資源簡介 第5講 導數的綜合應用[考情分析] 1.利用導數研究函數的單調性與極值(最值)是高考的常見題型,而導數與函數、不等式、方程、數列等的交匯命題是高考的熱點和難點.2.多以解答題的形式壓軸出現,難度較大.母題突破1 導數與不等式的證明母題 (2023·十堰調研)已知函數f(x)=(2-x)ex-ax-2.(1)若f(x)在R上是減函數,求a的取值范圍;(2)當0≤a<1時,求證:f(x)在(0,+∞)上只有一個零點x0,且x0<.思路分析 f′ x ≤0恒成立 f′ x max≤0求解 0 x0<\f(e,a+1),ax0+x0 ax0+x0< 2-x0 2-x0 ≤e________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________[子題1] (2023·哈師大附中模擬)已知函數f(x)=ex+exln x(其中e是自然對數的底數).求證:f(x)≥ex2.________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________[子題2] 已知函數f(x)=ln x,g(x)=ex.證明:f(x)+>g(-x).________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________規律方法 利用導數證明不等式問題的方法(1)直接構造函數法:證明不等式f(x)>g(x)(或f(x)0(或f(x)-g(x)<0),進而構造輔助函數h(x)=f(x)-g(x).(2)適當放縮構造法:一是根據已知條件適當放縮;二是利用常見放縮結論.(3)構造“形似”函數,稍作變形再構造,對原不等式同結構變形,根據相似結構構造輔助函數.1.(2023·桂林模擬)已知函數f(x)=x2-cos x,求證:f(x)+2->0.________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________2.(2023·南昌模擬)已知函數f(x)=a(x2-1)-ln x(x>0).若0________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________母題突破3 零點問題母題 已知函數f(x)=sin x-,判斷f(x)在(0,π)上零點的個數,并說明理由.思路分析 等價轉換f(x)=0 判斷g(x)=ex·sin x-x+1的零點 討論g(x)在上的零點個數 討論g(x)在上的零點個數________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________[子題1] (2023·安慶模擬)已知函數f(x)=eln x+bx2e1-x.若f(x)的導函數f′(x)恰有兩個零點,求b的取值范圍.________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________[子題2] 設函數f(x)=aln(x+1)+x2(a∈R),函數g(x)=ax-1.證明:當a≤2時,函數H(x)=f(x)-g(x)至多有一個零點.________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________規律方法 (1)求解函數零點(方程根)個數問題的步驟①將問題轉化為函數的零點問題,進而轉化為函數的圖象與x軸(或直線y=k)在該區間上的交點問題.②利用導數研究該函數在該區間上的單調性、極值(最值)、端點值等性質.③結合圖象求解.(2)已知零點求參數的取值范圍①結合圖象與單調性,分析函數的極值點.②依據零點確定極值的范圍.③對于參數選擇恰當的分類標準進行討論.1.(2023·鄭州模擬)已知函數f(x)=xln x+a-ax(a∈R).若函數f(x)在區間[1,e]上有且只有一個零點,求實數a的取值范圍.