中文字幕精品无码一区二区,成全视频在线播放观看方法,大伊人青草狠狠久久,亚洲一区影音先锋色资源

【全國通用】2024年名師導航中考數(shù)學一輪復習學案專題01:實數(shù)(學生版+教師版)

資源下載
  1. 二一教育資源

【全國通用】2024年名師導航中考數(shù)學一輪復習學案專題01:實數(shù)(學生版+教師版)

資源簡介

中小學教育資源及組卷應用平臺
第一章 數(shù)與式
第一節(jié) 實數(shù)
考點分布 考查頻率 命題趨勢
考點1 實數(shù)的相關概念 ☆☆☆ 實數(shù)在中考數(shù)學中較為簡單,每年考查3題左右,分值為8~12分,實數(shù)的分類及相關概念主要以選擇題或填空題形式考查,比較簡單;科學記數(shù)法、近似數(shù)多以選擇題或填空題形式考查,有大數(shù)和小數(shù)兩種形式,有時帶“億”“萬”“千萬”等單位,做題時要仔細審題,切忽略單位;實數(shù)的大小比較常以選擇題形式出現(xiàn),常與數(shù)軸結合考查;實數(shù)的運算考查形式多樣,多數(shù)以解答題形式出現(xiàn),結合絕對值、銳角三函數(shù)、二次根式、平方根、立方根等知識考查. 對于實數(shù)的復習,需要學生熟練掌握實數(shù)相關概念及其性質的應用、實數(shù)運算法則和順序等考點.
考點2 實數(shù)的分類 ☆☆
考點3 實數(shù)的大小比較 ☆
考點4 實數(shù)的運算 ☆☆☆
考點5 科學記數(shù)法及近似數(shù) ☆☆☆
■考點一 實數(shù)的分類
1、正負數(shù)的概念:大于0的數(shù)叫做 ,正數(shù)前面加上符號“-”的數(shù)叫 ,負數(shù)前面的負號“-”不能省略。 既不是正數(shù),也不是負數(shù)。正負數(shù)的意義:表示具有相反意義的量。
2、 和 統(tǒng)稱為有理數(shù)。無限不循環(huán)小數(shù)叫做 。有理數(shù)和無理數(shù)統(tǒng)稱為 。
3、實數(shù)的分類:1)按 分類;2)按 分類。
■考點二 實數(shù)的相關概念
1、數(shù)軸:規(guī)定了 、 、 的直線叫做數(shù)軸。數(shù)軸上所有的點與全體實數(shù) 對應。
2、相反數(shù):只有符號不同的兩個數(shù)稱為互為相反數(shù)。若a、b互為相反數(shù),則 。
3、絕對值:在數(shù)軸上表示數(shù)a的點到原點的 叫做a的絕對值,記為|a|。
4、倒數(shù):1除以一個不等于零的實數(shù)所得的商,叫做這個數(shù)的倒數(shù)。若a、b互為倒數(shù),則 。
5、算術平方根:若一個正數(shù)x的平方等于a,即x2=a,那么這個正數(shù)x叫做a的 。
記為,a叫做被開方數(shù)。
6、平方根:若一個數(shù)的平方等于a,那么這個數(shù)就叫做a的平方根,即x2=a,那么x叫做a的 。
7、立方根:如果一個數(shù)的立方等于a,即x3=a,那么x叫做a的 。
■考點三 實數(shù)的大小比較
1. 數(shù)軸比較法:將兩個數(shù)表示在同一條數(shù)軸上,右邊的點表示的數(shù)總比左邊的點表示的數(shù)大。
2. 作差比較法:若a,b是任意兩個實數(shù),則:①a-b>0 ;②a-b=0 ;③a-b<0 。
3. 平方比較法:①對任意正實數(shù)a,b,若a2>b2 ;②對任意負實數(shù)a,b,若a2>b2 。
4. 倒數(shù)比較法:若>,ab>0,則 。
5. 作商比較法:
1)任意正實數(shù)a,b,>1 ,<1 ;2)任意負實數(shù)a,b,>1 ,<1 。
■考點四 實數(shù)的運算
1.乘方:n個相同的因數(shù)a相乘記作an,其中a為 ,n為 ,乘方的結果叫做 。
2.運算順序:(1)運算順序:先算乘方(開方),再算乘除,最后算加減;有括號的先算括號里面的。(2)有理數(shù)的運算定律在實數(shù)范圍內都適用,常用的運算定律有加法結合律 、加法交換律 、乘法交換律 、乘法結合律、 乘法分配律。
■考點五 科學記數(shù)法
1.科學記數(shù)法:科學記數(shù)法的表示形式為 的形式,其中 ,n為整數(shù)。
1)當原數(shù)絕對值大于10時,寫成a×10n的形式,其中1≤|a|<10,n等于原數(shù)的整數(shù)位數(shù)減1。
2)當原數(shù)絕對值小于1時,寫成a×10-n的形式,其中1≤|a|<10,n等于原數(shù)左邊第一個非零的數(shù)字前的所有零的個數(shù)(包括小數(shù)點前面的零)。
2.近似數(shù):近似數(shù)與準確數(shù)的接近程度通常用精確度來表示,近似數(shù)一般由四舍五入取得,四舍五入到哪一位,就說這個近似數(shù)精確到哪一位。
有效數(shù)字:一個近似數(shù)從左邊第一位非0的數(shù)字起,到末位數(shù)字止,所有的數(shù)字都是這個數(shù)的 。
■易錯提示
1、帶根號的數(shù)并不都是無理數(shù),而開方開不盡的數(shù)才是無理數(shù)。(如:就是有理數(shù))
2、對非負整數(shù)、非正整數(shù)、非負數(shù)、非正數(shù)分類時遺漏0.
3、有時候題目會故意沒有把去根號,這時候就要注意千萬不要把的平方根當作a的平方根,要先把的算出(去根號),再求平方根。(如:的平方根是,而不是2)
4、含有萬、億等單位的數(shù),用科學記數(shù)法表示時,要先還原成原數(shù),再用科學記數(shù)法表示,最后按要求取近似值。
5、用科學記數(shù)法表示的近似數(shù)的有效數(shù)字時,只看乘號前面的數(shù)字。(如:4.0×104的有效數(shù)字是4,0)
■考點一 實數(shù)的分類與正負數(shù)
◇典例1:(2023·江西·統(tǒng)考中考真題)下列各數(shù)中,正整數(shù)是( )
A. B. C. D.
◆變式訓練
1.(2023·江蘇鹽城·統(tǒng)考中考真題)下列數(shù)中,屬于負數(shù)的是( )
A.2023 B. C. D.0
2.(2023·山東·統(tǒng)考中考真題)實數(shù)中無理數(shù)是( )
A. B.0 C. D.1.5
◇典例2:(2023·浙江金華·統(tǒng)考中考真題)某一天,哈爾濱、北京、杭州、金華四個城市的最低氣溫分別是,,,,其中最低氣溫是( )
A. B. C. D.
◆變式訓練
1.(2023·廣東·統(tǒng)考中考真題)負數(shù)的概念最早出現(xiàn)在我國古代著名的數(shù)學專著《九章算術》中,如果把收入5元記作元,那么支出5元記作( )
A.元 B.0元 C.元 D.元
■考點二 實數(shù)的相關概念
◇典例3:(2023年湖北省宜昌市中考數(shù)學真題)下列運算正確的個數(shù)是( ).
①;②;③;④.
A.4 B.3 C.2 D.1
◆變式訓練
1.(2022·湖北宜昌·中考真題)下列說法正確的個數(shù)是( )
①-2022的相反數(shù)是2022;②-2022的絕對值是2022;③的倒數(shù)是2022.
A.3 B.2 C.1 D.0
2.(2023·山東·統(tǒng)考中考真題)面積為9的正方形,其邊長等于(  )
A.9的平方根 B.9的算術平方根 C.9的立方根 D.5的算術平方根
3.(2023年江蘇中考模擬)的平方根是 .
◇典例4:(2023·陜西西安·校考模擬預測)有理數(shù)a、b、c在數(shù)軸上的位置如圖所示,則可化簡為 .

