資源簡(jiǎn)介 7.1.2 復(fù)數(shù)的幾何意義知識(shí)點(diǎn):1.復(fù)數(shù)的幾何意義對(duì)任意復(fù)數(shù)z=a+bi(a,b∈R),a稱(chēng)實(shí)部記作Re(z),b稱(chēng)虛部記作Im(z). z=ai稱(chēng)為代數(shù)形式,它由實(shí)部、虛部?jī)刹糠謽?gòu)成;若將(a,b)作為坐標(biāo)平面內(nèi)點(diǎn)的坐標(biāo),那么z與坐標(biāo)平面唯一一個(gè)點(diǎn)相對(duì)應(yīng),從而可以建立復(fù)數(shù)集與坐標(biāo)平面內(nèi)所有的點(diǎn)構(gòu)成的集合之間的一一映射。因此復(fù)數(shù)可以用點(diǎn)來(lái)表示,表示復(fù)數(shù)的平面稱(chēng)為復(fù)平面,x軸稱(chēng)為實(shí)軸,y軸去掉原點(diǎn)稱(chēng)為虛軸,點(diǎn)稱(chēng)為復(fù)數(shù)的幾何形式;如果將(a,b)作為向量的坐標(biāo),復(fù)數(shù)z又對(duì)應(yīng)唯一一個(gè)向量。2.復(fù)平面:建立直角坐標(biāo)系來(lái)表示復(fù)數(shù)的平面叫復(fù)平面;,對(duì)應(yīng)點(diǎn)坐標(biāo)為;(象限的復(fù)習(xí))3.復(fù)數(shù)的摸若向量表示復(fù)數(shù),則稱(chēng)的模為復(fù)數(shù)的模,(復(fù)數(shù)復(fù)平面內(nèi)的點(diǎn)Z(a,b)平面向量)考點(diǎn)01:復(fù)數(shù)的坐標(biāo)表示1.如圖,復(fù)平面內(nèi)點(diǎn)所表示的復(fù)數(shù)為(每個(gè)小方格的邊長(zhǎng)為1)( )A. B. C. D.【答案】D【分析】根據(jù)復(fù)數(shù)的坐標(biāo)表示分析判斷.【詳解】由題意可知:點(diǎn)的坐標(biāo)為,所以復(fù)平面內(nèi)點(diǎn)所表示的復(fù)數(shù)為.故選:D.2.在復(fù)平面內(nèi),復(fù)數(shù)和表示的點(diǎn)關(guān)于虛軸對(duì)稱(chēng),則復(fù)數(shù)z=( )A. B. C. D.【答案】B【分析】根據(jù)復(fù)數(shù)的幾何意義求解即可.【詳解】由題意可得對(duì)應(yīng)的點(diǎn)為,該點(diǎn)關(guān)于虛軸對(duì)稱(chēng)的點(diǎn)為,所以復(fù)數(shù)對(duì)應(yīng)的點(diǎn)為,所以.故選:B3.已知復(fù)平面上有點(diǎn)和點(diǎn),使得向量所對(duì)應(yīng)的復(fù)數(shù)是,則點(diǎn)的坐標(biāo)為 .【答案】【分析】先求出向量的坐標(biāo),根據(jù)可得點(diǎn)的坐標(biāo).【詳解】因向量所對(duì)應(yīng)的復(fù)數(shù)是,所以,因,所以.故答案為:.考點(diǎn)02:在各象限內(nèi)點(diǎn)對(duì)應(yīng)復(fù)數(shù)的特征4.已知是復(fù)平面內(nèi)表示復(fù)數(shù)的點(diǎn),若復(fù)數(shù)是虛數(shù),則點(diǎn)P( )A.在虛軸上 B.不在虛軸上 C.在實(shí)軸上 D.不在實(shí)軸上【答案】D【分析】根據(jù)復(fù)數(shù)的分類(lèi)和其幾何意義即可得到答案.【詳解】由題意得,則點(diǎn)P不在實(shí)軸上,則C錯(cuò)誤,D正確,若,則A錯(cuò)誤,若,則其在虛軸上,則B錯(cuò)誤,故選:D.5.(多選)已知復(fù)平面內(nèi)表示復(fù)數(shù):的點(diǎn)為,則下列結(jié)論中正確的為( )A.若,則 B.若在直線上,則C.若為純虛數(shù),則 D.若在第四象限,則【答案】CD【分析】根據(jù)復(fù)數(shù)的基本概念直接判斷選項(xiàng)即可.【詳解】對(duì)于A,若,則,得,故A錯(cuò)誤;對(duì)于B,因?yàn)樵谥本€上,所以,則,故B錯(cuò)誤;對(duì)于C,若為純虛數(shù),則,即,此時(shí)虛部不為0,故C正確;對(duì)于D,若在第四象限,則,解得,故D正確.故選:CD6.(多選)若復(fù)數(shù),則下列說(shuō)法正確的是( )A.若為實(shí)數(shù),則B.若為純虛數(shù),則或C.在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)不可能在第二象限D.在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)不可能在第三象限【答案】AD【分析】根據(jù)復(fù)數(shù)的類(lèi)型即可求解的值,即可判斷AB,根據(jù)復(fù)數(shù)對(duì)應(yīng)點(diǎn)所在象限的特征即可判斷CD.