________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________2.(2023·商洛模擬)已知函數f(x)=(x-2)ex,其中e為自然對數的底數.函數g(x)=f(x)-ln x,證明:g(x)有且僅有兩個零點.________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________母題突破2 恒成立問題與能成立問題母題 (2023·新鄉模擬)已知函數f(x)=x2-(2a+1)x+2aln x.若f(x)≥0恒成立,求實數a的取值范圍.思路分析一 f x ≥0恒成立 f x min≥0 分類討論求f x min思路分析二 f x ≥0恒成立 求證x-ln x>0 分離參數構造新函數 求新函數最值________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________[子題1] (2023·青島模擬)已知函數f(x)=ex-a-ln x.若存在x0∈[e,+∞),使f(x0)<0,求a的取值范圍.________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________[子題2] (2023·全國乙卷改編)已知函數f(x)=ln(1+x).若f′(x)≥0在區間(0,+∞)上恒成立,求a的取值范圍.________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________規律方法 (1)由不等式恒成立求參數的取值范圍問題的策略①求最值法:將恒成立問題轉化為利用導數求函數的最值問題.②分離參數法:將參數分離出來,進而轉化為a>f(x)max或a(2)不等式有解問題可類比恒成立問題進行轉化,要理解清楚兩類問題的差別.1.已知函數f(x)=(x-4)ex-x2+6x,g(x)=ln x-(a+1)x,a>-1.若存在x1∈[1,3],對任意的x2∈[e2,e3],使得不等式g(x2)>f(x1)成立,求實數a的取值范圍.(e3≈20.09)________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________2.(2023·全國甲卷)已知函數f(x)=ax-,x∈.(1)當a=8時,討論f(x)的單調性;(2)若f(x)________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________第5講 導數的綜合應用母題突破1 導數與不等式的證明INCLUDEPICTURE "E:\\2023\\1二輪\\大二輪 數學 提高版\\學生WORD\\左括.TIF" \* MERGEFORMAT INCLUDEPICTURE "E:\\2023\\1二輪\\大二輪 數學 提高版\\學生WORD\\左括.TIF" \* MERGEFORMATINET INCLUDEPICTURE "E:\\2023\\1二輪\\大二輪 數學 提高版\\學生WORD\\答案精析\\左括.TIF" \* MERGEFORMATINET 母題 INCLUDEPICTURE "E:\\2023\\1二輪\\大二輪 數學 提高版\\學生WORD\\右括.TIF" \* MERGEFORMAT INCLUDEPICTURE "E:\\2023\\1二輪\\大二輪 數學 提高版\\學生WORD\\右括.TIF" \* MERGEFORMATINET INCLUDEPICTURE "E:\\2023\\1二輪\\大二輪 數學 提高版\\學生WORD\\答案精析\\右括.TIF" \* MERGEFORMATINET (1)解 因為f(x)=(2-x)ex-ax-2,所以f′(x)=(1-x)ex-a.由f(x)在R上是減函數,得f′(x)≤0,即(1-x)ex-a≤0在R上恒成立.