◆變式訓練
1.(2023·山東青島·校考一模)設a,b,c為有理數(shù),則由構成的各種數(shù)值是 .
2.(2023·河北滄州·統(tǒng)考模擬預測)若三條邊長為,,化簡: .
■考點三 實數(shù)的大小比較
◇典例5:(2023·湖北黃石·中考真題)實數(shù)a與b在數(shù)軸上的位置如圖所示,則它們的大小關系是( )

A. B. C. D.無法確定
◆變式訓練
1.(2023·浙江衢州·統(tǒng)考中考真題)手機信號的強弱通常采用負數(shù)來表示,絕對值越小表示信號越強(單位:),則下列信號最強的是( )
A. B. C. D.
2.(2023·江蘇·統(tǒng)考中考真題)下列實數(shù)中,其相反數(shù)比本身大的是( )
A. B. C. D.
3.(2023·湖南益陽·統(tǒng)考中考真題)四個實數(shù),0,2,中,最大的數(shù)是( )
A. B.0 C.2 D.
◇典例6:(2023·江蘇徐州·統(tǒng)考中考真題)的值介于( )
A.25與30之間 B.30與35之間 C.35與40之間 D.40與45之間
◆變式訓練
1.(2023·江蘇南通·統(tǒng)考中考真題)如圖,數(shù)軸上,,,,五個點分別表示數(shù)1,2,3,4,5,則表示數(shù)的點應在( )

A.線段上 B.線段上 C.線段上 D.線段上
2.(2023·湖北武漢·統(tǒng)考中考真題)寫出一個小于4的正無理數(shù)是 .
■考點四 實數(shù)的運算
◇典例7:(2023·湖南湘西·統(tǒng)考中考真題)計算:.
◆變式訓練
1.(2023·山東·統(tǒng)考中考真題)計算: .
2.(2023·北京·統(tǒng)考中考真題)計算:.
◇典例8:(2023年湖南省婁底市中考數(shù)學真題)從n個不同元素中取出個元素的所有組合的個數(shù),叫做從n個不同元素中取出m個元素的組合數(shù),用符號表示,(,n、m為正整數(shù));例如:,,則( )
A. B. C. D.
◆變式訓練
1.(2023·浙江·一模)十字路口紅綠燈時長設置是根據(jù)路口的實際車流狀況來分配的,據(jù)統(tǒng)計,某十字路口每天的車流量中,東西走向直行與左轉車輛分別約占總流量,南北走向直行與左轉車輛分別約占總流量.因右轉車輛不受紅綠燈限制,所以在設置紅綠燈時,按東西走向直行、左轉,南北走向直行、左轉的次序依次亮起綠燈作為一個周期時間(當某方向綠燈亮起時,其他3個方向全為紅燈),若一個周期時間為2分鐘,則應設置南北走向直行綠燈時長較為合理的是( )
A.12秒 B.16秒 C.18秒 D.24秒
2.(2023·湖北荊州·統(tǒng)考中考真題)若,則 .
■考點五 科學記數(shù)法與近似數(shù)
◇典例9:(2023·浙江湖州·統(tǒng)考中考真題)國家互聯(lián)網(wǎng)信息辦公室2023年5月23日發(fā)布的《數(shù)字中國發(fā)展報告(2022年)》顯示,2022年我國數(shù)字經(jīng)濟規(guī)模達502000億元.用科學記數(shù)法表示50200
0,正確的是( )
A. B. C. D.
◆變式訓練
1.(2023·海南·統(tǒng)考中考真題)共享開放機遇,共創(chuàng)美好生活.2023年4月10日至15日,第三屆中國品博覽會在海南省海口市舉行,以“打造全球消費精品展示交易平臺”為目標,進場觀眾超32萬人次,數(shù)據(jù)用科學記數(shù)法表示為( )
A. B. C. D.
2.(2023·湖北襄陽·統(tǒng)考中考真題)5月5日,記者從襄陽市文化和旅游局獲悉,五一長假期間,我市41家級景區(qū)全部開放,共接待游客約2270000人次.數(shù)據(jù)2270000用科學記數(shù)法表示為 .
◇典例10:(2023·河南信陽·校考三模)根據(jù)中國疾控中心“國家流感中心”發(fā)布的最新流感監(jiān)測周報,2023年第8周,南、北方省份流感病毒檢測陽性率繼續(xù)上升,以甲流為主、亞型流感病毒共同流行.因此,生活中我們還是要做好防護、勤洗手,外出帶好口罩.據(jù)了解,甲型流感病毒的直徑大約是,這個數(shù)據(jù)用科學記數(shù)法可表示為( )
A. B. C. D.
◆變式訓練
1.(2023·山東日照·統(tǒng)考中考真題)芯片內部有數(shù)以億計的晶體管,為追求更高質量的芯片和更低的電力功耗,需要設計4積更小的晶體管.目前,某品牌手機自主研發(fā)了最新型號芯片,其晶體管柵極的寬度為0.000000014米,將數(shù)據(jù)0.000000014用科學記數(shù)法表示為( )
A. B. C. D.
◇典例11:(2023·山東濰坊·統(tǒng)考一模)下列關于近似數(shù)的說法中正確的是(  )
A.近似數(shù)精確到百位 B.近似數(shù)萬精確到百分位
C.近似數(shù)精確到千位 D.近似數(shù)精確到千分位
◆變式訓練
1.(2023·湖南長沙·統(tǒng)考二模)湘雅路過江通道工程是長沙市區(qū)“十八橫十六縱”三十四條主干路之一,位于三一大道與營盤路之間,總投資億元.其中數(shù)據(jù)億元精確到哪位?(  )
A.萬位 B.十萬位 C.百萬位 D.億位
2.(2023·湖南衡陽·校考模擬預測)截止6月10日,上海世博會累計入園人數(shù)已達萬.將萬人用科學記數(shù)法(四舍五入保存3個有效數(shù)字)表示約為(  )
A.人 B.人 C.人 D.人
1.(2023·西藏·統(tǒng)考中考真題)已知a,b都是實數(shù),若,則的值是( )
A. B. C.1 D.2023
2.(2023·江蘇徐州·統(tǒng)考中考真題)如圖,數(shù)軸上點分別對應實數(shù),下列各式的值最小的是( )

A. B. C. D.
3.(2023·山東·統(tǒng)考中考真題)實數(shù)a,b,c在數(shù)軸上對應點的位置如圖所示,下列式子正確的是( )

A. B. C. D.
4.(2023·四川攀枝花·統(tǒng)考中考真題)為了回饋客戶,商場將定價為200元的某種兒童玩具降價進行銷售.“六·一”兒童節(jié)當天,又將該種玩具按新定價再次降價銷售,那么該種玩具在兒童節(jié)當天的銷售價格為( )
A.160元 B.162元 C.172元 D.180元
5.(2023·山東泰安·統(tǒng)考中考真題)2023年1月17日,國家航天局公布了我國嫦娥五號月球樣品的科研成果.科學家們通過對月球樣品的研究,精確測定了月球的年齡是億年,數(shù)據(jù)億年用科學記數(shù)法表示為( )

A.年 B.年 C.年 D.年
6.(2023·寧夏·統(tǒng)考中考真題)估計的值應在( )
A.和4之間 B.4和之間 C.和5之間 D.5和之間
7.(2023·湖北恩施·統(tǒng)考中考真題)下列實數(shù):,0,,,其中最小的是(  )
A. B.0 C. D.
8.(2023·江蘇泰州·統(tǒng)考中考真題)溶度積是化學中沉淀的溶解平衡常數(shù).常溫下的溶度積約為,將數(shù)據(jù)用科學記數(shù)法表示為 .
9.(2023年寧夏回族自治區(qū)中考數(shù)學真題)如圖,點,,在數(shù)軸上,點表示的數(shù)是,點是的中點,線段,則點表示的數(shù)是 .

