分數除法的意義解答。4.D【分析】把樂樂自己的壓歲錢看作單位“1”,把它平均分成5份,每份是它的,樂樂把自己壓歲錢的給妹妹,這時兩人的壓歲錢同樣多,說明妹妹比樂樂少2個,即妹妹原來的壓歲錢是(1--),根據比的意義,即可寫出原來樂樂和妹妹的壓歲錢的比,并化成最簡整數比,然后即可作出選擇。【詳解】1∶(1--)=1∶=5∶3原來樂樂和妹妹的壓歲錢的比是5∶3。故答案為:D【點睛】也可把樂樂自己的壓歲錢看作單位“1”,把它平均分成5份,則妹妹相當于這樣的(5-1-1)份,然后根據比的意義,寫出原來樂樂和妹妹的壓歲錢的比。5.D【分析】由題意可知,六年級女生人數比男生人數少(5-4)份,女生比男生少30人,先用除法求出1份的人數,再用乘法求出(4+5)份的人數,即六年級人數。把全校學生人數看成單位“1”,根據百分數除法的意義,用六年級人數除以20%就是全校學生人數。【詳解】30÷(5-4)×(4+5)÷20%=30÷1×9÷20%=270÷20%=1350(名)故答案為:D【點睛】解答此題的關鍵是根據比的意義求出六年級人數,再根據分數除法的意義,即可求出全校人數。6.B【分析】根據題意,男女生人數比是3∶5,則男生人數和女生人數分成3+5=8份,即合唱隊人數是8的倍數,找出8的倍數在20~30人之間,即可解答。【詳解】3+5=8(份)3×8=24(人)學校合唱隊人數在20~30人之間,男女生人數的比是3∶5,這個合唱隊有24人。故答案為:B【點睛】解答本題的關鍵是根據男女生人數的比是3∶5,進而求出男女生人數分成的份數。7.A【分析】先求出男、女生人數總共是幾份,再看,這個數是不是120的因數,是可能就是,否則就不是;據此解答。【詳解】A.4+5=9;9不是120的因數,男、女生人數的比不可能是4∶5;B.3+2=5;5是120的因數,男、女生人數的比可能是3∶2;C.1+3=4;4是120的因數,男、女生人數的比可能是1∶3;D.2+1=3;3是120的因數,男、女生人數的比可能是2∶1。圖書閱覽室里有120名學生,男、女生人數的比不可能是4∶5。故答案為:A【點睛】解答本題的關鍵明確男、女生人數的總份數必須是120的因數。8.C【分析】根據比的基本性質:比的前項和后項同時乘或除以一個不為0的數,比值不變,據此解答。【詳解】(9+18)÷9=27÷9=34×3-4=12-4=8在9∶4這個比中,如果前項加上18,要使比值不變,后項應該加上8。故答案為:C【點睛】熟練掌握和靈活運用比的基本性質是解答本題的關鍵。9.1∶3【分析】兩個容器中酒精溶液的酒精與水的份數之和不相等,不能直接將份數進行求和計算。可假設兩個容積相等的容器容積為1升,結合題意分別得到兩個容器中酒精和水的體積,再將兩個容器中的酒精和水分別相加,得到混合后酒精的體積和水的體積,進而完成解答。【詳解】假設兩個容積相等的容器容積為1升。混合后酒精體積:=0.2+0.3=0.5(升)混合后水的體積:=0.8+0.7=1.5(升)0.5∶1.5=5∶15=1∶3混合后的酒精溶液中酒精和水的體積最簡整數比是1∶3。【點睛】本題主要考查了比的應用。對此類沒有具體數值的題目,可假定一個數值,再根據題目中數量關系,進行解答計算。10.72【分析】總路程÷相遇時間=速度和,據此用360÷2.4求出兩輛車的速度和。已知兩輛車的速度比是12∶13,則較慢的一輛車的速度占它們速度和的,用兩輛車的速度和乘即可求出較慢的一輛車每時行多少千米。【詳解】360÷2.4=150(千米)150×=150×=72(千米)則較慢的一輛車每時行72千米。【點睛】本題考查了相遇問題和按比分配問題的綜合應用。根據總路程、相遇時間與速度和的關系,求出兩輛車的速度和;根據兩輛車的速度比,求出較慢一輛車的速度占它們速度和的幾分之幾是解題的關鍵。11. 240 30【分析】已繳費的住戶與未繳費的住戶數量比是8∶1,可知已繳費的住戶占總戶數的,未繳費的住戶數量占總戶數的,根據求一個數的幾分之幾是多少,用乘法計算。【詳解】8+1=9270×=240(戶)270×=30(戶)供暖前一周該小區有240戶已繳暖氣費,有30戶未繳暖氣費。【點睛】本題考查分數乘法的計算及應用。理解題意,找出數量關系,列式計算即可。12. 54 36【分析】根據長方形的周長公式:(長+寬)÷2,由于長方形的周長是180米,則長加寬的和是180÷2=90(米),根據公式:總數÷總份數=1份量,即90÷(6+4),據此即可求出1份量,再分別乘長和寬各自的份數即可。