令g(x)=(1-x)ex-a,則g′(x)=-xex.當x∈(-∞,0)時,g′(x)>0,g(x)單調遞增;當x∈(0,+∞)時,g′(x)<0,g(x)單調遞減.故g(x)max=g(0)=1-a≤0,解得a≥1,即a的取值范圍為[1,+∞).(2)證明 由(1)可知,f′(x)在(0,+∞)上單調遞減,且當0≤a<1時,f′(0)=1-a>0,f′(1)=-a≤0,故 x1∈(0,1],使得f′(x1)=0.當x∈(0,x1)時,f′(x)>0,函數f(x)單調遞增;當x∈(x1,+∞)時,f′(x)<0,函數f(x)單調遞減.因為f(0)=0,f(2)=-2a-2<0,所以f(x)在(0,2)上只有一個零點x0,故函數f(x)在(0,+∞)上只有一個零點x0.因為0即證ax0+x0因為f(x0)=(2-x0)ex0-ax0-2=0,所以(2-x0)ex0=ax0+2>ax0+x0,令h(x)=(2-x)ex-e,0則h′(x)=(1-x)ex.當x∈(0,1)時,h′(x)>0,h(x)單調遞增;當x∈(1,2)時,h′(x)<0,h(x)單調遞減.故h(x)max=h(1)=0.即(2-x0)ex0-e≤0,即(2-x0)ex0≤e,所以ax0+x0[子題1] 證明 由f(x)≥ex2,得ex+exln x≥ex2,即+ln x-x≥0,令g(x)=+ln x-x,則g′(x)=+-1==.令h(x)=ex-1-x,則h′(x)=ex-1-1,當x>1時,h′(x)>0;當0所以h(x)在(0,1)上單調遞減,在(1,+∞)上單調遞增,所以h(x)≥h(1)=0.所以當01時,g′(x)>0,所以g(x)在(0,1)上單調遞減,在(1,+∞)上單調遞增,于是g(x)≥g(1)=0,原不等式得證.[子題2] 證明 根據題意,g(-x)=e-x,所以f(x)+>g(-x)等價于xln x>xe-x-.設函數m(x)=xln x,則m′(x)=1+ln x,所以當x∈時,m′(x)<0;當x∈時,m′(x)>0,故m(x)在上單調遞減,在上單調遞增,從而m(x)在(0,+∞)上的最小值為m=-.設函數h(x)=xe-x-,x>0,則h′(x)=e-x(1-x).所以當x∈(0,1)時,h′(x)>0;當x∈(1,+∞)時,h′(x)<0,故h(x)在(0,1)上單調遞增,在(1,+∞)上單調遞減,從而h(x)在(0,+∞)上的最大值為h(1)=-.綜上,當x>0時,m(x)>h(x),即f(x)+>g(-x).跟蹤演練1.證明 f(x)=x2-cos x,要證f(x)+2->0,即證x2-cos x+2->0.即證x2-cos x>-2.令g(x)=x2-cos x,∵g(-x)=g(x),∴g(x)為偶函數,當x∈[0,+∞)時,g′(x)=2x+sin x,令k(x)=2x+sin x,k′(x)=2+cos x>0,∴g′(x)在[0,+∞)上單調遞增,∴g′(x)≥g′(0)=0,∴g(x)在[0,+∞)上單調遞增,由g(x)為偶函數知,g(x)在(-∞,0]上單調遞減,∴g(x)≥g(0)=-1.設h(x)=-2,∴h′(x)=,∴當x>1時,h′(x)<0,∴h(x)在(1,+∞)上單調遞減;當x<1時,h′(x)>0,∴h(x)在(-∞,1)上單調遞增.∴h(x)max=h(1)=-1,∴x2-cos x>-2.原不等式得證.2.證明 由f(x)=a(x2-1)-ln x,得f′(x)=2ax-=,因為f′=0且>1.所以當0當x>時,f′(x)>0,則f(x)在上單調遞增,所以當0f(1)=0,又因為>1,所以f <0,又當x→+∞時,f(x)→+∞,所以必然存在x0>1,使得f(x0)=0,即a=,所以f′(x0)=·x0-,要證f′(x0)<1-2a,即證·x0-<1-,即證-1-<0,即證2ln x0-<0,設φ(x)=2ln x-(x>1),則φ′(x)=-1-=-=-,所以當x>1時,φ′(x)<0,則φ(x)在(1,+∞)上單調遞減,所以φ(x)<φ(1)=0.