中文字幕精品无码一区二区,成全视频在线播放观看方法,大伊人青草狠狠久久,亚洲一区影音先锋色资源

專題一 函數與導數 第5講 母題突破-2024年高考數學大二輪專題復習講義(含解析)(3份打包 )

資源下載
  1. 二一教育資源

專題一 函數與導數 第5講 母題突破-2024年高考數學大二輪專題復習講義(含解析)(3份打包 )

資源簡介

第5講 導數的綜合應用
[考情分析] 1.利用導數研究函數的單調性與極值(最值)是高考的常見題型,而導數與函數、不等式、方程、數列等的交匯命題是高考的熱點和難點.2.多以解答題的形式壓軸出現,難度較大.
母題突破1 導數與不等式的證明
母題 (2023·十堰調研)已知函數f(x)=(2-x)ex-ax-2.
(1)若f(x)在R上是減函數,求a的取值范圍;
(2)當0≤a<1時,求證:f(x)在(0,+∞)上只有一個零點x0,且x0<.
思路分析
f′ x ≤0恒成立
f′ x max≤0求解
0 x0<\f(e,a+1),ax0+x0 ax0+x0< 2-x0
2-x0 ≤e
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
[子題1] (2023·哈師大附中模擬)已知函數f(x)=ex+exln x(其中e是自然對數的底數).
求證:f(x)≥ex2.
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
[子題2] 已知函數f(x)=ln x,g(x)=ex.證明:f(x)+>g(-x).
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
規律方法 利用導數證明不等式問題的方法
(1)直接構造函數法:證明不等式f(x)>g(x)(或f(x)0(或f(x)-g(x)<0),進而構造輔助函數h(x)=f(x)-g(x).
(2)適當放縮構造法:一是根據已知條件適當放縮;二是利用常見放縮結論.
(3)構造“形似”函數,稍作變形再構造,對原不等式同結構變形,根據相似結構構造輔助函數.
1.(2023·桂林模擬)已知函數f(x)=x2-cos x,求證:f(x)+2->0.
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
2.(2023·南昌模擬)已知函數f(x)=a(x2-1)-ln x(x>0).
若0________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________母題突破3 零點問題
母題 已知函數f(x)=sin x-,判斷f(x)在(0,π)上零點的個數,并說明理由.
思路分析
等價轉換f(x)=0
判斷g(x)=ex·sin x-x+1的零點
討論g(x)在上的零點個數
討論g(x)在上的零點個數
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
[子題1] (2023·安慶模擬)已知函數f(x)=eln x+bx2e1-x.若f(x)的導函數f′(x)恰有兩個零點,求b的取值范圍.
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
[子題2] 設函數f(x)=aln(x+1)+x2(a∈R),函數g(x)=ax-1.證明:當a≤2時,函數H(x)=f(x)-g(x)至多有一個零點.
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
規律方法 (1)求解函數零點(方程根)個數問題的步驟
①將問題轉化為函數的零點問題,進而轉化為函數的圖象與x軸(或直線y=k)在該區間上的交點問題.
②利用導數研究該函數在該區間上的單調性、極值(最值)、端點值等性質.
③結合圖象求解.
(2)已知零點求參數的取值范圍
①結合圖象與單調性,分析函數的極值點.
②依據零點確定極值的范圍.
③對于參數選擇恰當的分類標準進行討論.
1.(2023·鄭州模擬)已知函數f(x)=xln x+a-ax(a∈R).若函數f(x)在區間[1,e]上有且只有一個零點,求實數a的取值范圍.
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
2.(2023·商洛模擬)已知函數f(x)=(x-2)ex,其中e為自然對數的底數.函數g(x)=f(x)-ln x,證明:g(x)有且僅有兩個零點.
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________母題突破2 恒成立問題與能成立問題
