資源簡介 高中數學第九章-立體幾何考試內容平面及其基本性質.平面圖形直觀圖的畫法.平行直線.對應邊分別平行的角.異面直線所成的角.異面直線的公垂線.異面直線的距離.直線和平面平行的判定與性質.直線和平面垂直的判定與性質.點到平面的距離.斜線在平面上的射影.直線和平面所成的角.三垂線定理及其逆定理.平行平面的判定與性質.平行平面間的距離.二面角及其平面角.兩個平面垂直的判定與性質.多面體.正多面體.棱柱.棱錐.球.考試要求(1)掌握平面的基本性質,會用斜二測的畫法畫水平放置的平面圖形的直觀圖;能夠畫出空間兩條直線、直線和平面的各種位置關系的圖形,能夠根據圖形想像它們的位置關系.(2)掌握兩條直線平行與垂直的判定定理和性質定理,掌握兩條直線所成的角和距離的概念,對于異面直線的距離,只要求會計算已給出公垂線時的距離.(3)掌握直線和平面平行的判定定理和性質定理;掌握直線和平面垂直的判定定理和性質定理;掌握斜線在平面上的射影、直線和平面所成的角、直線和平面的距離的概念掌握三垂線定理及其逆定理.(4)掌握兩個平面平行的判定定理和性質定理,掌握二面角、二面角的平面角、兩個平行平面間的距離的概念,掌握兩個平面垂直的判定定理和性質定理.(5)會用反證法證明簡單的問題.(6)了解多面體、凸多面體的概念,了解正多面體的概念.(7)了解棱柱的概念,掌握棱柱的性質,會畫直棱柱的直觀圖.(8)了解棱錐的概念,掌握正棱錐的性質,會畫正棱錐的直觀圖.(9)了解球的概念,掌握球的性質,掌握球的表面積、體積公式.9(B).直線、平面、簡單幾何體?考試內容:平面及其基本性質.平面圖形直觀圖的畫法.平行直線.直線和平面平行的判定與性質.直線和平面垂直的判定.三垂線定理及其逆定理.兩個平面的位置關系.空間向量及其加法、減法與數乘.空間向量的坐標表示.空間向量的數量積.直線的方向向量.異面直線所成的角.異面直線的公垂線.異面直線的距離.直線和平面垂直的性質.平面的法向量.點到平面的距離.直線和平面所成的角.向量在平面內的射影.平行平面的判定和性質.平行平面間的距離.二面角及其平面角.兩個平面垂直的判定和性質.多面體.正多面體.棱柱.棱錐.球.考試要求:(1)掌握平面的基本性質。會用斜二測的畫法畫水平放置的平面圖形的直觀圖:能夠畫出空間兩條直線、直線和平面的各種位置關系的圖形.能夠根據圖形想像它們的位置關系.(2)掌握直線和平面平行的判定定理和性質定理;理解直線和平面垂直的概念.掌握直線和平面垂直的判定定理;掌握三垂線定理及其逆定理.(3)理解空間向量的概念,掌握空間向量的加法、減法和數乘.(4)了解空間向量的基本定理;理解空間向量坐標的概念.掌握空間向量的坐標運算.(5)掌握空間向量的數量積的定義及其性質:掌握用直角坐標計算空間向量數量積的公式;掌握空間兩點間距離公式.(6)理解直線的方向向量、平面的法向量、向量在平面內的射影等概念.(7)掌握直線和直線、直線和平面、平面和平面所成的角、距離的概念.對于異面直線的距離,只要求會計算已給出公垂線或在坐標表示下的距離掌握直線和平面垂直的性質定理掌握兩個平面平行、垂直的判定定理和性質定理.(8)了解多面體、凸多面體的概念。了解正多面體的概念.(9)了解棱柱的概念,掌握棱柱的性質,會畫直棱柱的直觀圖.(10)了解棱錐的概念,掌握正棱錐的性質。會畫正棱錐的直觀圖.(11)了解球的概念.掌握球的性質.掌握球的表面積、體積公式.(考生可在9(A)和9(B)中任選其一)?§09. 立體幾何 知識要點平面.1. 經過不在同一條直線上的三點確定一個面.注:兩兩相交且不過同一點的四條直線必在同一平面內.2. 兩個平面可將平面分成3或4部分.(①兩個平面平行,②兩個平面相交)3. 過三條互相平行的直線可以確定1或3個平面.