即2ln x0-<0,即f′(x0)<1-2a.母題突破2 恒成立問題與能成立問題INCLUDEPICTURE "E:\\2023\\1二輪\\大二輪 數學 提高版\\學生WORD\\左括.TIF" \* MERGEFORMAT INCLUDEPICTURE "E:\\2023\\1二輪\\大二輪 數學 提高版\\學生WORD\\左括.TIF" \* MERGEFORMATINET INCLUDEPICTURE "E:\\2023\\1二輪\\大二輪 數學 提高版\\學生WORD\\答案精析\\左括.TIF" \* MERGEFORMATINET 母題 INCLUDEPICTURE "E:\\2023\\1二輪\\大二輪 數學 提高版\\學生WORD\\右括.TIF" \* MERGEFORMAT INCLUDEPICTURE "E:\\2023\\1二輪\\大二輪 數學 提高版\\學生WORD\\右括.TIF" \* MERGEFORMATINET INCLUDEPICTURE "E:\\2023\\1二輪\\大二輪 數學 提高版\\學生WORD\\答案精析\\右括.TIF" \* MERGEFORMATINET 解 方法一 (求最值法)f(x)的定義域為(0,+∞),因為f(x)≥0恒成立,所以f(x)min≥0,f′(x)=x-(2a+1)+==.當a≤0時,由f′(x)>0,得x>1;由f′(x)<0,得0所以f(x)在(1,+∞)上單調遞增,在(0,1)上單調遞減,所以f(x)min=f(1)=--2a,由--2a≥0,可得a≤-.當a>0時,注意到f(1)=--2a<0,不符合題意,故a≤-,即實數a的取值范圍為.方法二 (分離參數法)由f(x)≥0,可得x2-x-2a(x-ln x)≥0.構造函數h(x)=x-ln x,則h′(x)=1-=,由h′(x)>0,得x>1;由h′(x)<0,得0所以h(x)min=h(1)=1>0,所以x-ln x>0,所以原不等式等價于2a≤.令g(x)=(x>0),則g′(x)=.令φ(x)=x+1-ln x,則φ′(x)=,由φ′(x)>0,得x>2;由φ′(x)<0,得0易知φ(x)在(0,2)上單調遞減,在(2,+∞)上單調遞增,所以φ(x)≥φ(2)=2-ln 2>0,所以當x>1時,g′(x)>0;當0所以g(x)在(0,1)上單調遞減,在(1,+∞)上單調遞增,g(x)≥g(1)=-,由2a≤-,得a≤-,故實數a的取值范圍為.[子題1] 解 存在x0∈[e,+∞),使f(x0)<0,即-ln x0<0,即即存在x0∈[e,+∞),使ea>.令h(x)=,因此只要函數h(x)=在區間[e,+∞)上的最小值小于ea即可.h′(x)=,令u(x)=ln x-,∵u′(x)=+>0,∴u(x)在[e,+∞)上單調遞增,又u(e)=1->0.∴h′(x)=>0在[e,+∞)上恒成立.∴h(x)=在[e,+∞)上單調遞增,函數h(x)=在區間[e,+∞)上的最小值為h(e)=ee,由h(e)=eee.故a的取值范圍是(e,+∞).[子題2] 解 f′(x)=-ln(x+1)+,因為f′(x)≥0在區間(0,+∞)上恒成立.令-ln(x+1)+≥0,則-(x+1)ln(x+1)+(x+ax2)≥0,令g(x)=ax2+x-(x+1)ln(x+1),原問題等價于g(x)≥0在區間(0,+∞)上恒成立,則g′(x)=2ax-ln(x+1),當a≤0時,由于2ax≤0,ln(x+1)>0,故g′(x)<0,g(x)在區間(0,+∞)上單調遞減,此時g(x)令h(x)=g′(x)=2ax-ln(x+1),則h′(x)=2a-,當a≥,即2a≥1時,由于<1,所以h′(x)>0,h(x)在區間(0,+∞)上單調遞增,即g′(x)在區間(0,+∞)上單調遞增,所以g′(x)>g′(0)=0,g(x)在區間(0,+∞)上單調遞增,g(x)>g(0)=0,符合題意.當0由h′(x)=2a-=0,可得x=-1,當x∈時,h′(x)<0,h(x)在區間上單調遞減,即g′(x)在區間上單調遞減,注意到g′(0)=0,故當x∈時,g′(x)由于g(0)=0,故當x∈時,g(x)跟蹤演練1.