10.(2023年山東省煙臺市中考數(shù)學真題)如圖,利用課本上的計算器進行計算,其按鍵順序及結果如下:

①按鍵的結果為4;
②按鍵的結果為8;
③按鍵的結果為;
④按鍵的結果為25.
以上說法正確的序號是 .
11.(2023·遼寧沈陽·統(tǒng)考中考真題)計算:.
12.(2023·湖南婁底·統(tǒng)考中考真題)計算:.
1.(2023·山西呂梁·校聯(lián)考模擬預測)數(shù)學思想,是指現(xiàn)實世界的空間形式和數(shù)量關系反映到人們的意識之中,經(jīng)過思維活動而產(chǎn)生的結果.運用所學知識解決以下問題:已知實數(shù)a,b,c在數(shù)軸上的位置如圖所示,化簡.這道題體現(xiàn)的數(shù)學思想是( )

A.函數(shù)思想 B.方程思想 C.數(shù)形結合思想 D.統(tǒng)計思想
2.(2023·廣東梅州·統(tǒng)考二模)已知實數(shù),則實數(shù)的倒數(shù)為( )
A. B. C. D.
3.(2023·山東臨沂·統(tǒng)考二模)在實數(shù),,,0中,絕對值最小的一個是( )
A. B. C. D.0
4.(2023·廣西·九年級專題練習)2021年9月25日,華為公司副董事長、“CFO”(首席財務官)孟晚舟女士乘坐包機返回祖國,行程約12357千米.用四舍五入法對12357取近似值,其中錯誤的是(  )
A.12360(精確到10)B.(精確到百分位)C.(精確到千位)D.1萬(精確到萬位)
5.(2023·吉林長春·校考模擬預測)下圖是長春市2022年12月連續(xù)四天的天氣預報信息,其中日溫差最大的一天是( )
12月14日 12月15日 12月16日 12月17日
℃ 晴 ℃ 晴 ℃ 晴 ℃ 晴
A.12月14日 B.12月15日 C.12月16日 D.12月17日
6.(2023·山東東營·統(tǒng)考二模)將數(shù)值取近似數(shù):用科學記數(shù)法表示并保留兩個有效數(shù)字為 .
7.(2023·江蘇鹽城·校聯(lián)考二模)化學元素釘?shù)脑影霃剑畬⒂每茖W記數(shù)法表示為 .
8.(2023年北京市九年級一模)寫出一個比大且比小的整數(shù) .
9.(2024·廣東·統(tǒng)考中考模擬)若a、b互為相反數(shù),c為8的立方根,則 .
10.(2023·重慶·統(tǒng)考中考模擬計算:.
1.(2023年山東省菏澤市中考數(shù)學真題)的三邊長a,b,c滿足,則是( )
A.等腰三角形 B.直角三角形 C.銳角三角形 D.等腰直角三角形
2.(2023年浙江省杭州市中考數(shù)學真題)已知數(shù)軸上的點分別表示數(shù),其中,.若,數(shù)在數(shù)軸上用點表示,則點在數(shù)軸上的位置可能是( )
A. B.
C. D.
3.(2023年河北省中考數(shù)學真題)光年是天文學上的一種距離單位,一光年是指光在一年內走過的路程,約等于.下列正確的是( )
A. B.
C.是一個12位數(shù) D.是一個13位數(shù)
4.(2023年山東省臨沂市中考數(shù)學真題)在實數(shù)中,若,則下列結論:①,②,③,④,正確的個數(shù)有( )
A.1個 B.2個 C.3個 D.4個
5.(2022上·陜西西安·九年級校考階段練習)如圖,將,,,0,1,2,3,4,5分別填入九個空格內,使每行、每列、每條對角線上的三個數(shù)之和相等,現(xiàn)在分別表示其中的一個數(shù),則的值為( )