(①三條直線在一個平面內平行,②三條直線不在一個平面內平行)[注]:三條直線可以確定三個平面,三條直線的公共點有0或1個.4. 三個平面最多可把空間分成 8 部分.(X、Y、Z三個方向)空間直線.1. 空間直線位置分三種:相交、平行、異面. 相交直線—共面有反且有一個公共點;平行直線—共面沒有公共點;異面直線—不同在任一平面內[注]:①兩條異面直線在同一平面內射影一定是相交的兩條直線.(×)(可能兩條直線平行,也可能是點和直線等)②直線在平面外,指的位置關系:平行或相交③若直線a、b異面,a平行于平面,b與的關系是相交、平行、在平面內.④兩條平行線在同一平面內的射影圖形是一條直線或兩條平行線或兩點.⑤在平面內射影是直線的圖形一定是直線.(×)(射影不一定只有直線,也可以是其他圖形)⑥在同一平面內的射影長相等,則斜線長相等.(×)(并非是從平面外一點向這個平面所引的垂線段和斜線段)⑦是夾在兩平行平面間的線段,若,則的位置關系為相交或平行或異面.2. 異面直線判定定理:過平面外一點與平面內一點的直線和平面內不經過該點的直線是異面直線.(不在任何一個平面內的兩條直線)3. 平行公理:平行于同一條直線的兩條直線互相平行.4. 等角定理:如果一個角的兩邊和另一個角的兩邊分別平行并且方向相同,那么這兩個角相等(如下圖). (二面角的取值范圍) (直線與直線所成角) (斜線與平面成角) (直線與平面所成角)(向量與向量所成角推論:如果兩條相交直線和另兩條相交直線分別平行,那么這兩組直線所成銳角(或直角)相等.5. 兩異面直線的距離:公垂線的長度.空間兩條直線垂直的情況:相交(共面)垂直和異面垂直.是異面直線,則過外一點P,過點P且與都平行平面有一個或沒有,但與距離相等的點在同一平面內. (或在這個做出的平面內不能叫與平行的平面)直線與平面平行、直線與平面垂直.1. 空間直線與平面位置分三種:相交、平行、在平面內.2. 直線與平面平行判定定理:如果平面外一條直線和這個平面內一條直線平行,那么這條直線和這個平面平行.(“線線平行,線面平行”)[注]:①直線與平面內一條直線平行,則∥. (×)(平面外一條直線)②直線與平面內一條直線相交,則與平面相交. (×)(平面外一條直線)③若直線與平面平行,則內必存在無數條直線與平行. (√)(不是任意一條直線,可利用平行的傳遞性證之)④兩條平行線中一條平行于一個平面,那么另一條也平行于這個平面. (×)(可能在此平面內)⑤平行于同一直線的兩個平面平行.(×)(兩個平面可能相交)⑥平行于同一個平面的兩直線平行.(×)(兩直線可能相交或者異面)⑦直線與平面、所成角相等,則∥.(×)(、可能相交)3. 直線和平面平行性質定理:如果一條直線和一個平面平行,經過這條直線的平面和這個平面相交,那么這條直線和交線平行.(“線面平行,線線平行”)4. 直線與平面垂直是指直線與平面任何一條直線垂直,過一點有且只有一條直線和一個平面垂直,過一點有且只有一個平面和一條直線垂直. 若⊥,⊥,得⊥(三垂線定理),得不出⊥. 因為⊥,但不垂直OA.三垂線定理的逆定理亦成立.直線與平面垂直的判定定理一:如果一條直線和一個平面內的兩條相交直線都垂直,那么這兩條直線垂直于這個平面.(“線線垂直,線面垂直”)直線與平面垂直的判定定理二:如果平行線中一條直線垂直于一個平面,那么另一條也垂直于這個平面.推論:如果兩條直線同垂直于一個平面,那么這兩條直線平行.[注]:①垂直于同一平面的兩個平面平行.(×)(可能相交,垂直于同一條直線的兩個平面平行)②垂直于同一直線的兩個平面平行.(√)(一條直線垂直于平行的一個平面,必垂直于另一個平面)③垂直于同一平面的兩條直線平行.(√)5. ⑴垂線段和斜線段長定理:從平面外一點向這個平面所引的垂線段和斜線段中,①射影相等的兩條斜線段相等,射影較長的斜線段較長;②相等的斜線段的射影相等,較長的斜線段射影較長;③垂線段比任何一條斜線段短.