解 由f(x)=(x-4)ex-x2+6x,得f′(x)=ex+(x-4)ex-2x+6=(x-3)ex-2x+6=(x-3)(ex-2),當x∈[1,3]時,f′(x)≤0,所以f(x)在[1,3]上單調遞減,f(x)min=f(3)=9-e3,于是若存在x1∈[1,3],對任意的x2∈[e2,e3],使得不等式g(x2)>f(x1)成立,則ln x-(a+1)x>9-e3(a>-1)在[e2,e3]上恒成立,即a+1<在[e2,e3]上恒成立,令h(x)=,x∈[e2,e3],則a+1h′(x)==,因為x∈[e2,e3],所以ln x∈[2,3],10-e3-ln x∈[7-e3,8-e3],因為e3≈20.09,所以8-e3≈8-20.09=-12.09<0,所以h′(x)<0,所以h(x)單調遞減,故h(x)min=h(e3)==1-,于是a+1<1-,得a<-,又a>-1,所以實數a的取值范圍是.2.解 f′(x)=a-=a-=a-,令cos2x=t,則t∈(0,1),則f′(x)=g(t)=a-=,t∈(0,1).(1)當a=8時,f′(x)=g(t)==,當t∈,即x∈時,f′(x)<0.當t∈,即x∈時,f′(x)>0.所以f(x)在上單調遞增,在上單調遞減.(2)設h(x)=f(x)-sin 2x,h′(x)=f′(x)-2cos 2x=g(t)-2(2cos2x-1)=-2(2t-1)=a+2-4t+-,設φ(t)=a+2-4t+-,則φ′(t)=-4-+==-,當t∈(0,1)時,φ′(t)>0,φ(t)單調遞增,所以φ(t)<φ(1)=a-3.若a∈(-∞,3],則h′(x)=φ(t)即h(x)在上單調遞減,所以h(x)若a∈(3,+∞),當t→0+時,-=-32+→-∞,所以φ(t)→-∞.φ(1)=a-3>0.所以 t0∈(0,1),使得φ(t0)=0,即 x0∈,使得h′(x0)=0,t0=cos2x0.當t∈(t0,1)時,φ(t)>0,即當x∈(0,x0)時,h′(x)>0,h(x)單調遞增,所以當x∈(0,x0)時,h(x)>h(0)=0,不符合題意.綜上,a的取值范圍為(-∞,3].母題突破3 零點問題INCLUDEPICTURE "E:\\2023\\1二輪\\大二輪 數學 提高版\\學生WORD\\左括.TIF" \* MERGEFORMAT INCLUDEPICTURE "E:\\2023\\1二輪\\大二輪 數學 提高版\\學生WORD\\左括.TIF" \* MERGEFORMATINET INCLUDEPICTURE "E:\\2023\\1二輪\\大二輪 數學 提高版\\學生WORD\\答案精析\\左括.TIF" \* MERGEFORMATINET 母題 INCLUDEPICTURE "E:\\2023\\1二輪\\大二輪 數學 提高版\\學生WORD\\右括.TIF" \* MERGEFORMAT INCLUDEPICTURE "E:\\2023\\1二輪\\大二輪 數學 提高版\\學生WORD\\右括.TIF" \* MERGEFORMATINET 解 由f(x)=sin x-=0,可得ex·sin x-x+1=0,令g(x)=ex·sin x-x+1,x∈(0,π),所以g′(x)=(sin x+cos x)ex-1,①當x∈時,sin x+cos x=sin≥1,ex>1,所以g′(x)>0,所以g(x)在上單調遞增,又因為g(0)=1>0,所以g(x)在上沒有零點;②當x∈時,令h(x)=ex-1,所以h′(x)=2cos x·ex<0,即h(x)在上單調遞減,又因為h=-1>0,h=-eπ-1<0,所以存在x0∈,使得h(x0)=0,所以g(x)在上單調遞增,在(x0,π)上單調遞減,因為g(x0)>g=-+1>0,g(π)=-π+1<0,所以g(x)在上沒有零點,在(x0,π)上有且只有一個零點,綜上所述,f(x)在(0,π)上有且只有一個零點.