母題 (2023·新鄉模擬)已知函數f(x)=x2-(2a+1)x+2aln x.若f(x)≥0恒成立,求實數a的取值范圍.
思路分析一
f x ≥0恒成立
f x min≥0
分類討論求f x min
思路分析二
f x ≥0恒成立
求證x-ln x>0
分離參數構造新函數
求新函數最值
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
[子題1] (2023·青島模擬)已知函數f(x)=ex-a-ln x.若存在x0∈[e,+∞),使f(x0)<0,求a的取值范圍.
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
[子題2] (2023·全國乙卷改編)已知函數f(x)=ln(1+x).若f′(x)≥0在區間(0,+∞)上恒成立,求a的取值范圍.
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
規律方法 (1)由不等式恒成立求參數的取值范圍問題的策略
①求最值法:將恒成立問題轉化為利用導數求函數的最值問題.
②分離參數法:將參數分離出來,進而轉化為a>f(x)max或a(2)不等式有解問題可類比恒成立問題進行轉化,要理解清楚兩類問題的差別.
1.已知函數f(x)=(x-4)ex-x2+6x,g(x)=ln x-(a+1)x,a>-1.若存在x1∈[1,3],對任意的x2∈[e2,e3],使得不等式g(x2)>f(x1)成立,求實數a的取值范圍.(e3≈20.09)
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
2.(2023·全國甲卷)已知函數f(x)=ax-,x∈.
(1)當a=8時,討論f(x)的單調性;
(2)若f(x)________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________第5講 導數的綜合應用
母題突破1 導數與不等式的證明
INCLUDEPICTURE "E:\\2023\\1二輪\\大二輪 數學 提高版\\學生WORD\\左括.TIF" \* MERGEFORMAT INCLUDEPICTURE "E:\\2023\\1二輪\\大二輪 數學 提高版\\學生WORD\\左括.TIF" \* MERGEFORMATINET INCLUDEPICTURE "E:\\2023\\1二輪\\大二輪 數學 提高版\\學生WORD\\答案精析\\左括.TIF" \* MERGEFORMATINET 母題 INCLUDEPICTURE "E:\\2023\\1二輪\\大二輪 數學 提高版\\學生WORD\\右括.TIF" \* MERGEFORMAT INCLUDEPICTURE "E:\\2023\\1二輪\\大二輪 數學 提高版\\學生WORD\\右括.TIF" \* MERGEFORMATINET INCLUDEPICTURE "E:\\2023\\1二輪\\大二輪 數學 提高版\\學生WORD\\答案精析\\右括.TIF" \* MERGEFORMATINET  (1)解 因為f(x)=(2-x)ex-ax-2,
所以f′(x)=(1-x)ex-a.由f(x)在R上是減函數,得f′(x)≤0,
即(1-x)ex-a≤0在R上恒成立.
令g(x)=(1-x)ex-a,
則g′(x)=-xex.
當x∈(-∞,0)時,g′(x)>0,g(x)單調遞增;
當x∈(0,+∞)時,g′(x)<0,g(x)單調遞減.
故g(x)max=g(0)=1-a≤0,解得a≥1,
即a的取值范圍為[1,+∞).
(2)證明 由(1)可知,f′(x)在(0,+∞)上單調遞減,
且當0≤a<1時,f′(0)=1-a>0,
f′(1)=-a≤0,
故 x1∈(0,1],使得f′(x1)=0.
當x∈(0,x1)時,f′(x)>0,函數f(x)單調遞增;
當x∈(x1,+∞)時,f′(x)<0,函數f(x)單調遞減.
因為f(0)=0,f(2)=-2a-2<0,
所以f(x)在(0,2)上只有一個零點x0,
故函數f(x)在(0,+∞)上只有一個零點x0.
因為0即證ax0+x0因為f(x0)=(2-x0)ex0-ax0-2=0,
所以(2-x0)ex0=ax0+2>ax0+x0,
令h(x)=(2-x)ex-e,0則h′(x)=(1-x)ex.
當x∈(0,1)時,h′(x)>0,h(x)單調遞增;
當x∈(1,2)時,h′(x)<0,h(x)單調遞減.
故h(x)max=h(1)=0.
即(2-x0)ex0-e≤0,即(2-x0)ex0≤e,所以ax0+x0[子題1] 證明 由f(x)≥ex2,
得ex+exln x≥ex2,
即+ln x-x≥0,
令g(x)=+ln x-x,
則g′(x)=+-1