A. B. C.0 D.5
6.(2023·云南昆明·九年級校考期中)已知數(shù)的大小關系如圖,下列說法:①;②;③;④若為數(shù)軸上任意一點,則的最小值為.其中正確結論的個數(shù)是( )

A.1 B.2 C.3 D.4
21世紀教育網(wǎng) www.21cnjy.com 精品試卷·第 2 頁 (共 2 頁)
21世紀教育網(wǎng)(www.21cnjy.com)中小學教育資源及組卷應用平臺
第一章 數(shù)與式
第一節(jié) 實數(shù)
考點分布 考查頻率 命題趨勢
考點1 實數(shù)的相關概念 ☆☆☆ 實數(shù)在中考數(shù)學中較為簡單,每年考查3題左右,分值為8~12分,實數(shù)的分類及相關概念主要以選擇題或填空題形式考查,比較簡單;科學記數(shù)法、近似數(shù)多以選擇題或填空題形式考查,有大數(shù)和小數(shù)兩種形式,有時帶“億”“萬”“千萬”等單位,做題時要仔細審題,切忽略單位;實數(shù)的大小比較常以選擇題形式出現(xiàn),常與數(shù)軸結合考查;實數(shù)的運算考查形式多樣,多數(shù)以解答題形式出現(xiàn),結合絕對值、銳角三函數(shù)、二次根式、平方根、立方根等知識考查. 對于實數(shù)的復習,需要學生熟練掌握實數(shù)相關概念及其性質的應用、實數(shù)運算法則和順序等考點.
考點2 實數(shù)的分類 ☆☆
考點3 實數(shù)的大小比較 ☆
考點4 實數(shù)的運算 ☆☆☆
考點5 科學記數(shù)法及近似數(shù) ☆☆☆
■考點一 實數(shù)的分類
1、正負數(shù)的概念:大于0的數(shù)叫做 正數(shù) ,正數(shù)前面加上符號“-”的數(shù)叫 負數(shù) ,負數(shù)前面的負號“-”不能省略。 0 既不是正數(shù),也不是負數(shù)。正負數(shù)的意義:表示具有相反意義的量。
2、 整數(shù) 和 分數(shù) 統(tǒng)稱為有理數(shù)。無限不循環(huán)小數(shù)叫做 無理數(shù) 。有理數(shù)和無理數(shù)統(tǒng)稱為 實數(shù) 。
3、實數(shù)的分類:1)按 定義 分類;2)按 性質 分類。
■考點二 實數(shù)的相關概念
1、數(shù)軸:規(guī)定了 原點 、正方向 、單位長度 的直線叫做數(shù)軸。數(shù)軸上所有的點與全體實數(shù) 一一 對應。
2、相反數(shù):只有符號不同的兩個數(shù)稱為互為相反數(shù)。若a、b互為相反數(shù),則 a+b=0 。
3、絕對值:在數(shù)軸上表示數(shù)a的點到原點的 距離 叫做a的絕對值,記為|a|。
4、倒數(shù):1除以一個不等于零的實數(shù)所得的商,叫做這個數(shù)的倒數(shù)。若a、b互為倒數(shù),則 ab=1 。
5、算術平方根:若一個正數(shù)x的平方等于a,即x2=a,那么這個正數(shù)x叫做a的 算術平方根 。
記為,a叫做被開方數(shù)。
6、平方根:若一個數(shù)的平方等于a,那么這個數(shù)就叫做a的平方根,即x2=a,那么x叫做a的 平方根 。
7、立方根:如果一個數(shù)的立方等于a,即x3=a,那么x叫做a的 立方根 (或三次方根) 。
■考點三 實數(shù)的大小比較
1. 數(shù)軸比較法:將兩個數(shù)表示在同一條數(shù)軸上,右邊的點表示的數(shù)總比左邊的點表示的數(shù)大。
2. 作差比較法:若a,b是任意兩個實數(shù),則:①a-b>0 a>b ;②a-b=0 a=b ;③a-b<0 a3. 平方比較法:①對任意正實數(shù)a,b,若a2>b2 a>b ;②對任意負實數(shù)a,b,若a2>b2 a4. 倒數(shù)比較法:若>,ab>0,則 a5. 作商比較法:
1)任意正實數(shù)a,b,>1 a>b ,<1 a>b ;2)任意負實數(shù)a,b,>1 ab 。
■考點四 實數(shù)的運算
1.乘方:n個相同的因數(shù)a相乘記作an,其中a為 底數(shù) ,n為 指數(shù) ,乘方的結果叫做 冪 .
2.運算順序:(1)運算順序:先算乘方(開方),再算乘除,最后算加減;有括號的先算括號里面的。(2)有理數(shù)的運算定律在實數(shù)范圍內都適用,常用的運算定律有加法結合律 、加法交換律 、乘法交換律 、乘法結合律、 乘法分配律。
■考點五 科學記數(shù)法
1.科學記數(shù)法:科學記數(shù)法的表示形式為 a×10n 的形式,其中 1≤|a|<10 ,n為整數(shù)。
1)當原數(shù)絕對值大于10時,寫成a×10n的形式,其中1≤|a|<10,n等于原數(shù)的整數(shù)位數(shù)減1。
2)當原數(shù)絕對值小于1時,寫成a×10-n的形式,其中1≤|a|<10,n等于原數(shù)左邊第一個非零的數(shù)字前的所有零的個數(shù)(包括小數(shù)點前面的零)。
2.近似數(shù):近似數(shù)與準確數(shù)的接近程度通常用精確度來表示,近似數(shù)一般由四舍五入取得,四舍五入到哪一位,就說這個近似數(shù)精確到哪一位。
有效數(shù)字:一個近似數(shù)從左邊第一位非0的數(shù)字起,到末位數(shù)字止,所有的數(shù)字都是這個數(shù)的 有效數(shù)字 。
■易錯提示
1、帶根號的數(shù)并不都是無理數(shù),而開方開不盡的數(shù)才是無理數(shù)。(如:就是有理數(shù))
2、對非負整數(shù)、非正整數(shù)、非負數(shù)、非正數(shù)分類時遺漏0.
3、有時候題目會故意沒有把去根號,這時候就要注意千萬不要把的平方根當作a的平方根,要先把的算出(去根號),再求平方根。(如:的平方根是,而不是2)
4、含有萬、億等單位的數(shù),用科學記數(shù)法表示時,要先還原成原數(shù),再用科學記數(shù)法表示,最后按要求取近似值。
5、用科學記數(shù)法表示的近似數(shù)的有效數(shù)字時,只看乘號前面的數(shù)字。(如:4.0×104的有效數(shù)字是4,0)
■考點一 實數(shù)的分類與正負數(shù)
◇典例1:(2023·江西·統(tǒng)考中考真題)下列各數(shù)中,正整數(shù)是( )
A. B. C. D.
【答案】A
【分析】根據(jù)有理數(shù)的分類即可求解.
【詳解】解:是正整數(shù),是小數(shù),不是整數(shù),不是正數(shù),不是正數(shù),故選:A.
【點睛】本題考查了有理數(shù)的分類,熟練掌握有理數(shù)的分類是解題的關鍵.
◆變式訓練
1.(2023·江蘇鹽城·統(tǒng)考中考真題)下列數(shù)中,屬于負數(shù)的是( )
A.2023 B. C. D.0
【答案】B
【分析】根據(jù)小于0的數(shù)即為負數(shù)解答可得.
【詳解】是負數(shù),和是正數(shù),0既不是正數(shù)也不是負數(shù) 故選:B.
【點睛】本題主要考查正數(shù)和負數(shù),熟練掌握負數(shù)的概念是解題的關鍵.
2.(2023·山東·統(tǒng)考中考真題)實數(shù)中無理數(shù)是( )
A. B.0 C. D.1.5
【答案】A
【分析】根據(jù)無理數(shù)的概念求解.
【詳解】解:實數(shù)中,是無理數(shù),而是有理數(shù);故選A.
【點睛】本題主要考查無理數(shù),熟練掌握無理數(shù)的概念是解題的關鍵.
◇典例2:(2023·浙江金華·統(tǒng)考中考真題)某一天,哈爾濱、北京、杭州、金華四個城市的最低氣溫分別是,,,,其中最低氣溫是( )
A. B. C. D.
【答案】A
【分析】根據(jù)有理數(shù)的大小比較,即可作出判斷.
【詳解】解:,故溫度最低的城市是哈爾濱,故選:A.
【點睛】本題考查了有理數(shù)的大小比較的知識,解答本題的關鍵是掌握有理數(shù)的大小比較法則.
◆變式訓練
1.(2023·廣東·統(tǒng)考中考真題)負數(shù)的概念最早出現(xiàn)在我國古代著名的數(shù)學專著《九章算術》中,如果把收入5元記作元,那么支出5元記作( )
A.元 B.0元 C.元 D.元
【答案】A
【分析】根據(jù)相反數(shù)的意義可進行求解.
【詳解】解:由把收入5元記作元,可知支出5元記作元;故選A.
【點睛】本題主要考查相反數(shù)的意義,熟練掌握相反數(shù)的意義是解題的關鍵.
■考點二 實數(shù)的相關概念
◇典例3:(2023年湖北省宜昌市中考數(shù)學真題)下列運算正確的個數(shù)是( ).
①;②;③;④.
A.4 B.3 C.2 D.1
【答案】A
【分析】根據(jù),,、,進行逐一計算即可.
【詳解】解:①,,故此項正確;
②,,故此項正確;③,此項正確;
④,故此項正確;正確的個數(shù)是個.故選:A.
【點睛】本題考查了實數(shù)的運算,掌握相關的公式是解題的關鍵.
◆變式訓練
1.(2022·湖北宜昌·中考真題)下列說法正確的個數(shù)是( )
①-2022的相反數(shù)是2022;②-2022的絕對值是2022;③的倒數(shù)是2022.
A.3 B.2 C.1 D.0
【答案】A
【分析】根據(jù)相反數(shù)、絕對值、倒數(shù)的定義逐個判斷即可.
【詳解】①-2022的相反數(shù)是2022,故此說法正確;②-2022的絕對值是2022,故此說法正確;③的倒數(shù)是2022,故此說法正確;正確的個數(shù)共3個;故選:A.
【點睛】本題考查相反數(shù)、絕對值、倒數(shù)的含義,只有符號相反的兩個數(shù)叫做互為相反數(shù),數(shù)軸上一個數(shù)所對應的點與原點的距離叫做該數(shù)的絕對值,分子分母互換位置相乘等于1的兩個數(shù)互為倒數(shù),熟知定義是解題的關鍵.
2.(2023·山東·統(tǒng)考中考真題)面積為9的正方形,其邊長等于(  )
A.9的平方根 B.9的算術平方根 C.9的立方根 D.5的算術平方根
【答案】B
【分析】根據(jù)算術平方根的定義解答即可.
【詳解】解:∵面積等于邊長的平方,∴面積為9的正方形,其邊長等于9的算術平方根.故選B.
【點睛】本題考查了算術平方根的意義,一般地,如果一個正數(shù)x的平方等于a,即,那么這個正數(shù)x叫做a的算術平方根.
3.(2023年江蘇中考模擬)的平方根是 .
【答案】±2
【詳解】解:∵∴的平方根是±2.故答案為±2.
◇典例4:(2023·陜西西安·校考模擬預測)有理數(shù)a、b、c在數(shù)軸上的位置如圖所示,則可化簡為 .

【答案】/
【分析】根據(jù)數(shù)軸上的點的位置,確定式子的符號,再進行絕對值的化簡即可.
【詳解】解:從圖中可以看出,,∴,
∴.故答案為:.
【點睛】本題考查化簡絕對值,整式的加減運算.解題關鍵是根據(jù)數(shù)軸上的點的位置,確定式子的符號.
◆變式訓練
1.(2023·山東青島·校考一模)設a,b,c為有理數(shù),則由構成的各種數(shù)值是 .
【答案】,0
【分析】此題要分類討論a,b,c與0的關系,然后根據(jù)絕對值的性質進行求解;
【詳解】解:∵a,b,c為有理數(shù),
①若,∴;
②若a,b,c中有兩個負數(shù),則,∴,
③若a,b,c中有一個負數(shù),則,∴,
④若a,b,c中有三個負數(shù),則,∴,故答案為:,0.
【點睛】此題主要考查絕對值的性質,解題的關鍵是如何根據(jù)已知條件,去掉絕對值,還考查了分類討論的思想,正數(shù)的絕對值是它本身,負數(shù)的絕對值是它的相反數(shù),0的絕對值是0.
2.(2023·河北滄州·統(tǒng)考模擬預測)若三條邊長為,,化簡: .
【答案】/
【分析】根據(jù)三角形任意兩邊之和大于第三邊,任意兩邊之差小于第三邊得到,,再根據(jù)絕對值性質化簡即可求解.
【詳解】解:根據(jù)三角形的三邊關系得:,,
.故答案為:.
【點睛】本題考查了絕對值的化簡和三角形三條邊的關系,熟練掌握三角形任意兩邊之和大于第三邊,任意兩邊之差小于第三邊;一個正數(shù)的絕對值等于它的本身,零的絕對值還是零,一個負數(shù)的絕對值等于它的相反數(shù),是解答本題的關鍵.
■考點三 實數(shù)的大小比較
◇典例5:(2023·湖北黃石·統(tǒng)考中考真題)實數(shù)a與b在數(shù)軸上的位置如圖所示,則它們的大小關系是( )