【詳解】180÷2=90(米)90÷(6+4)=90÷10=9(米)9×6=54(米)9×4=36(米)長方形菜地的長是54米,寬是36米。【點睛】本題主要考查比的應用以及長方形的周長公式,熟練掌握它們的公式并靈活運用。13.210【分析】根據題意按4∶3分給五年級和六年級,把這批圖書分成(4+3)份,五年級分給4份,是280本,用280÷4,求出1份是多少本,六年級分3份,用1份的本數×3,即可求出六年級分的本數。【詳解】280÷4×3=70×3=210(本)學校圖書館新進了一批圖書,按4∶3分給五年級和六年級。五年級分了280本,六年級分了210本。【點睛】熟練掌握按比例分配的計算方法是解答本題的關鍵。14. 36 直角【分析】三角形的內角和為,根據三個角的度數之比為,可知每個角占的內角和的分率,進而求出最小的角與最大的角,根據三角形的分類即可判斷。【詳解】最小:最大:;最小的角是36度,這個三角形是直角三角形。【點睛】主要利用三角形的內角和與比的應用來解答問題。15. 乘6 原來的【分析】比的前項和后項同時乘或除以相同不為0的數,比值不變;根據比值=比的前項÷比的后項,由于前項不變,比值擴大了2倍,后項應該縮小到原來的,據此解答。根據比與除法的關系以及商的變化規律可知,比值【詳解】5∶8的前項增加25,即5+25=30,30÷5=6,相當于前項乘6,要使比值不變,后項應該乘6;如果比值擴大了2倍,前項不變,那么后項應該變成原來的。【點睛】熟練掌握比的基本性質以及比與除法的關系、商的變化規律是解題的關鍵。16.12【分析】據題意可知,車速提高了,提速后的速度與原來速度的比為(1+)∶1=5∶4,那么,同樣路程的用時比為4∶5,即原來5分鐘的路程提速后只需4分鐘;修車耽誤了10分鐘后只晚到了2分鐘,說明實際比原來少用了(10-2)分鐘。說明原來這段路需要(5×8)分鐘;由此可知,故障點為全程的1-=處。所以騎車人每小時行駛2÷(-)=12(千米)。【詳解】(1+)∶1=5∶4∶=4∶5(10-2)÷(5-4)×5=8÷1×5=40(分鐘)1-=2÷(-)=2÷=12(千米)騎車人原來每小時行12千米。【點睛】完成本題的關鍵根據其速度和所用時間求出故障點在全程的位置。17.√【分析】根據圓的周長公式為:C=2r,分析圓的周長比和半徑比之間的關系即可。【詳解】由分析可得:因為C=2r,2是一個固定值,所以兩個圓的周長比就等于相同兩個圓的半徑比,大小兩個圓的周長之比是5∶2,則它們半徑之比也是5∶2。故答案為:√【點睛】本題考查了圓的半徑和周長的關系,要求學生熟練掌握圓的周長公式,同時還要理解比的意義。18.√【分析】根據比的性質將化簡成,可設A是2份,B是5份,再用它們的差除以B即可解答。【詳解】由可得假設A是2份,B是5份(5-2)÷5=3÷5=所以如果,那么A比B少。原題干說法正確。故答案為:√【點睛】本題考查的是比的應用。解題關鍵在于用它們的差除以正確的單位“1”。19.√【分析】根據比的基本性質:比的前項和后項同時乘或除以一個不為0的數,比值不變;據此求出前項擴大到原來的多少倍,后項也擴大到原來的多少倍,進而解答。【詳解】(5+10)÷3=15÷5=38×3-8=24-8=16給5∶8的前項加10,要使比值不變,后項應該加16。原題干說法正確。故答案為:√【點睛】熟練掌握比的基本性質是解答本題的關鍵。20.×【分析】由題意可知:原來美術小組人數×(1-)=原來音樂小組人數+原來美術小組人數×,所以原來美術小組人數×=原來音樂小組人數+原來美術小組人數×,化簡后根據比的意義求出原來美術小組和音樂小組的人數比。【詳解】由分析可知:原來美術小組人數×(1-)=原來音樂小組人數+原來美術小組人數×,即原來美術小組人數×=原來音樂小組人數+原來美術小組人數×,化簡后得原來美術小組人數×=原來音樂小組人數,則原來美術小組人數∶原來音樂小組人數=10∶8=5∶4。故答案為:×【點睛】本題考查比的意義,關鍵是根據題意理清現在美術小組和音樂小組的人數的關系。21.1∶60;4∶3;3∶4【分析】根據比的基本性質:比的前項和后項同時乘或除以一個不為0的數,比值不變,據此化簡,注意單位名數的統一。【詳解】0.07∶4.2=(0.07×100)∶(4.2×100)=7∶420=(7÷7)∶(420÷7)=1∶60時∶30分時=40分40∶30=(40÷10)∶(30÷10)=4∶34.5∶6=(4.5×10)∶(6×10)=45∶60=(45÷15)∶(60÷15)=3∶422.