=.
令h(x)=ex-1-x,則h′(x)=ex-1-1,
當x>1時,h′(x)>0;
當0所以h(x)在(0,1)上單調遞減,在(1,+∞)上單調遞增,
所以h(x)≥h(1)=0.
所以當01時,g′(x)>0,
所以g(x)在(0,1)上單調遞減,在(1,+∞)上單調遞增,
于是g(x)≥g(1)=0,原不等式得證.
[子題2] 證明 根據題意,g(-x)=e-x,所以f(x)+>g(-x)等價于xln x>xe-x-.
設函數m(x)=xln x,
則m′(x)=1+ln x,
所以當x∈時,m′(x)<0;
當x∈時,m′(x)>0,
故m(x)在上單調遞減,在上單調遞增,從而m(x)在(0,+∞)上的最小值為m=-.
設函數h(x)=xe-x-,x>0,
則h′(x)=e-x(1-x).
所以當x∈(0,1)時,h′(x)>0;
當x∈(1,+∞)時,h′(x)<0,
故h(x)在(0,1)上單調遞增,
在(1,+∞)上單調遞減,從而h(x)在(0,+∞)上的最大值為h(1)=-.
綜上,當x>0時,m(x)>h(x),
即f(x)+>g(-x).
跟蹤演練
1.證明 f(x)=x2-cos x,
要證f(x)+2->0,
即證x2-cos x+2->0.
即證x2-cos x>-2.
令g(x)=x2-cos x,
∵g(-x)=g(x),∴g(x)為偶函數,
當x∈[0,+∞)時,g′(x)=2x+sin x,令k(x)=2x+sin x,k′(x)=2+cos x>0,
∴g′(x)在[0,+∞)上單調遞增,
∴g′(x)≥g′(0)=0,
∴g(x)在[0,+∞)上單調遞增,
由g(x)為偶函數知,g(x)在(-∞,0]上單調遞減,
∴g(x)≥g(0)=-1.
設h(x)=-2,
∴h′(x)=,
∴當x>1時,h′(x)<0,
∴h(x)在(1,+∞)上單調遞減;
當x<1時,h′(x)>0,
∴h(x)在(-∞,1)上單調遞增.
∴h(x)max=h(1)=-1,
∴x2-cos x>-2.
原不等式得證.
2.證明 由f(x)=a(x2-1)-ln x,
得f′(x)=2ax-=,
因為f′=0且>1.
所以當0當x>時,f′(x)>0,則f(x)在上單調遞增,
所以當0f(1)=0,
又因為>1,所以f <0,
又當x→+∞時,f(x)→+∞,
所以必然存在x0>1,使得f(x0)=0,
即a=,
所以f′(x0)=·x0-,
要證f′(x0)<1-2a,
即證·x0-<1-,
即證-1-<0,
即證2ln x0-<0,
設φ(x)=2ln x-(x>1),
則φ′(x)=-1-
=-=-,
所以當x>1時,φ′(x)<0,
則φ(x)在(1,+∞)上單調遞減,
所以φ(x)<φ(1)=0.
即2ln x0-<0,
即f′(x0)<1-2a.
母題突破2 恒成立問題與能成立問題
INCLUDEPICTURE "E:\\2023\\1二輪\\大二輪 數學 提高版\\學生WORD\\左括.TIF" \* MERGEFORMAT INCLUDEPICTURE "E:\\2023\\1二輪\\大二輪 數學 提高版\\學生WORD\\左括.TIF" \* MERGEFORMATINET INCLUDEPICTURE "E:\\2023\\1二輪\\大二輪 數學 提高版\\學生WORD\\答案精析\\左括.TIF" \* MERGEFORMATINET 母題 INCLUDEPICTURE "E:\\2023\\1二輪\\大二輪 數學 提高版\\學生WORD\\右括.TIF" \* MERGEFORMAT INCLUDEPICTURE "E:\\2023\\1二輪\\大二輪 數學 提高版\\學生WORD\\右括.TIF" \* MERGEFORMATINET INCLUDEPICTURE "E:\\2023\\1二輪\\大二輪 數學 提高版\\學生WORD\\答案精析\\右括.TIF" \* MERGEFORMATINET  解 方法一 (求最值法)
f(x)的定義域為(0,+∞),
因為f(x)≥0恒成立,
所以f(x)min≥0,
f′(x)=x-(2a+1)+

