資源簡介 專題二 不等式1.實數(shù)的大小比較兩個實數(shù)(或代數(shù)式)的大小,可以轉(zhuǎn)化為比較它們的差與0的大小,這種比較大小的方法稱為作差比較法:(1)a>b a-b>0;(2)a=b a-b=0;(3)a2.不等式的性質(zhì)①(對稱性)②(傳遞性)③(可加性); (同向可加性);(異向可減性)④(可積性);⑤(同向正數(shù)可乘性);(異向正數(shù)可除性)⑥(平方法則)⑦(開方法則)⑧(倒數(shù)法則)3.區(qū)間定義 名稱 符號 數(shù)軸表示{x|a≤x≤b} 閉區(qū)間 [a,b]{x|a{x|a≤x{x|a{x|x≥a} [a,+∞){x|x>a} (a,+∞){x|x≤a} (-∞,a]{x|xR (-∞,+∞) 取遍數(shù)軸上所有的值4.一元二次不等式與相應(yīng)函數(shù)、方程之間的聯(lián)系二次函數(shù) ()的圖象有兩相異實根 有兩相等實根 無實根5.絕對值不等式:的解集是,如圖1;的解集是,如圖2;;或;6.分式不等式的解法:進行同解變形,將分式不等式轉(zhuǎn)化為整式不等式來解.(1); (2);(3); (4);一 、不等式的性質(zhì)1.已知,則下列命題正確的是( )A.若,則 B.若,則C.若,則 D.若,則【答案】C【解析】A選項:當時,,故A錯;B選項:當,時,,但,故B錯;C選項:當時,,所以,故C正確;D選項:當,時,滿足,但,故D錯,故選:C.2.若a,,下列命題正確的是( )A.若,則 B.,若,則C.若,,則 D.,,若,則【答案】C【解析】時,,其中的符號不確定,故A選項錯誤;,有,時,有,故B選項錯誤;,,由,則,即,故C選項正確;,,時,,其中的符號不確定,故D選項錯誤,故選:C.3.若,則下列不等關(guān)系正確的是 .①; ②; ③; ④【答案】①【解析】因為,所以,,,,所以,即,,所以,故答案為:①.二 、一元二次不等式的解法4.不等式的解集是( )A. B.C. D.【答案】C【解析】不等式可化為,解得,故選:C.5.不等式的解集為( )A. B.C. D.【答案】A【解析】,即,故或,即,故選:A.6.已知關(guān)于的不等式的解集是則( )A. B. C. D.【答案】B【解析】由題意和1是方程的兩根,所以,,,∴.故選:B.三 、絕對值和分式不等式的解法7.已知集合,,,( )A. B. C. D.【答案】B【解析】因為,,,,所以,于是,故選:B.8.不等式的解集為( )A. B.C. D.【答案】B【解析】由得, 或,解得或,故選:B.9.不等式的解為( )A. B.C.或 D.或【答案】C【解析】不等式可變形為,即,解得或,故選:C.10.設(shè),則“”是“”的( )A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件【答案】B【解析】,等價于,解得:,,解得:,,因為為的真子集,所以,但,故“”是“”的必要不充分條件,故選:B.一、選擇題1.設(shè),則“”是“”的( )A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件【答案】A【解析】由,可得或,∴“”是“”的充分不必要條件,故選:A.2.已知,,則的取值范圍是( )A. B.C. D.【答案】B【解析】因為,所以,而,所以,故選:B.3.設(shè)集合,集合,則( )A. B. C. D.【答案】D【解析】因為,由有:;因為,由有:或;所以,或,所以,故A,B,C錯誤,故選:D.4.函數(shù)的定義域為( )A. B. C. D.【答案】A【解析】由可知,,解得,故的定義域為,故選:A.5.已知,,則( )A. B. C. D.無法確定【答案】A【解析】,,則,所以,故選:A.6.關(guān)于的不等式的解集為( )A. B. C. D.【答案】A【解析】由,得,因為,所以不等式的解集為,故選:A.7.不等式的解集為( )A. B. C.或 D.【答案】C【解析】由題設(shè),可得或,所以不等式解集為或,故選:C.8.下列結(jié)論中不正確的個數(shù)是( )(1)若,則 (2)若,則(3)若,則 (4)若,則A.1個 B.2個 C.3個 D.4個【答案】D【解析】對(1):當時,顯然,故(1)錯誤;對(2):若,滿足,但,故(2)錯誤;對(3):取,滿足,但,故(3)錯誤;對(4):取,滿足,但,故(4)錯誤;則(1)(2)(3)(4)都不正確,故選:.9.已知關(guān)于x的不等式的解集為,則關(guān)于x的不等式的解集為( )A. B.C. D.【答案】C【解析】因為關(guān)于x的不等式的解集為,則,,不等式的解集為:,故選:C.10.設(shè)不等式的解集為,則的取值范圍為( )A. B. C. D.【答案】B【解析】由不等式的解集為,即為不等式在上恒成立,當時,不等式為,符合題意,當時,恒成立,必有 ,所以,所以若不等式的解集為,則的取值范圍為,故選:B.二、填空題11.不等式的解集是________.