[注]:垂線在平面的射影為一個點. [一條直線在平面內的射影是一條直線.(×)]⑵射影定理推論:如果一個角所在平面外一點到角的兩邊的距離相等,那么這點在平面內的射影在這個角的平分線上平面平行與平面垂直.1. 空間兩個平面的位置關系:相交、平行.2. 平面平行判定定理:如果一個平面內有兩條相交直線都平行于另一個平面,哪么這兩個平面平行.(“線面平行,面面平行”)推論:垂直于同一條直線的兩個平面互相平行;平行于同一平面的兩個平面平行.[注]:一平面間的任一直線平行于另一平面.3. 兩個平面平行的性質定理:如果兩個平面平行同時和第三個平面相交,那么它們交線平行.(“面面平行,線線平行”)4. 兩個平面垂直性質判定一:兩個平面所成的二面角是直二面角,則兩個平面垂直.兩個平面垂直性質判定二:如果一個平面與一條直線垂直,那么經過這條直線的平面垂直于這個平面.(“線面垂直,面面垂直”)注:如果兩個二面角的平面對應平面互相垂直,則兩個二面角沒有什么關系.5. 兩個平面垂直性質定理:如果兩個平面垂直,那么在一個平面內垂直于它們交線的直線也垂直于另一個平面.推論:如果兩個相交平面都垂直于第三平面,則它們交線垂直于第三平面.證明:如圖,找O作OA、OB分別垂直于,因為則. 6. 兩異面直線任意兩點間的距離公式:(為銳角取加,為鈍取減,綜上,都取加則必有)7. ⑴最小角定理:(為最小角,如圖)⑵最小角定理的應用(∠PBN為最小角)簡記為:成角比交線夾角一半大,且又比交線夾角補角一半長,一定有4條.成角比交線夾角一半大,又比交線夾角補角小,一定有2條.成角比交線夾角一半大,又與交線夾角相等,一定有3條或者2條.成角比交線夾角一半小,又與交線夾角一半小,一定有1條或者沒有. 棱錐、棱柱.1. 棱柱.⑴①直棱柱側面積:(為底面周長,是高)該公式是利用直棱柱的側面展開圖為矩形得出的.②斜棱住側面積:(是斜棱柱直截面周長,是斜棱柱的側棱長)該公式是利用斜棱柱的側面展開圖為平行四邊形得出的.⑵{四棱柱}{平行六面體}{直平行六面體}{長方體}{正四棱柱}{正方體}.{直四棱柱}{平行六面體}={直平行六面體}.⑶棱柱具有的性質:①棱柱的各個側面都是平行四邊形,所有的側棱都相等;直棱柱的各個側面都是矩形;正棱柱的各個側面都是全等的矩形.②棱柱的兩個底面與平行于底面的截面是對應邊互相平行的全等多邊形.③過棱柱不相鄰的兩條側棱的截面都是平行四邊形.注:①棱柱有一個側面和底面的一條邊垂直可推測是直棱柱. (×)(直棱柱不能保證底面是鉅形可如圖)②(直棱柱定義)棱柱有一條側棱和底面垂直.⑷平行六面體:定理一:平行六面體的對角線交于一點,并且在交點處互相平分.[注]:四棱柱的對角線不一定相交于一點.定理二:長方體的一條對角線長的平方等于一個頂點上三條棱長的平方和.推論一:長方體一條對角線與同一個頂點的三條棱所成的角為,則.推論二:長方體一條對角線與同一個頂點的三各側面所成的角為,則.[注]:①有兩個側面是矩形的棱柱是直棱柱.(×)(斜四面體的兩個平行的平面可以為矩形)②各側面都是正方形的棱柱一定是正棱柱.(×)(應是各側面都是正方形的直棱柱才行)③對角面都是全等的矩形的直四棱柱一定是長方體.(×)(只能推出對角線相等,推不出底面為矩形)④棱柱成為直棱柱的一個必要不充分條件是棱柱有一條側棱與底面的兩條邊垂直. (兩條邊可能相交,可能不相交,若兩條邊相交,則應是充要條件)2. 棱錐:棱錐是一個面為多邊形,其余各面是有一個公共頂點的三角形.[注]:①一個棱錐可以四各面都為直角三角形.②一個棱柱可以分成等體積的三個三棱錐;所以.⑴①正棱錐定義:底面是正多邊形;頂點在底面的射影為底面的中心.[注]:i. 正四棱錐的各個側面都是全等的等腰三角形.