A. B. C. D.無法確定
【答案】C
【分析】根據(jù)數(shù)軸上右邊的數(shù)總大于左邊的數(shù)求解即可.
【詳解】解:由圖可知,,故選:C.
【點睛】本題考查利用數(shù)軸比較有理數(shù)的大小,熟知數(shù)軸上右邊的數(shù)總大于左邊的數(shù)是解答的關鍵.
◆變式訓練
1.(2023·浙江衢州·統(tǒng)考中考真題)手機信號的強弱通常采用負數(shù)來表示,絕對值越小表示信號越強(單位:),則下列信號最強的是( )
A. B. C. D.
【答案】A
【分析】根據(jù)題意,比較各數(shù)的絕對值大小,即可解答.
【詳解】解:,則信號最強的是,故選:A.
【點睛】本題考查了有理數(shù)的大小比較,負數(shù)比較大小時,絕對值大的反而小,熟知比較法則是解題的關鍵.
2.(2023·江蘇·統(tǒng)考中考真題)下列實數(shù)中,其相反數(shù)比本身大的是( )
A. B. C. D.
【答案】A
【分析】根據(jù)相反數(shù)的定義,逐項求出相反數(shù),進行比較即可.
【詳解】解:A. 的相反數(shù)是,則,故該選項符合題意;
B. 的相反數(shù)是,則,故該選項不符合題意;
C. 的相反數(shù)是,則,故該選項不符合題意;
B. 的相反數(shù)是,則,故該選項不符合題意;故選:A.
【點睛】本題考查了相反數(shù),比較有理數(shù)的大小,解題的關鍵是先求出相反數(shù),再進行比較.
3.(2023·湖南益陽·統(tǒng)考中考真題)四個實數(shù),0,2,中,最大的數(shù)是( )
A. B.0 C.2 D.
【答案】C
【分析】根據(jù)實數(shù)的大小比較法則,即可求解.
【詳解】解:∵,∴最大的數(shù)是2.故選:C
【點睛】本題主要考查了實數(shù)的大小比較,熟練掌握實數(shù)的大小比較法則是解題的關鍵.
◇典例6:(2023·江蘇徐州·統(tǒng)考中考真題)的值介于( )
A.25與30之間 B.30與35之間 C.35與40之間 D.40與45之間
【答案】D
【分析】直接利用二次根式的性質得出的取值范圍進而得出答案.
【詳解】解∶∵.∴即,
∴的值介于40與45之間.故選D.
【點睛】本題主要考查了估算無理數(shù)的大小,正確估算無理數(shù)的取值范圍是解題關鍵.
◆變式訓練
1.(2023·江蘇南通·統(tǒng)考中考真題)如圖,數(shù)軸上,,,,五個點分別表示數(shù)1,2,3,4,5,則表示數(shù)的點應在( )

A.線段上 B.線段上 C.線段上 D.線段上
【答案】C
【分析】根據(jù)判斷即可.
【詳解】,,
由于數(shù)軸上,,,,五個點分別表示數(shù)1,2,3,4,5,
的點應在線段上,故選:C.
【點睛】本題考查無理數(shù)的估算,熟練掌握無理數(shù)的估算的方法是解題的關鍵.
2.(2023·湖北武漢·統(tǒng)考中考真題)寫出一個小于4的正無理數(shù)是 .
【答案】(答案不唯一)
【分析】根據(jù)無理數(shù)估算的方法求解即可.
【詳解】解:∵,∴.故答案為:(答案不唯一).
【點睛】本題主要考查了無理數(shù)的估算,準確計算是解題的關鍵.
■考點四 實數(shù)的運算
◇典例7:(2023·湖南湘西·統(tǒng)考中考真題)計算:.
【答案】1
【分析】先計算零次冪,特殊角的正弦值,負指數(shù)冪,求解絕對值,再合并即可.
【詳解】解:

【點睛】本題考查實數(shù)的運算,實數(shù)的相關運算法則是基礎也是重要知識點,必須熟練掌握,同時考查了特殊角的三角函數(shù)值,零次冪的含義,熟練掌握零次冪,特殊角的正弦值以及負指數(shù)冪的運算法則是解題的關鍵.
◆變式訓練
1.(2023·山東·統(tǒng)考中考真題)計算: .
【答案】1
【分析】根據(jù)先計算絕對值,特殊角的三角函數(shù)值,零指數(shù)冪,再進行加減計算即可.
【詳解】解:
故答案為:1.
【點睛】本題考查了實數(shù)的運算,掌握絕對值、特殊角的三角函數(shù)值、零指數(shù)冪的運算是解題的關鍵.
2.(2023·北京·統(tǒng)考中考真題)計算:.
【答案】
【分析】代入特殊角三角函數(shù)值,利用負整數(shù)指數(shù)冪,絕對值和二次根式的性質化簡,然后計算即可.
【詳解】解:原式