[子題1] 解 由f′(x)=+bx(2-x)e1-x=0得,=bx(x-2).顯然x≠2,x>0.因此=b.令g(x)=,x>0且x≠2,則g′(x)=,解方程x2-5x+4=0得,x1=4,x2=1,因此函數g(x)在(0,1)和(4,+∞)上單調遞增,在(1,2)和(2,4)上單調遞減,且極大值為g(1)=-e,極小值為g(4)=.g(x)的大致圖象如圖所示.INCLUDEPICTURE "E:\\2023\\1二輪\\大二輪 數學 提高版\\學生WORD\\1-36.TIF" \* MERGEFORMAT INCLUDEPICTURE "E:\\2023\\1二輪\\大二輪 數學 提高版\\學生WORD\\1-36.TIF" \* MERGEFORMATINET INCLUDEPICTURE "E:\\2023\\1二輪\\大二輪 數學 提高版\\學生WORD\\答案精析\\1-36.TIF" \* MERGEFORMATINET由圖象可知,當b>或b<-e時,直線y=b與曲線y=g(x)的圖象分別有兩個交點,即函數f′(x)恰有兩個零點.故b的取值范圍是(-∞,-e)∪.[子題2] 證明 因為H(x)=aln(x+1)+x2-ax+1,所以H′(x)=(x>-1),令H′(x)=0,x1=0,x2=-1.當x→-1+時,H(x)→-∞;當x→+∞時,H(x)→+∞.①當a=2時,H′(x)≥0,函數H(x)在定義域(-1,+∞)上為增函數,有一個零點;②當a≤0時,-1≤-1,令H′(x)>0,得x>0,令H′(x)<0,得-1所以函數H(x)在區間(-1,0)上單調遞減,在區間(0,+∞)上單調遞增,則函數H(x)在x=0處有最小值H(0)=1>0,此時函數H(x)無零點;③當0令H′(x)>0,得-10,令H′(x)<0,得-1所以函數H(x)在區間,(0,+∞)上單調遞增,在區間上單調遞減.因為函數H(0)=1>0,所以H>0,且H(x)>0在區間上恒成立.H(x)在區間上有一個零點.所以當0綜上,當a≤2時,函數H(x)=f(x)-g(x)至多有一個零點.跟蹤演練1.解 f(x)=xln x-ax+a,易知f(1)=0,所求問題等價于函數f(x)=xln x-ax+a在區間(1,e]上沒有零點,因為f′(x)=ln x+1-a,所以當0f(x)在(0,ea-1)上單調遞減,當x>ea-1時,f′(x)>0,f(x)在(ea-1,+∞)上單調遞增.①當ea-1≤1,即a≤1時,函數f(x)在區間(1,e]上單調遞增,所以f(x)>f(1)=0,此時函數f(x)在區間(1,e]上沒有零點,滿足題意.②當1要使f(x)在(1,e]上沒有零點,只需f(e)<0,即e-ae+a<0,解得a>,所以③當e≤ea-1,即a≥2時,函數f(x)在區間(1,e]上單調遞減,f(x)在區間(1,e]上滿足f(x)綜上所述,實數a的取值范圍是.2.證明 因為g(x)=f(x)-ln x=(x-2)ex-ln x,則g′(x)=(x-1)ex-,x>0,設h(x)=g′(x)=(x-1)ex-,則h′(x)=xex+>0,故g′(x)在(0,+∞)上單調遞增.因為g′(1)=-1<0,g′(2)=e2->0,所以存在唯一x0∈(1,2),使得g′(x0)=0.故當x∈(0,x0)時,g′(x)<0;當x∈(x0,+∞)時,g′(x)>0.即g(x)在(0,x0)上單調遞減,在(x0,+∞)上單調遞增.因為g(x0)0,又因為ln 2≈0.69,則ln 2>,所以g=-ln =4-=4-2+-4>4-2eln 2+-4=4-4+>0,由零點存在定理可知,函數g(x)在(0,x0),(x0,3)上各存在一個零點,綜上所述,g(x)有且僅有兩個零點. 展開更多...... 收起↑ 資源列表 專題一 第5講 母題突破1 導數與不等式的證明.docx 專題一 第5講 母題突破2 恒成立問題與能成立問題.docx 專題一 第5講 母題突破3 零點問題.docx 答案.doc 縮略圖、資源來源于二一教育資源庫