資源簡介 七年級數(shù)學(xué)上冊導(dǎo)學(xué)案課題 2.2 整式的加減(第二課時)課型 講授課 主備 審核學(xué)習(xí) 目標(biāo) 能應(yīng)用運(yùn)算律探究去括號法則,并且利用去括號法則將整式化簡. 括號前面是“-”號去括號時,括號內(nèi)各項變號容易產(chǎn)生錯誤. 培養(yǎng)觀察分析,歸納能力及主動探究合作交流的意識.學(xué)習(xí) 重點 去括號法則,準(zhǔn)確應(yīng)用法則將整式化簡學(xué)習(xí) 難點 括號前面是“-”號去括號時,括號內(nèi)各項變號容易產(chǎn)生錯誤.預(yù) 習(xí) 案 1.乘法的分配律:a(b+c)=____________ 2.算一算:(要求應(yīng)用乘法的分配律) (1)120×(10-0.5) (2)-120×(10-0.5) (3)120×(t-0.5) (4)-120×(t-0.5) 3. 化簡: (1)-(+5)= (2) +(+5)= (3)-(-7)= (4)+(-7)= (5)9a+(6 a-a)= (6)9 a+6 a-a = (7)9 a-(6 a-a)= (8)9 a-6 a+a = 4. 如果括號外的因數(shù)是正數(shù),去括號后_________________ ;如果括號外的因數(shù)是負(fù)數(shù),去括號后_________________行 課 案 合作探究 例1.化簡下列各式 (1)10m+8n+(7m-3n) (2)(7x-5y)-2(x2-3y) 思路點撥:先判斷是哪種類型的去括號,其次去括號后,括號內(nèi)各項的符號要不要變號. 易錯警示:括號外的系數(shù)不要漏乘括號里的每一項.括號前是“-”號,去括號時,注意括號里的各項符號都要變號. 解: 教師總結(jié): 1.去括號規(guī)律要準(zhǔn)確理解,去括號應(yīng)對括號內(nèi)的每一項的符號都予考慮,做到要變都變,要不變,則各項符號都不要變. 2.括號內(nèi)原有幾項去掉括號后仍有幾項. 3.有多層括號時,要從里向外逐步去括號. 例2、設(shè),,求的值。 例3.計算的值,其中,,甲把錯看成是,乙正確計算,但兩人的結(jié)果卻一樣,你能說明為什么嗎? 例4.某學(xué)生由于看錯符號,把一個整式減去多項式誤以為是加上這個多項式,得到結(jié)果為。求原題的正確答案。檢 測 案 .下列各式中,正確的是( ) A. B. C. D. 2.若M,N都是三次多項式,則A+B的結(jié)果一定是( ) A.六次多項式 B.三次多項式 C.次數(shù)不高于3次的整式 D.次數(shù)不低于3次的整式 3.下列去括號錯誤的是( ) A. B. C. D. 4.若A是三次四項式,B是四次五項式,則A+B的次數(shù)是( ) A.七次 B.四次 C.三次 D.以上都不對 5. 若,,那么M與N的大小關(guān)系為( ) A.MN C.M=N D.不能確定 6.化簡m+n-(m-n)的結(jié)果為( ) A.2m B.-2m C.2n D.-2n 7.已知3x2-4x+6的值為9,則x2-x+6 的值為( ). A.7 B.18 C.12 D.9 8.先化簡,再求值: ⑴ ,其中 ⑵ 4-[6-2(4-2)-1],其中=-1,. (3)設(shè),,求的值。 9.已知多項式與一個整式的和為,求這個整式與的差。 展開更多...... 收起↑ 資源預(yù)覽 縮略圖、資源來源于二一教育資源庫