【點睛】本題考查了實數(shù)的混合運算,牢記特殊角三角函數(shù)值,熟練掌握負整數(shù)指數(shù)冪,絕對值和二次根式的性質是解題的關鍵.
◇典例8:(2023年湖南省婁底市中考數(shù)學真題)從n個不同元素中取出個元素的所有組合的個數(shù),叫做從n個不同元素中取出m個元素的組合數(shù),用符號表示,(,n、m為正整數(shù));例如:,,則( )
A. B. C. D.
【答案】C
【分析】根據(jù)新定義分別進行計算比較即可得解.
【詳解】解:∵,
∴,
A選項,,B選項,,
C選項,,D選項,,故選C.
【點睛】本題考查了新定義運算以及求代數(shù)式的值.正確理解新定義是解題的關鍵.
◆變式訓練
1.(2023·浙江·一模)十字路口紅綠燈時長設置是根據(jù)路口的實際車流狀況來分配的,據(jù)統(tǒng)計,某十字路口每天的車流量中,東西走向直行與左轉車輛分別約占總流量,南北走向直行與左轉車輛分別約占總流量.因右轉車輛不受紅綠燈限制,所以在設置紅綠燈時,按東西走向直行、左轉,南北走向直行、左轉的次序依次亮起綠燈作為一個周期時間(當某方向綠燈亮起時,其他3個方向全為紅燈),若一個周期時間為2分鐘,則應設置南北走向直行綠燈時長較為合理的是( )
A.12秒 B.16秒 C.18秒 D.24秒
【答案】B
【分析】本題考查有理數(shù)的混合運算,解題關鍵是重新計算比例,而非直接用.先重新計算南北走向直行流量占比,再用120乘以占比可得一個周期時間為2分鐘南北走向直行綠燈時長.
【詳解】解:右轉車輛不受紅綠燈限制,
南北走向直行占題四種走向流量的比例為:,
一個周期時間為2分鐘,設置南北走向直行綠燈時長為,故選:B.
2.(2023·湖北荊州·統(tǒng)考中考真題)若,則 .
【答案】
【分析】根據(jù)絕對值的非負性,平方的非負性求得的值進而求得的算術平方根即可求解.
【詳解】解:∵,∴,解得:,
∴,故答案為:.
【點睛】本題考查了求一個數(shù)的算術平方根,熟練掌握絕對值的非負性,平方的非負性求得的值是解題的關鍵.
■考點五 科學記數(shù)法與近似數(shù)
◇典例9:(2023·浙江湖州·統(tǒng)考中考真題)國家互聯(lián)網(wǎng)信息辦公室2023年5月23日發(fā)布的《數(shù)字中國發(fā)展報告(2022年)》顯示,2022年我國數(shù)字經(jīng)濟規(guī)模達502000億元.用科學記數(shù)法表示50200
0,正確的是( )
A. B. C. D.
【答案】C
【分析】科學記數(shù)法的表示形式為的形式,其中,n為整數(shù).確定n的值時,要看把原數(shù)變成a時,小數(shù)點移動了多少位,n的絕對值與小數(shù)點移動的位數(shù)相同.
【詳解】解:用科學記數(shù)法表示502000為.故選:C.
【點睛】此題考查科學記數(shù)法表示較大的數(shù)的方法,準確確定a與n值是關鍵.
◆變式訓練
1.(2023·海南·統(tǒng)考中考真題)共享開放機遇,共創(chuàng)美好生活.2023年4月10日至15日,第三屆中國品博覽會在海南省海口市舉行,以“打造全球消費精品展示交易平臺”為目標,進場觀眾超32萬人次,數(shù)據(jù)用科學記數(shù)法表示為( )
A. B. C. D.
【答案】B
【分析】科學記數(shù)法的表示形式為的形式,其中,n為整數(shù).確定n的值時,要看把原數(shù)變成a時,小數(shù)點移動了多少位,n的絕對值與小數(shù)點移動的位數(shù)相同.
【詳解】解:,故選:B.
【點睛】此題考查科學記數(shù)法的表示方法.科學記數(shù)法的表示形式為的形式,其中,n為整數(shù),表示時關鍵要正確確定a的值以及n的值.
2.(2023·湖北襄陽·統(tǒng)考中考真題)5月5日,記者從襄陽市文化和旅游局獲悉,五一長假期間,我市41家級景區(qū)全部開放,共接待游客約2270000人次.數(shù)據(jù)2270000用科學記數(shù)法表示為 .
【答案】
【分析】科學記數(shù)法的表現(xiàn)形式為的形式,其中,為整數(shù),確定的值時,要看把原數(shù)變成時,小數(shù)點移動了多少位,的絕對值與小數(shù)點移動的位數(shù)相同,當原數(shù)絕對值大于等于10時,是正整數(shù),當原數(shù)絕對值小于1時,是負整數(shù).
【詳解】解:2270000用科學記數(shù)法表示為 ,故答案為:.
【點睛】本題考查了科學記數(shù)法—表示較大的數(shù),科學記數(shù)法的表現(xiàn)形式為的形式,其中,為整數(shù),表示時關鍵是要正確確定的值以及的值.
◇典例10:(2023·河南信陽·校考三模)根據(jù)中國疾控中心“國家流感中心”發(fā)布的最新流感監(jiān)測周報,2023年第8周,南、北方省份流感病毒檢測陽性率繼續(xù)上升,以甲流為主、亞型流感病毒共同流行.因此,生活中我們還是要做好防護、勤洗手,外出帶好口罩.據(jù)了解,甲型流感病毒的直徑大約是,這個數(shù)據(jù)用科學記數(shù)法可表示為( )
A. B. C. D.
【答案】D
【分析】絕對值小于1的數(shù)也可以利用科學記數(shù)法表示,一般形式為,與絕對值大于1數(shù)的科學記數(shù)法不同的是其所使用的是負指數(shù)冪指數(shù)由原數(shù)左邊起第一個不為零的數(shù)字前面的0的個數(shù)所決定解答.
【詳解】解:.故選:D.
【點睛】本題考查用科學記數(shù)法表示較小的數(shù),一般形式為,其中,為由原數(shù)左邊起第一個不為零的數(shù)字前面的0的個數(shù)所決定.
◆變式訓練
1.(2023·山東日照·統(tǒng)考中考真題)芯片內部有數(shù)以億計的晶體管,為追求更高質量的芯片和更低的電力功耗,需要設計4積更小的晶體管.目前,某品牌手機自主研發(fā)了最新型號芯片,其晶體管柵極的寬度為0.000000014米,將數(shù)據(jù)0.000000014用科學記數(shù)法表示為( )
A. B. C. D.
【答案】A
【分析】科學計數(shù)法的記數(shù)形式為:,其中,當數(shù)值絕對值大于1時,是小數(shù)點向右移動的位數(shù);當數(shù)值絕對值小于1時,是小數(shù)點向左移動的位數(shù)的相反數(shù).
【詳解】解:,故選A.
【點睛】本題考查科學計數(shù)法,掌握科學計數(shù)法的記數(shù)形式是解題的關鍵.
◇典例11:(2023·山東濰坊·統(tǒng)考一模)下列關于近似數(shù)的說法中正確的是(  )
A.近似數(shù)精確到百位 B.近似數(shù)萬精確到百分位
C.近似數(shù)精確到千位 D.近似數(shù)精確到千分位
【答案】C
【分析】根據(jù)近似數(shù)與有效數(shù)字的定義對每一項分別進行分析,即可得出答案.
【詳解】解:A.近似數(shù)精確到個位,此選項不合題意;
B.近似數(shù)萬精確到百位,此選項不合題意;
C.近似數(shù)精確到千位,此選項符合題意;
D.近似數(shù)精確到萬分位,此選項不合題意.故選:C.
【點睛】此題考查了近似數(shù)與有效數(shù)字,掌握近似數(shù)與有效數(shù)字的意義是正確判定的關鍵.
◆變式訓練
1.(2023·湖南長沙·統(tǒng)考二模)湘雅路過江通道工程是長沙市區(qū)“十八橫十六縱”三十四條主干路之一,位于三一大道與營盤路之間,總投資億元.其中數(shù)據(jù)億元精確到哪位?(  )
A.萬位 B.十萬位 C.百萬位 D.億位
【答案】B
【分析】根據(jù)近似數(shù)的精確度求解即可.
【詳解】解:數(shù)據(jù)億精確到的位數(shù)是十萬位.故選:B.
【點睛】本題主要考查了近似數(shù)和有效數(shù)字:近似數(shù)與精確數(shù)的接近程度,可以用精確度表示.一般有,精確到哪一位,保留幾個有效數(shù)字等說法.
2.(2023·湖南衡陽·校考模擬預測)截止6月10日,上海世博會累計入園人數(shù)已達萬.將萬人用科學記數(shù)法(四舍五入保存3個有效數(shù)字)表示約為(  )
A.人 B.人 C.人 D.人
【答案】B
【分析】科學記數(shù)法的表示形式為的形式,其中,n為整數(shù).由于萬有8位,所以可以確定.有效數(shù)字的計算方法是:從左邊第一個不是0的數(shù)字起,后面所有的數(shù)字都是有效數(shù)字.
【詳解】解:萬人人,故選:B.
【點睛】此題考查科學記數(shù)法的表示方法,以及用科學記數(shù)法表示的數(shù)的有效數(shù)字確實定方法,用科學記數(shù)法表示的數(shù)的有效數(shù)字只與前面的a有關,與10的多少次方無關.
1.(2023·西藏·統(tǒng)考中考真題)已知a,b都是實數(shù),若,則的值是( )
A. B. C.1 D.2023
【答案】B
【分析】根據(jù)絕對值和偶次方的非負性可求解a,b的值,再代入計算可求解.
【詳解】解:∵,,
∴,解得,∴.故選:B.
【點睛】此題考查了絕對值與偶次方非負性的應用,解題關鍵是利用非負性求出a、b的值.
2.(2023·江蘇徐州·統(tǒng)考中考真題)如圖,數(shù)軸上點分別對應實數(shù),下列各式的值最小的是( )

A. B. C. D.
【答案】C
【分析】根據(jù)數(shù)軸可直接進行求解.
【詳解】解:由數(shù)軸可知點C離原點最近,所以在、、、中最小的是;故選C.
【點睛】本題主要考查數(shù)軸上實數(shù)的表示、有理數(shù)的大小比較及絕對值,熟練掌握數(shù)軸上有理數(shù)的表示、有理數(shù)的大小比較及絕對值是解題的關鍵.
3.(2023·山東·統(tǒng)考中考真題)實數(shù)a,b,c在數(shù)軸上對應點的位置如圖所示,下列式子正確的是( )

A. B. C. D.
【答案】C
【分析】根據(jù)數(shù)軸可得,,再根據(jù)逐項判定即可.
【詳解】由數(shù)軸可知,
∴,故A選項錯誤;∴,故B選項錯誤;
∴,故C選項正確;∴,故D選項錯誤;故選:C.
【點睛】本題考查實數(shù)與數(shù)軸,根據(jù)進行判斷是解題關鍵.
4.(2023·四川攀枝花·統(tǒng)考中考真題)為了回饋客戶,商場將定價為200元的某種兒童玩具降價進行銷售.“六·一”兒童節(jié)當天,又將該種玩具按新定價再次降價銷售,那么該種玩具在兒童節(jié)當天的銷售價格為( )
A.160元 B.162元 C.172元 D.180元
【答案】B
【分析】根據(jù)題意可直接進行列式求解.
【詳解】解:由題意得:(元);故選B.
【點睛】本題主要考查有理數(shù)乘法的應用,解題的關鍵是理解題意.
5.(2023·山東泰安·統(tǒng)考中考真題)2023年1月17日,國家航天局公布了我國嫦娥五號月球樣品的科研成果.科學家們通過對月球樣品的研究,精確測定了月球的年齡是億年,數(shù)據(jù)億年用科學記數(shù)法表示為( )