=.
當a≤0時,由f′(x)>0,得x>1;
由f′(x)<0,得0所以f(x)在(1,+∞)上單調遞增,在(0,1)上單調遞減,
所以f(x)min=f(1)=--2a,
由--2a≥0,可得a≤-.
當a>0時,注意到f(1)=--2a<0,不符合題意,故a≤-,即實數a的取值范圍為.
方法二 (分離參數法)
由f(x)≥0,可得x2-x-2a(x-ln x)≥0.
構造函數h(x)=x-ln x,
則h′(x)=1-=,
由h′(x)>0,得x>1;由h′(x)<0,得0所以h(x)min=h(1)=1>0,
所以x-ln x>0,
所以原不等式等價于2a≤.
令g(x)=(x>0),
則g′(x)=.
令φ(x)=x+1-ln x,
則φ′(x)=,
由φ′(x)>0,得x>2;由φ′(x)<0,得0易知φ(x)在(0,2)上單調遞減,在(2,+∞)上單調遞增,
所以φ(x)≥φ(2)=2-ln 2>0,
所以當x>1時,g′(x)>0;
當0所以g(x)在(0,1)上單調遞減,在(1,+∞)上單調遞增,g(x)≥g(1)=-,
由2a≤-,得a≤-,故實數a的取值范圍為.
[子題1] 解 存在x0∈[e,+∞),使f(x0)<0,
即-ln x0<0,即即存在x0∈[e,+∞),使ea>.
令h(x)=,因此只要函數h(x)=在區間[e,+∞)上的最小值小于ea即可.
h′(x)=,
令u(x)=ln x-,
∵u′(x)=+>0,
∴u(x)在[e,+∞)上單調遞增,
又u(e)=1->0.
∴h′(x)=>0在[e,+∞)上恒成立.
∴h(x)=在[e,+∞)上單調遞增,
函數h(x)=在區間[e,+∞)上的最小值為h(e)=ee,
由h(e)=eee.
故a的取值范圍是(e,+∞).
[子題2] 解 f′(x)=-ln(x+1)+,
因為f′(x)≥0在區間(0,+∞)上恒成立.
令-ln(x+1)+≥0,
則-(x+1)ln(x+1)+(x+ax2)≥0,
令g(x)=ax2+x-(x+1)ln(x+1),
原問題等價于g(x)≥0在區間(0,+∞)上恒成立,
則g′(x)=2ax-ln(x+1),
當a≤0時,由于2ax≤0,ln(x+1)>0,
故g′(x)<0,g(x)在區間(0,+∞)上單調遞減,
此時g(x)令h(x)=g′(x)=2ax-ln(x+1),
則h′(x)=2a-,
當a≥,即2a≥1時,由于<1,
所以h′(x)>0,h(x)在區間(0,+∞)上單調遞增,即g′(x)在區間(0,+∞)上單調遞增,
所以g′(x)>g′(0)=0,g(x)在區間(0,+∞)上單調遞增,g(x)>g(0)=0,符合題意.
當0由h′(x)=2a-=0,
可得x=-1,
當x∈時,h′(x)<0,
h(x)在區間上單調遞減,
即g′(x)在區間上單調遞減,
注意到g′(0)=0,
故當x∈時,
g′(x)由于g(0)=0,故當x∈時,
g(x)跟蹤演練
1.解 由f(x)=(x-4)ex-x2+6x,
得f′(x)=ex+(x-4)ex-2x+6
=(x-3)ex-2x+6=(x-3)(ex-2),
當x∈[1,3]時,f′(x)≤0,
所以f(x)在[1,3]上單調遞減,f(x)min=f(3)=9-e3,
于是若存在x1∈[1,3],對任意的x2∈[e2,e3],使得不等式g(x2)>f(x1)成立,則ln x-(a+1)x>9-e3(a>-1)在[e2,e3]上恒成立,
即a+1<在[e2,e3]上恒成立,
令h(x)=,x∈[e2,e3],
則a+1h′(x)=
=,
因為x∈[e2,e3],
所以ln x∈[2,3],10-e3-ln x∈[7-e3,8-e3],
因為e3≈20.09,
所以8-e3≈8-20.09=-12.09<0,
所以h′(x)<0,
所以h(x)單調遞減,故h(x)min=h(e3)==1-,
于是a+1<1-,得a<-,
又a>-1,所以實數a的取值范圍是.
2.解 f′(x)=
a-
=a-
=a-,
令cos2x=t,則t∈(0,1),
則f′(x)=g(t)=a-
=,t∈(0,1).
(1)當a=8時,f′(x)=g(t)==,
當t∈,即x∈時,
f′(x)<0.
當t∈,即x∈時,
f′(x)>0.
所以f(x)在上單調遞增,在上單調遞減.
(2)設h(x)=f(x)-sin 2x,
h′(x)=f′(x)-2cos 2x
=g(t)-2(2cos2x-1)=-2(2t-1)
=a+2-4t+-,
設φ(t)=a+2-4t+-,
則φ′(t)=-4-+