見詳解【分析】根據下底和高的比都是3∶2,則下底可以是6格,高是4格;下底也可以是3格,高是2格,據此畫出對應的梯形即可。【詳解】(答案不唯一)【點睛】根據比的意義確定出梯形的下底和高是解答本題的關鍵。23.1600噸【分析】根據題意,某工廠一、二月的平均產量是1500噸,一、二月的產量是1500×2噸,一月份占總產量的,用總產量×,即可求出一月份的產量。【詳解】一月份占(1500×2)×=3000×=1600(噸)答:一月份的產量是1600噸。【點睛】本題考查按比例分配問題,關鍵明確1500噸是一、二月的平均產量,要乘2,才是一、二月的總產量。24.350本【分析】先求出兩所小學的人數之比,120 ∶280=3∶7,南嶺小學人數占兩所學校總人數的=,南嶺小學可以分得的圖書就應是捐贈圖書總量的,用500×;據此求解。【詳解】120 ∶280=3∶7500×=500×=350(本)答:南嶺小學可以分得350本圖書。【點睛】解答此題的關鍵是理解兩所小學的人數之比就是分配圖書的數量之比,再根據求一個數的幾分之幾是多少用乘法計算。25.生姜10克;紅糖25克【分析】根據題意,把姜湯看作單位“1”,平均分成2+5+75=82份,其中生姜占2÷82=,紅糖占5÷82=,已知姜湯一碗是410克,生姜占克數是:410×,紅糖占的克數410×,即可解答。【詳解】2+5+75=7+75=82(份)生姜占姜湯的2÷82=紅糖占姜湯的5÷82=生姜的克數:410×=10(克)紅糖占的克數:410×=25(克)答:生姜準備10克,紅糖準備25克。【點睛】本題考查比與分數的關系,以及求一個數的幾分之幾是多少,用乘法。26.1080克【分析】巧克力與奶的質量比是2∶9,則奶的質量是巧克力的。用巧克力的質量240克乘即可求出需要奶的質量。【詳解】240×=1080(克)答:她要準備1080克奶。【點睛】本題考查比的應用。根據巧克力與奶的質量比得出“奶的質量是巧克力的”是解題的關鍵。27.60千克【分析】奶糖、水果糖和酥糖按2∶4∶3混合,把奶糖的質量看成2份,水果糖的質量就是4份,酥糖的質量就是3份,總份數就是2+4+3=9份,用總質量270千克除以總份數,求出每份的質量,再分別乘水果糖和奶糖所占的份數,即可求出是水果糖和奶糖的質量,用水果糖的質量減奶糖的質量即可。【詳解】270÷(2+4+3)=270÷9=30(千克)水果糖:30×4=120(千克)奶糖:30×2=60(千克)120-60=60(千克)答:需要的水果糖比奶糖多60千克。【點睛】此題主要考查了按比分配的應用題,可以先把比看成份數,求出總份數,進而求出每份的數量,再用每份的數量乘上對應的份數即可,靈活掌握公式:總量÷總份數=一份量。28.75千米【分析】求甲車每小時行駛多少千米,我們可以先根據路程÷時間=兩車的速度和,然后按比例分配,就可以求出甲車的速度。【詳解】480÷4÷(5+3)×5=480÷4÷8×5=15×5=75(千米)答:甲車每小時行駛75千米。【點睛】此題先求出速度和,再根據按比例分配來解決。29.288立方厘米【分析】長方體的長、寬、高之和=長方體的棱長之和÷4,長、寬、高之和-長=寬與高的和,已知寬和高的比,按比例分配可分別求出寬、高,根據長方體的體積=長×寬×高,代入數據解答即可。【詳解】80÷4-6=20-6=14(厘米)14÷(3+4)×3=2×3=6(厘米)14÷(3+4)×4=2×4=8(厘米)6×6×8=288(立方厘米)答:長方體的體積是288立方厘米。【點睛】此題考查了長方體棱長、體積以及比的綜合應用,根據按比例分配先求出長方體的寬和高是解題關鍵。30.144本【分析】原來甲書架與乙書架書的本數比是5∶6,現在甲書架與乙書架書的本數比是4∶7,由于各借出88本,二者的差不變,而5∶6相差1份,4∶7相差3份,統一份數,求出1份是多少,再計算乙原來的數量。【詳解】原來甲、乙的數量比,5∶6=15∶18;現在甲、乙的數量比,4∶7;(份)甲、乙各減少了11份,11份是88本;(本)(本)答:乙書架上原來有144本書。【點睛】本題考查的是比例應用題中的變比問題,屬于差不變的類型,解題的關鍵是尋找不變量,統一不變量的份數。21世紀教育網 www.21cnjy.com 精品試卷·第 2 頁 (共 2 頁)21世紀教育網(www.21cnjy.com) 展開更多...... 收起↑ 資源預覽 縮略圖、資源來源于二一教育資源庫