A.年 B.年 C.年 D.年
【答案】B
【分析】科學記數(shù)法的表現(xiàn)形式為的形式,其中,n為整數(shù),確定n的值時,要看把原數(shù)變成a時,小數(shù)點移動了多少位,n的絕對值與小數(shù)點移動的位數(shù)相同,當原數(shù)絕對值大于等于10時,n是正數(shù),當原數(shù)絕對值小于1時n是負數(shù);由此進行求解即可得到答案.
【詳解】解:億年年年,故選B.
【點睛】本題主要考查了科學記數(shù)法,解題的關鍵在于能夠熟練掌握科學記數(shù)法的定義.
6.(2023·寧夏·統(tǒng)考中考真題)估計的值應在( )
A.和4之間 B.4和之間 C.和5之間 D.5和之間
【答案】C
【分析】先找到所求的無理數(shù)在哪兩個和它接近的有理數(shù)之間,然后判斷出所求的無理數(shù)的范圍.
【詳解】∵,∴,排除A和D,
又∵23更接近25,∴更接近5, ∴在和5之間,故選:C.
【點睛】此題主要考查了無理數(shù)的大小估算,現(xiàn)實生活中經(jīng)常需要估算,估算應是我們具備的數(shù)學能力,“夾逼法”是估算的一般方法,也是常用方法.
7.(2023·湖北恩施·統(tǒng)考中考真題)下列實數(shù):,0,,,其中最小的是(  )
A. B.0 C. D.
【答案】A
【分析】根據(jù)實數(shù)大小比較的法則解答.
【詳解】解:∵,∴最小的數(shù)是,故選:A.
【點睛】此題考查了實數(shù)的大小比較:正數(shù)大于零,零大于負數(shù),兩個負數(shù)絕對值大的反而小,熟練掌握實數(shù)的大小比較法則是解題的關鍵.
8.(2023·江蘇泰州·統(tǒng)考中考真題)溶度積是化學中沉淀的溶解平衡常數(shù).常溫下的溶度積約為,將數(shù)據(jù)用科學記數(shù)法表示為 .
【答案】
【分析】絕對值小于1的正數(shù)也可以利用科學記數(shù)法表示,一般形式為,與較大數(shù)的科學記數(shù)法不同的是其所使用的是負整數(shù)指數(shù)冪,指數(shù)由原數(shù)左邊起第一個不為零的數(shù)字前面的0的個數(shù)所決定.
【詳解】解:.故答案為:.
【點睛】本題考查用科學記數(shù)法表示較小的數(shù),一般形式為,其中,為由原數(shù)左邊起第一個不為零的數(shù)字前面的0的個數(shù)所決定.
9.(2023年寧夏回族自治區(qū)中考數(shù)學真題)如圖,點,,在數(shù)軸上,點表示的數(shù)是,點是的中點,線段,則點表示的數(shù)是 .

【答案】
【分析】根據(jù)兩點間的距離公式和中點平分線段進行計算即可.
【詳解】解:∵點是的中點,線段,
∴,∴點表示的數(shù)是:;故答案為:.
【點睛】本題考查數(shù)軸上兩點間的距離,以及線段的中點.熟練掌握線段中點的定義,以及數(shù)軸上兩點間的距離公式,是解題的關鍵.
10.(2023年山東省煙臺市中考數(shù)學真題)如圖,利用課本上的計算器進行計算,其按鍵順序及結果如下:

①按鍵的結果為4;
②按鍵的結果為8;
③按鍵的結果為;
④按鍵的結果為25.
以上說法正確的序號是 .
【答案】①③
【分析】根據(jù)計算器按鍵,寫出式子,進行計算即可.
【詳解】解:①按鍵的結果為;故①正確,符合題意;
②按鍵的結果為;故②不正確,不符合題意;
③按鍵的結果為;故③正確,符合題意;
④按鍵的結果為;故④不正確,不符合題意;綜上:正確的有①③.故答案為:①③.
【點睛】本題主要考查了科學計算器是使用,解題的關鍵是熟練掌握和了解科學計算器各個按鍵的含義.
11.(2023·遼寧沈陽·統(tǒng)考中考真題)計算:.
【答案】10
【分析】根據(jù)零指數(shù)冪和負整數(shù)指數(shù)冪運算法則,二次根式性質,特殊角的三角函數(shù)值,進行計算即可.
【詳解】解:

【點睛】本題主要考查了實數(shù)混合運算,解題的關鍵是熟練掌握零指數(shù)冪和負整數(shù)指數(shù)冪運算法則,二次根式性質,特殊角的三角函數(shù)值,準確計算.
12.(2023·湖南婁底·統(tǒng)考中考真題)計算:.
【答案】
【分析】先計算零次冪,化簡絕對值,化簡二次根式,求解特殊角的正切,再合并即可.
【詳解】解:

【點睛】本題考查的是含特殊角的三角函數(shù)值的混合運算,零次冪的含義,化簡絕對值,二次根式,熟記相關概念與運算法則是解本題的關鍵.
1.(2023·山西呂梁·校聯(lián)考模擬預測)數(shù)學思想,是指現(xiàn)實世界的空間形式和數(shù)量關系反映到人們的意識之中,經(jīng)過思維活動而產(chǎn)生的結果.運用所學知識解決以下問題:已知實數(shù)a,b,c在數(shù)軸上的位置如圖所示,化簡.這道題體現(xiàn)的數(shù)學思想是( )