=-,
當t∈(0,1)時,φ′(t)>0,φ(t)單調遞增,
所以φ(t)<φ(1)=a-3.
若a∈(-∞,3],
則h′(x)=φ(t)即h(x)在上單調遞減,
所以h(x)若a∈(3,+∞),當t→0+時,-=-32+→-∞,
所以φ(t)→-∞.
φ(1)=a-3>0.
所以 t0∈(0,1),使得φ(t0)=0,
即 x0∈,使得h′(x0)=0,
t0=cos2x0.
當t∈(t0,1)時,φ(t)>0,
即當x∈(0,x0)時,h′(x)>0,h(x)單調遞增,
所以當x∈(0,x0)時,h(x)>h(0)=0,不符合題意.
綜上,a的取值范圍為(-∞,3].
母題突破3 零點問題
INCLUDEPICTURE "E:\\2023\\1二輪\\大二輪 數學 提高版\\學生WORD\\左括.TIF" \* MERGEFORMAT INCLUDEPICTURE "E:\\2023\\1二輪\\大二輪 數學 提高版\\學生WORD\\左括.TIF" \* MERGEFORMATINET INCLUDEPICTURE "E:\\2023\\1二輪\\大二輪 數學 提高版\\學生WORD\\答案精析\\左括.TIF" \* MERGEFORMATINET 母題 INCLUDEPICTURE "E:\\2023\\1二輪\\大二輪 數學 提高版\\學生WORD\\右括.TIF" \* MERGEFORMAT INCLUDEPICTURE "E:\\2023\\1二輪\\大二輪 數學 提高版\\學生WORD\\右括.TIF" \* MERGEFORMATINET  解 由f(x)=sin x-=0,
可得ex·sin x-x+1=0,
令g(x)=ex·sin x-x+1,x∈(0,π),
所以g′(x)=(sin x+cos x)ex-1,
①當x∈時,sin x+cos x=sin≥1,ex>1,
所以g′(x)>0,
所以g(x)在上單調遞增,
又因為g(0)=1>0,所以g(x)在上沒有零點;
②當x∈時,
令h(x)=ex-1,
所以h′(x)=2cos x·ex<0,
即h(x)在上單調遞減,
又因為h=-1>0,h=-eπ-1<0,所以存在x0∈,使得h(x0)=0,
所以g(x)在上單調遞增,在(x0,π)上單調遞減,
因為g(x0)>g=-+1>0,
g(π)=-π+1<0,
所以g(x)在上沒有零點,在(x0,π)上有且只有一個零點,
綜上所述,f(x)在(0,π)上有且只有一個零點.
[子題1] 解 由f′(x)=+bx(2-x)e1-x=0得,=bx(x-2).
顯然x≠2,x>0.
因此=b.
令g(x)=,x>0且x≠2,
則g′(x)=,
解方程x2-5x+4=0得,
x1=4,x2=1,
因此函數g(x)在(0,1)和(4,+∞)上單調遞增,在(1,2)和(2,4)上單調遞減,且極大值為g(1)=-e,極小值為g(4)=.g(x)的大致圖象如圖所示.
INCLUDEPICTURE "E:\\2023\\1二輪\\大二輪 數學 提高版\\學生WORD\\1-36.TIF" \* MERGEFORMAT INCLUDEPICTURE "E:\\2023\\1二輪\\大二輪 數學 提高版\\學生WORD\\1-36.TIF" \* MERGEFORMATINET INCLUDEPICTURE "E:\\2023\\1二輪\\大二輪 數學 提高版\\學生WORD\\答案精析\\1-36.TIF" \* MERGEFORMATINET
由圖象可知,當b>或b<-e時,直線y=b與曲線y=g(x)的圖象分別有兩個交點,即函數f′(x)恰有兩個零點.故b的取值范圍是