【答案】或【解析】因為,所以,故,解得或,所以的解集是或,故答案為:或.12.不等式的解集為 .【答案】或【解析】依題意:或,或,解集為或,故答案為:或.13.若關(guān)于的不等式的解集是,則__________.【答案】【解析】由題意知,是的兩個根,則,解得,故,故答案為:.14.若,,則的取值集合是 .【答案】【解析】因為,,所以,,故,故答案為:.15.不等式的解集為___________.【答案】【解析】由得:,解得:,即不等式的解集為,故答案為:.16.已知一元二次不等式的解集為,則不等式的解集為__________.【答案】【解析】一元二次不等式的解集為,且是的兩個實數(shù)根,由韋達定理得:,解得,所以不等式可化為,即,解得或,所以所求不等式的解集為,故答案為:.三、解答題18.解不等式組:.【答案】【解析】解:,,,∴不等式得解集為.19.設(shè)的解集為,的解集為.(1)求集合和集合;(2)設(shè)實數(shù)集為,求.【答案】(1)或,;(2)【解析】解:(1)由題知的解集為或,或,,即,不等式的解集為,,綜上: 或,;(2)由(1)知或,,,.20.已知集合,.(1)若,求;(2)若,求實數(shù)的取值范圍.【答案】(1);(2)或【解析】解:(1)由得解得,所以,因為,所以,即,解得,所以,所以.(2)由(1)得,由得,解得,所以,因為,所以或,解得或.專題二 不等式1.實數(shù)的大小比較兩個實數(shù)(或代數(shù)式)的大小,可以轉(zhuǎn)化為比較它們的差與0的大小,這種比較大小的方法稱為作差比較法:(1)a>b a-b>0;(2)a=b a-b=0;(3)a2.不等式的性質(zhì)①(對稱性)②(傳遞性)③(可加性); (同向可加性);(異向可減性)④(可積性);⑤(同向正數(shù)可乘性);(異向正數(shù)可除性)⑥(平方法則)⑦(開方法則)⑧(倒數(shù)法則)3.區(qū)間定義 名稱 符號 數(shù)軸表示{x|a≤x≤b} 閉區(qū)間 [a,b]{x|a{x|a≤x{x|a{x|x≥a} [a,+∞){x|x>a} (a,+∞){x|x≤a} (-∞,a]{x|xR (-∞,+∞) 取遍數(shù)軸上所有的值4.一元二次不等式與相應(yīng)函數(shù)、方程之間的聯(lián)系二次函數(shù) ()的圖象有兩相異實根 有兩相等實根 無實根5.絕對值不等式:的解集是,如圖1;的解集是,如圖2;;或;6.分式不等式的解法:進行同解變形,將分式不等式轉(zhuǎn)化為整式不等式來解.(1); (2);(3); (4);一 、不等式的性質(zhì)1.已知,則下列命題正確的是( )A.若,則 B.若,則C.若,則 D.若,則2.若a,,下列命題正確的是( )A.若,則 B.,若,則C.若,,則 D.,,若,則3.若,則下列不等關(guān)系正確的是 .①; ②; ③; ④二 、一元二次不等式的解法4.不等式的解集是( )A. B.C. D.5.不等式的解集為( )A. B.C. D.6.已知關(guān)于的不等式的解集是則( )A. B. C. D.三 、絕對值和分式不等式的解法7.已知集合,,,( )A. B. C. D.8.不等式的解集為( )A. B.C. D.9.不等式的解為( )A. B.C.或 D.或10.設(shè),則“”是“”的( )A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件一、選擇題1.設(shè),則“”是“”的( )A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件2.已知,,則的取值范圍是( )A. B.C. D.3.設(shè)集合,集合,則( )A. B. C. D.4.函數(shù)的定義域為( )A. B. C. D.5.已知,,則( )A. B. C. D.無法確定6.關(guān)于的不等式的解集為( )A. B. C. D.7.不等式的解集為( )A. B. C.或 D.8.下列結(jié)論中不正確的個數(shù)是( )(1)若,則 (2)若,則(3)若,則 (4)若,則A.1個 B.2個 C.3個 D.4個9.已知關(guān)于x的不等式的解集為,則關(guān)于x的不等式的解集為( )A. B.C. D.10.設(shè)不等式的解集為,則的取值范圍為( )A. B. C. D.二、填空題11.不等式的解集是________.12.不等式的解集為 .13.若關(guān)于的不等式的解集是,則__________.14.若,,則的取值集合是 .15.不等式的解集為___________.16.已知一元二次不等式的解集為,則不等式的解集為__________.三、解答題18.解不等式組:.19.設(shè)的解集為,的解集為.(1)求集合和集合;(2)設(shè)實數(shù)集為,求.20.已知集合,.(1)若,求;(2)若,求實數(shù)的取值范圍. 展開更多...... 收起↑ 資源列表 專題02 不等式(原卷版).docx 專題02 不等式(解析版).docx 縮略圖、資源來源于二一教育資源庫