(不是等邊三角形)ii. 正四面體是各棱相等,而正三棱錐是底面為正△側棱與底棱不一定相等iii. 正棱錐定義的推論:若一個棱錐的各個側面都是全等的等腰三角形(即側棱相等);底面為正多邊形.②正棱錐的側面積:(底面周長為,斜高為)③棱錐的側面積與底面積的射影公式:(側面與底面成的二面角為)附: 以知⊥,,為二面角. 則①,②,③ ①②③得.注:S為任意多邊形的面積(可分別多個三角形的方法).⑵棱錐具有的性質:①正棱錐各側棱相等,各側面都是全等的等腰三角形,各等腰三角形底邊上的高相等(它叫做正棱錐的斜高).②正棱錐的高、斜高和斜高在底面內的射影組成一個直角三角形,正棱錐的高、側棱、側棱在底面內的射影也組成一個直角三角形.⑶特殊棱錐的頂點在底面的射影位置:①棱錐的側棱長均相等,則頂點在底面上的射影為底面多邊形的外心.②棱錐的側棱與底面所成的角均相等,則頂點在底面上的射影為底面多邊形的外心.③棱錐的各側面與底面所成角均相等,則頂點在底面上的射影為底面多邊形內心.④棱錐的頂點到底面各邊距離相等,則頂點在底面上的射影為底面多邊形內心.⑤三棱錐有兩組對棱垂直,則頂點在底面的射影為三角形垂心.⑥三棱錐的三條側棱兩兩垂直,則頂點在底面上的射影為三角形的垂心.⑦每個四面體都有外接球,球心0是各條棱的中垂面的交點,此點到各頂點的距離等于球半徑;⑧每個四面體都有內切球,球心是四面體各個二面角的平分面的交點,到各面的距離等于半徑.[注]:i. 各個側面都是等腰三角形,且底面是正方形的棱錐是正四棱錐.(×)(各個側面的等腰三角形不知是否全等)ii. 若一個三角錐,兩條對角線互相垂直,則第三對角線必然垂直. 簡證:AB⊥CD,AC⊥BD BC⊥AD. 令得,已知則.iii. 空間四邊形OABC且四邊長相等,則順次連結各邊的中點的四邊形一定是矩形.iv. 若是四邊長與對角線分別相等,則順次連結各邊的中點的四邊是一定是正方形.簡證:取AC中點,則平面90°易知EFGH為平行四邊形EFGH為長方形.若對角線等,則為正方形.3. 球:⑴球的截面是一個圓面.①球的表面積公式:.②球的體積公式:.⑵緯度、經度:①緯度:地球上一點的緯度是指經過點的球半徑與赤道面所成的角的度數.②經度:地球上兩點的經度差,是指分別經過這兩點的經線與地軸所確定的二個半平面的二面角的度數,特別地,當經過點的經線是本初子午線時,這個二面角的度數就是點的經度.附:①圓柱體積:(為半徑,為高)②圓錐體積:(為半徑,為高)③錐形體積:(為底面積,為高) 4. ①內切球:當四面體為正四面體時,設邊長為a,,,得.注:球內切于四面體:②外接球:球外接于正四面體,可如圖建立關系式.六. 空間向量.1. (1)共線向量:共線向量亦稱平行向量,指空間向量的有向線段所在直線互相平行或重合.注:①若與共線,與共線,則與共線.(×) [當時,不成立]②向量共面即它們所在直線共面.(×) [可能異面]③若∥,則存在小任一實數,使.(×)[與不成立]④若為非零向量,則.(√)[這里用到之積仍為向量](2)共線向量定理:對空間任意兩個向量, ∥的充要條件是存在實數(具有唯一性),使.(3)共面向量:若向量使之平行于平面或在內,則與的關系是平行,記作∥.(4)①共面向量定理:如果兩個向量不共線,則向量與向量共面的充要條件是存在實數對x、y使.②空間任一點O和不共線三點A、B、C,則是PABC四點共面的充要條件.(簡證:P、A、B、C四點共面)注:①②是證明四點共面的常用方法.2. 空間向量基本定理:如果三個向量不共面,那么對空間任一向量,存在一個唯一的有序實數組x、y、z,使.推論:設O、A、B、C是不共面的四點,則對空間任一點P, 都存在唯一的有序實數組x、y、z使 (這里隱含x+y+z≠1).