A.函數(shù)思想 B.方程思想 C.數(shù)形結合思想 D.統(tǒng)計思想
【答案】C
【分析】根據(jù)數(shù)軸來判斷,的正負,體現(xiàn)的數(shù)學思想是數(shù)形結合,從而得解.
【詳解】A、函數(shù)思想,在于運用函數(shù)來解決問題,本題不存在函數(shù)問題,故此選項不符合題意;
B、方程思想,在于建立方程來解決問題,本題不存在方程問題,故此選項不符合題意;
C、數(shù)形結合思想,數(shù)軸來判斷,的正負,體現(xiàn)的數(shù)學思想是數(shù)形結合,故此選項符合題意;
D、統(tǒng)計思想,本題不存在統(tǒng)計相關的問題,故此選項不符合題意.故選:C.
【點睛】本題考查了數(shù)學常識,考查數(shù)形結合的思想,掌握利用圖形來進行計算體現(xiàn)的數(shù)學思想是數(shù)形結合思想是解題的關鍵.
2.(2023·廣東梅州·統(tǒng)考二模)已知實數(shù),則實數(shù)的倒數(shù)為( )
A. B. C. D.
【答案】B
【分析】先將絕對值化簡,再求倒數(shù)即可.
【詳解】解:,2024的倒數(shù)為,
故選:B.
【點睛】本題考查求有理數(shù)的絕對值,倒數(shù),解題關鍵是掌握乘積等于1的兩個數(shù)互為倒數(shù).
3.(2023·山東臨沂·統(tǒng)考二模)在實數(shù),,,0中,絕對值最小的一個是( )
A. B. C. D.0
【答案】D
【分析】先依次求出每個數(shù)的絕對值,再比較即可.
【詳解】解:∵,,,,
∵,∴絕對值最小的一個是0,故選:D.
【點睛】本題考查求絕對值和實數(shù)的大小比較,正確計算是關鍵.
4.(2023·廣西·九年級專題練習)2021年9月25日,華為公司副董事長、“CFO”(首席財務官)孟晚舟女士乘坐包機返回祖國,行程約12357千米.用四舍五入法對12357取近似值,其中錯誤的是(  )
A.12360(精確到10) B.(精確到百分位)
C.(精確到千位) D.1萬(精確到萬位)
【答案】A
【分析】近似數(shù)精確到哪一位,應當看末位數(shù)字實際在哪一位.
【詳解】解:A.12357精確到10是,符合題意;
B.12357精確到百分位為,不符合題意;
C.12357精確到千位是,不符合題意;
D.12357精確到萬位是1萬,此選項正確,不符合題意;故選:A.
【點睛】本題考查了近似數(shù)和有效數(shù)字:近似數(shù)與精確數(shù)的接近程度,可以用精確度表示.一般有,精確到哪一位,保留幾個有效數(shù)字等說法.從一個數(shù)的左邊第一個不是0的數(shù)字起到末位數(shù)字止,所有的數(shù)字都是這個數(shù)的有效數(shù)字.
5.(2023·吉林長春·校考模擬預測)下圖是長春市2022年12月連續(xù)四天的天氣預報信息,其中日溫差最大的一天是( )
12月14日 12月15日 12月16日 12月17日
℃ 晴 ℃ 晴 ℃ 晴 ℃ 晴
【答案】C
【分析】根據(jù)減法法則計算即可.
【詳解】解:12月14日,,12月15日,,
12月16日,,12月17日,,
∵,∴12月16日溫差最大,故選:C.
【點睛】本題考查了有理數(shù)的減法法則,熟記概念是關鍵.
6.(2023·山東東營·統(tǒng)考二模)將數(shù)值取近似數(shù):用科學記數(shù)法表示并保留兩個有效數(shù)字為 .
【答案】
【分析】用科學記數(shù)法是正整數(shù)表示的數(shù)的有效數(shù)字應該由首數(shù)來確定,首數(shù)中的數(shù)字就是有效數(shù)字,由此即可得到答案.
【詳解】解:.故答案為:.
【點睛】本題考查科學記數(shù)法與有效數(shù)字,關鍵是掌握用科學記數(shù)法表示的數(shù)的有效數(shù)字的確定方法.
7.(2023·江蘇鹽城·校聯(lián)考二模)化學元素釘?shù)脑影霃剑畬⒂每茖W記數(shù)法表示為 .
【答案】
【分析】絕對值小于1的利用科學記數(shù)法表示,一般形式為,與較大數(shù)的科學記數(shù)法不同的是其所使用的是負指數(shù)冪,指數(shù)由原數(shù)左邊起第一個不為零的數(shù)字前面的0的個數(shù)所決定.
【詳解】解:,故答案為:
【點睛】本題考查用科學記數(shù)法表示較小的數(shù),一般形式為,其中,n為由原數(shù)左邊起第一個不為零的數(shù)字前面0的個數(shù)所決定.
8.(2023年北京市九年級一模)寫出一個比大且比小的整數(shù) .
【答案】答案不唯一,如:1
【分析】先對進行估值,在找出范圍中的整數(shù)即可.
【詳解】解:∵1<<2∴-2【點睛】本題考查算術平方根的估值.理解算術平方根的定義是關鍵.
9.(2024·廣東·統(tǒng)考中考模擬)若a、b互為相反數(shù),c為8的立方根,則 .
【答案】
【分析】利用相反數(shù),立方根的性質求出及c的值,代入原式計算即可得到結果.
【詳解】解:根據(jù)題意得:,,故答案為:
【點睛】此題考查了代數(shù)式求值,相反數(shù)、立方根的性質,熟練掌握運算法則是解本題的關鍵.
10.(2023·重慶·統(tǒng)考中考模擬計算:.
【答案】
【分析】根據(jù)實數(shù)的混合運算法則即可求解.
【詳解】原式
【點睛】本題考查實數(shù)的混合運算.熟記特殊角的三角函數(shù)值、求絕對值法則,負指數(shù)冪的運算法則是解題關鍵.
1.(2023年山東省菏澤市中考數(shù)學真題)的三邊長a,b,c滿足,則是( )
A.等腰三角形 B.直角三角形 C.銳角三角形 D.等腰直角三角形
【答案】D
【分析】由等式可分別得到關于a、b、c的等式,從而分別計算得到a、b、c的值,再由的關系,可推導得到為直角三角形.
【詳解】解∵
又∵ ∴,∴解得 ,
∴,且,∴為等腰直角三角形,故選:D.
【點睛】本題考查了非負性和勾股定理逆定理的知識,求解的關鍵是熟練掌握非負數(shù)的和為0,每一個非負數(shù)均為0,和勾股定理逆定理.
2.(2023年浙江省杭州市中考數(shù)學真題)已知數(shù)軸上的點分別表示數(shù),其中,.若,數(shù)在數(shù)軸上用點表示,則點在數(shù)軸上的位置可能是( )
A. B.
C. D.
【答案】B
【分析】先由,,,根據(jù)不等式性質得出,再分別判定即可.
【詳解】解:∵,,∴∵∴
A、,故此選項不符合題意;B、,故此選項符合題意;
C、,故此選項不符合題意;D、,故此選項不符合題意;故選:B.
【點睛】本題考查用數(shù)軸上的點表示數(shù),不等式性質,由,,得出是解題的關鍵.
3.(2023年河北省中考數(shù)學真題)光年是天文學上的一種距離單位,一光年是指光在一年內走過的路程,約等于.下列正確的是( )
A. B.
C.是一個12位數(shù) D.是一個13位數(shù)
【答案】D
【分析】根據(jù)科學記數(shù)法、同底數(shù)冪乘法和除法逐項分析即可解答.
【詳解】解:A. ,故該選項錯誤,不符合題意;
B. ,故該選項錯誤,不符合題意;
C. 是一個13位數(shù),故該選項錯誤,不符合題意;
D. 是一個13位數(shù),正確,符合題意.故選D.
【點睛】本題主要考查了科學記數(shù)法、同底數(shù)冪乘法和除法等知識點,理解相關定義和運算法則是解答本題的關鍵.
4.(2023年山東省臨沂市中考數(shù)學真題)在實數(shù)中,若,則下列結論:①,②,③,④,正確的個數(shù)有( )
A.1個 B.2個 C.3個 D.4個
【答案】A
【分析】根據(jù)相反數(shù)的性質即可判斷①,根據(jù)已知條件得出,即可判斷②③,根據(jù),代入已知條件得出,即可判斷④,即可求解.
【詳解】解:∵∴,故①錯誤,∵∴,
又∴,故②③錯誤, ∵ ∴
∵∴∴∴,故④正確 或借助數(shù)軸,如圖所示,故選:A.
【點睛】本題考查了不等式的性質,實數(shù)的大小比較,借助數(shù)軸比較是解題的關鍵.
5.(2022上·陜西西安·九年級校考階段練習)如圖,將,,,0,1,2,3,4,5分別填入九個空格內,使每行、每列、每條對角線上的三個數(shù)之和相等,現(xiàn)在分別表示其中的一個數(shù),則的值為( )

A. B. C.0 D.5
【答案】A
【分析】先根據(jù)第1行和第2行的三個數(shù)之和相等求出的值,再根據(jù)第1列和第2列的三個數(shù)之和相等求出的值,第2列和第3列的三個數(shù)之和相等求出的值,最后將的值代入進行計算即可.
【詳解】解:根據(jù)題意得:,
,,,故選:A.
【點睛】本題考查了有理數(shù)的加減混合運算,理解題意,熟練掌握運算法則是解題的關鍵.
6.(2023·云南昆明·九年級校考期中)已知數(shù)的大小關系如圖,下列說法:①;②;③;④若為數(shù)軸上任意一點,則的最小值為.其中正確結論的個數(shù)是( )

A.1 B.2 C.3 D.4
【答案】B
【分析】由數(shù)軸可得且,將所給式子進行適當變形即可求解.
【詳解】解:由數(shù)軸可得:且
①,∵∴,故①正確;
②,∵∴,故②錯誤;
③,故③錯誤;
④表示數(shù)表示的點到數(shù)表示的點的距離之和,其最小值為數(shù)表示的點的距離,即為,故④正確;故選:B
【點睛】本題考查了通過數(shù)軸判斷式子的值或正負.對式子進行適當變形是解題關鍵.
21世紀教育網(wǎng) www.21cnjy.com 精品試卷·第 2 頁 (共 2 頁)
21世紀教育網(wǎng)(www.21cnjy.com)

展開更多......

收起↑

資源列表

    <track id="r4fhd"></track>

    <pre id="r4fhd"><abbr id="r4fhd"><code id="r4fhd"></code></abbr></pre>
      <ul id="r4fhd"></ul>

        <menu id="r4fhd"></menu>
        1. 主站蜘蛛池模板: 商洛市| 秭归县| 云浮市| 重庆市| 荥经县| 巴楚县| 思南县| 凤庆县| 赤城县| 叶城县| 股票| 巴青县| 辽中县| 辛集市| 绥阳县| 北碚区| 佳木斯市| 涿鹿县| 兴义市| 馆陶县| 马山县| 乐山市| 福贡县| 贺兰县| 耒阳市| 仁化县| 黄梅县| 阳信县| 安吉县| 廊坊市| 洛南县| 宁明县| 崇义县| 通河县| 苗栗县| 大余县| 黔西县| 义马市| 绥阳县| 会理县| 江津市|