(-∞,-e)∪.
[子題2] 證明 因為H(x)=aln(x+1)+x2-ax+1,
所以H′(x)=(x>-1),
令H′(x)=0,x1=0,x2=-1.
當x→-1+時,H(x)→-∞;
當x→+∞時,H(x)→+∞.
①當a=2時,H′(x)≥0,函數H(x)在定義域(-1,+∞)上為增函數,有一個零點;
②當a≤0時,-1≤-1,
令H′(x)>0,得x>0,
令H′(x)<0,得-1所以函數H(x)在區間(-1,0)上單調遞減,在區間(0,+∞)上單調遞增,
則函數H(x)在x=0處有最小值H(0)=1>0,此時函數H(x)無零點;
③當0令H′(x)>0,得-10,令H′(x)<0,得-1所以函數H(x)在區間,(0,+∞)上單調遞增,
在區間上單調遞減.
因為函數H(0)=1>0,
所以H>0,且H(x)>0在區間上恒成立.
H(x)在區間上有一個零點.
所以當0綜上,當a≤2時,函數H(x)=f(x)-g(x)至多有一個零點.
跟蹤演練
1.解 f(x)=xln x-ax+a,
易知f(1)=0,
所求問題等價于函數f(x)=xln x-ax+a在區間(1,e]上沒有零點,
因為f′(x)=ln x+1-a,
所以當0f(x)在(0,ea-1)上單調遞減,
當x>ea-1時,f′(x)>0,
f(x)在(ea-1,+∞)上單調遞增.
①當ea-1≤1,即a≤1時,函數f(x)在區間(1,e]上單調遞增,所以f(x)>f(1)=0,此時函數f(x)在區間(1,e]上沒有零點,滿足題意.
②當1要使f(x)在(1,e]上沒有零點,只需f(e)<0,
即e-ae+a<0,解得a>,
所以③當e≤ea-1,即a≥2時,函數f(x)在區間(1,e]上單調遞減,
f(x)在區間(1,e]上滿足f(x)綜上所述,實數a的取值范圍是.
2.證明 因為g(x)=f(x)-ln x
=(x-2)ex-ln x,
則g′(x)=(x-1)ex-,x>0,
設h(x)=g′(x)=(x-1)ex-,
則h′(x)=xex+>0,
故g′(x)在(0,+∞)上單調遞增.
因為g′(1)=-1<0,g′(2)=e2->0,所以存在唯一x0∈(1,2),使得g′(x0)=0.
故當x∈(0,x0)時,g′(x)<0;
當x∈(x0,+∞)時,g′(x)>0.
即g(x)在(0,x0)上單調遞減,在(x0,+∞)上單調遞增.
因為g(x0)0,
又因為ln 2≈0.69,則ln 2>,
所以g=-ln
=4-
=4-2+-4>4-2eln 2+-4
=4-4+>0,
由零點存在定理可知,函數g(x)在(0,x0),(x0,3)上各存在一個零點,
綜上所述,g(x)有且僅有兩個零點.

展開更多......

收起↑

資源列表

    <track id="r4fhd"></track>

    <pre id="r4fhd"><abbr id="r4fhd"><code id="r4fhd"></code></abbr></pre>
      <ul id="r4fhd"></ul>

        <menu id="r4fhd"></menu>
        1. 主站蜘蛛池模板: SHOW| 琼结县| 闽侯县| 嘉荫县| 砚山县| 水城县| 云浮市| 汤原县| 江安县| 西吉县| 北海市| 千阳县| 清水县| 棋牌| 泊头市| 读书| 西丰县| 商城县| 凤阳县| 绍兴县| 高要市| 信丰县| 延长县| 城固县| 济宁市| 靖安县| 浪卡子县| 延安市| 南丰县| 苍梧县| 贡山| 湖南省| 务川| 茶陵县| 五莲县| 庆云县| 句容市| 镇宁| 梧州市| 靖江市| 沿河|