注:設四面體ABCD的三條棱,其中Q是△BCD的重心,則向量用即證.3. (1)空間向量的坐標:空間直角坐標系的x軸是橫軸(對應為橫坐標),y軸是縱軸(對應為縱軸),z軸是豎軸(對應為豎坐標).①令=(a1,a2,a3),,則 ∥ (用到常用的向量模與向量之間的轉化:)②空間兩點的距離公式:.(2)法向量:若向量所在直線垂直于平面,則稱這個向量垂直于平面,記作,如果那么向量叫做平面的法向量. (3)用向量的常用方法:①利用法向量求點到面的距離定理:如圖,設n是平面的法向量,AB是平面的一條射線,其中,則點B到平面的距離為.②利用法向量求二面角的平面角定理:設分別是二面角中平面的法向量,則所成的角就是所求二面角的平面角或其補角大小(方向相同,則為補角,反方,則為其夾角).③證直線和平面平行定理:已知直線平面,,且CDE三點不共線,則a∥的充要條件是存在有序實數對使.(常設求解若存在即證畢,若不存在,則直線AB與平面相交).II. 競賽知識要點一、四面體.1. 對照平面幾何中的三角形,我們不難得到立體幾何中的四面體的類似性質:①四面體的六條棱的垂直平分面交于一點,這一點叫做此四面體的外接球的球心;②四面體的四個面組成六個二面角的角平分面交于一點,這一點叫做此四面體的內接球的球心;③四面體的四個面的重心與相對頂點的連接交于一點,這一點叫做此四面體的重心,且重心將每條連線分為3︰1;④12個面角之和為720°,每個三面角中任兩個之和大于另一個面角,且三個面角之和為180°.2. 直角四面體:有一個三面角的三個面角均為直角的四面體稱為直角四面體,相當于平面幾何的直角三角形. (在直角四面體中,記V、l、S、R、r、h分別表示其體積、六條棱長之和、表面積、外接球半徑、內切球半徑及側面上的高),則有空間勾股定理:S2△ABC+S2△BCD+S2△ABD=S2△ACD.3. 等腰四面體:對棱都相等的四面體稱為等腰四面體,好象平面幾何中的等腰三角形.根據定義不難證明以長方體的一個頂點的三條面對角線的端點為頂點的四面體是等腰四面體,反之也可以將一個等腰四面體拼補成一個長方體.(在等腰四面體ABCD中,記BC = AD =a,AC = BD = b,AB = CD = c,體積為V,外接球半徑為R,內接球半徑為r,高為h),則有①等腰四面體的體積可表示為;②等腰四面體的外接球半徑可表示為;③等腰四面體的四條頂點和對面重心的連線段的長相等,且可表示為;④h = 4r.二、空間正余弦定理.空間正弦定理:sin∠ABD/sin∠A-BC-D=sin∠ABC/sin∠A-BD-C=sin∠CBD/sin∠C-BA-D空間余弦定理:cos∠ABD=cos∠ABCcos∠CBD+sin∠ABCsin∠CBDcos∠A-BC-D立體幾何知識要點一、知識提綱(一)空間的直線與平面⒈平面的基本性質 ⑴三個公理及公理三的三個推論和它們的用途. ⑵斜二測畫法.⒉空間兩條直線的位置關系:相交直線、平行直線、異面直線. ⑴公理四(平行線的傳遞性).等角定理. ⑵異面直線的判定:判定定理、反證法. ⑶異面直線所成的角:定義(求法)、范圍.⒊直線和平面平行 直線和平面的位置關系、直線和平面平行的判定與性質.⒋直線和平面垂直 ⑴直線和平面垂直:定義、判定定理. ⑵三垂線定理及逆定理.5.平面和平面平行兩個平面的位置關系、兩個平面平行的判定與性質.6.平面和平面垂直互相垂直的平面及其判定定理、性質定理.(二)直線與平面的平行和垂直的證明思路(見附圖)(三)夾角與距離7.直線和平面所成的角與二面角 ⑴平面的斜線和平面所成的角:三面角余弦公式、最小角定理、斜線和平 面所成的角、直線和平面所成的角. ⑵二面角:①定義、范圍、二面角的平面角、直二面角. ②互相垂直的平面及其判定定理、性質定理.8.距離 ⑴點到平面的距離. ⑵直線到與它平行平面的距離. ⑶兩個平行平面的距離:兩個平行平面的公垂線、公垂線段. ⑷異面直線的距離:異面直線的公垂線及其性質、公垂線段.(四)簡單多面體與球9.棱柱與棱錐 ⑴多面體. ⑵棱柱與它的性質:棱柱、直棱柱、正棱柱、棱柱的性質. ⑶平行六面體與長方體:平行六面體、直平行六面體、長方體、正四棱柱、 正方體;平行六面體的性質、長方體的性質. ⑷棱錐與它的性質:棱錐、正棱錐、棱錐的性質、正棱錐的性質. ⑸直棱柱和正棱錐的直觀圖的畫法.10.多面體歐拉定理的發現 ⑴簡單多面體的歐拉公式. ⑵正多面體.11.球⑴球和它的性質:球體、球面、球的大圓、小圓、球面距離. ⑵球的體積公式和表面積公式.二、常用結論、方法和公式1.從一點O出發的三條射線OA、OB、OC,若∠AOB=∠AOC,則點A在平面∠BOC上的射影在∠BOC的平分線上;2. 已知:直二面角M-AB-N中,AE M,BF N,∠EAB=,∠ABF=,異面直線AE與BF所成的角為,則3.立平斜公式:如圖,AB和平面所成的角是,AC在平面內,BC和AB的射影BA1成,設∠ABC=,則coscos=cos;4.異面直線所成角的求法:(1)平移法:在異面直線中的一條直線中選擇一特殊點,作另一條的平行線;(2)補形法:把空間圖形補成熟悉的或完整的幾何體,如正方體、平行六面體、長方體等,其目的在于容易發現兩條異面直線間的關系;5.直線與平面所成的角斜線和平面所成的是一個直角三角形的銳角,它的三條邊分別是平面的垂線段、斜線段及斜線段在平面上的射影。通常通過斜線上某個特殊點作出平面的垂線段,垂足和斜足的連線,是產生線面角的關鍵;6.二面角的求法(1)定義法:直接在二面角的棱上取一點(特殊點),分別在兩個半平面內作棱的垂線,得出平面角,用定義法時,要認真觀察圖形的特性;(2)三垂線法:已知二面角其中一個面內一點到一個面的垂線,用三垂線定理或逆定理作出二面角的平面角;(3)垂面法:已知二面角內一點到兩個面的垂線時,過兩垂線作平面與兩個半平面的交線所成的角即為平面角,由此可知,二面角的平面角所在的平面與棱垂直;(4)射影法:利用面積射影公式S射=S原cos,其中為平面角的大小,此法不必在圖形中畫出平面角;特別:對于一類沒有給出棱的二面角,應先延伸兩個半平面,使之相交出現棱,然后再選用上述方法(尤其要考慮射影法)。7.空間距離的求法(1)兩異面直線間的距離,高考要求是給出公垂線,所以一般先利用垂直作出公垂線,然后再進行計算;(2)求點到直線的距離,一般用三垂線定理作出垂線再求解;(3)求點到平面的距離,一是用垂面法,借助面面垂直的性質來作,因此,確定已知面的垂面是關鍵;二是不作出公垂線,轉化為求三棱錐的高,利用等體積法列方程求解;8.正棱錐的各側面與底面所成的角相等,記為,則S側cos=S底;9.已知:長方體的體對角線與過同一頂點的三條棱所成的角分別為因此有cos2+cos2+cos2=1; 若長方體的體對角線與過同一頂點的三側面所成的角分別為則有cos2+cos2+cos2=2;10.正方體和長方體的外接球的直徑等與其體對角線長;11.歐拉公式:如果簡單多面體的頂點數為V,面數為F,棱數為E.那么V+F-E=2;并且棱數E=各頂點連著的棱數和的一半=各面邊數和的一半;12.柱體的體積公式:柱體(棱柱、圓柱)的體積公式是V柱體=Sh.其中S是柱體的底面積,h是柱體的高.13.直棱柱的側面積和全面積S直棱柱側= c (c表示底面周長,表示側棱長) S棱柱全=S底+S側 14.棱錐的體積:V棱錐=,其中S是棱錐的底面積,h是棱錐的高。15.球的體積公式V=,表面積公式;掌握球面上兩點A、B間的距離求法:(1)計算線段AB的長,(2)計算球心角∠AOB的弧度數;(3)用弧長公式計算劣弧AB的長; 展開更多...... 收起↑ 資源預覽 縮略圖、資源來源于二一教育資源庫