【詳解】對(duì)于A,令,A正確;對(duì)于B,或,當(dāng)時(shí),不是純虛數(shù),B錯(cuò)誤;對(duì)于C,當(dāng)時(shí),,所以在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)在第二象限,C錯(cuò)誤;對(duì)于D,由于,故在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)不可能在第三象限,故D正確.故選:AD考點(diǎn)03:實(shí)軸、虛軸上點(diǎn)對(duì)應(yīng)的復(fù)數(shù)7.(多選)對(duì)于復(fù)數(shù)(,),下列說(shuō)法正確的是( )A.若,則為實(shí)數(shù)B.若,則為純虛數(shù)C.若,,則在復(fù)平面上對(duì)應(yīng)的點(diǎn)位于第四象限D.若,則在復(fù)平面上對(duì)應(yīng)的點(diǎn)的集合所構(gòu)成的圖形的面積為4【答案】AC【分析】根據(jù)復(fù)數(shù)的概念以及幾何意義,結(jié)合圓的性質(zhì),可得答案.【詳解】對(duì)于A,由,,則,故A正確;對(duì)于B,當(dāng)時(shí),,故B錯(cuò)誤;對(duì)于C,由,則其在復(fù)平面上對(duì)應(yīng)的點(diǎn)為,由,,則該點(diǎn)在第四象限,故C正確;對(duì)于D,,則在復(fù)平面上對(duì)應(yīng)的點(diǎn)的集合所構(gòu)成的圖形為以原點(diǎn)為圓心,以為半徑的圓,則其面積,故D錯(cuò)誤.故選:AC.8.若復(fù)數(shù)在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)位于虛軸上,則實(shí)數(shù)的取值集合為 .【答案】【分析】根據(jù)復(fù)平面的概念以及復(fù)數(shù)的坐標(biāo)表示列式可求出結(jié)果.【詳解】因?yàn)闉閷?shí)數(shù),且復(fù)數(shù)在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)位于虛軸上,所以,解得或.故答案為:.9.已知復(fù)數(shù)在復(fù)平面上對(duì)應(yīng)的點(diǎn)為Z,(1)求點(diǎn)Z在實(shí)軸上時(shí),實(shí)數(shù)m的取值;(2)求點(diǎn)Z在虛軸上時(shí),實(shí)數(shù)m的取值;(3)求點(diǎn)Z在第一象限時(shí),實(shí)數(shù)m的取值范圍.【答案】(1)或;(2)或;(3)或.【分析】(1)由實(shí)軸上點(diǎn)對(duì)應(yīng)的復(fù)數(shù)虛部為0求解;(2)由虛軸上的點(diǎn)對(duì)應(yīng)的實(shí)部為0求解;(3)根據(jù)第一象限中點(diǎn)的坐標(biāo)對(duì)應(yīng)實(shí)部、虛部正負(fù)列不等式組求解.【詳解】(1)因?yàn)辄c(diǎn)Z在實(shí)軸上,所以虛部,解得或.(2)點(diǎn)Z在虛軸上時(shí),復(fù)數(shù)的實(shí)部為0,所以,解得或.(3)點(diǎn)Z在第一象限,復(fù)數(shù)的實(shí)部與虛部都大于0,即,解得或.考點(diǎn)04:求復(fù)數(shù)的模10.已知復(fù)數(shù)(是虛數(shù)單位),則為( )A. B.1 C.2 D.3【答案】A【分析】根據(jù)復(fù)數(shù)模長(zhǎng)公式求出答案.【詳解】.故選:A11.已知復(fù)數(shù)滿足,其中是虛數(shù)單位,則( )A. B. C. D.【答案】B【分析】求出復(fù)數(shù),利用復(fù)數(shù)的模長(zhǎng)公式可求得的值.【詳解】因?yàn)椋瑒t,故.故選:B.12.已知,則( )A.2 B.4 C. D.8【答案】C【分析】根據(jù)復(fù)數(shù)的模長(zhǎng)計(jì)算公式,可得答案.【詳解】因?yàn)椋?故選:C.考點(diǎn)05:由復(fù)數(shù)模求參數(shù)13.已知復(fù)數(shù)的模為5,則 .【答案】【分析】根據(jù)復(fù)數(shù)的模長(zhǎng)公式,建立方程,可得答案.【詳解】由題意,可得,且,解得.故答案為:.14.已知復(fù)平面內(nèi)復(fù)數(shù)對(duì)應(yīng)的點(diǎn)在射線上,且,則 .【答案】【分析】根據(jù)題意 得到復(fù)數(shù),其中,結(jié)合,列出方程求得的值,即可求解.【詳解】由復(fù)平面內(nèi)復(fù)數(shù)對(duì)應(yīng)的點(diǎn)在射線上,所以,,其中,因?yàn)椋傻茫?br/>又因?yàn)椋獾茫?故答案為:.15.已知復(fù)數(shù)的模是且其虛部大于0,則實(shí)數(shù) .【答案】/1.8【分析】根據(jù)模長(zhǎng)公式及虛部大于0,列式求解即得.【詳解】由題可知,或,且,所以.故答案為:.考點(diǎn)06:與復(fù)數(shù)模相關(guān)的軌跡(圖形)問(wèn)題16.復(fù)數(shù)滿足,且在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)為Z,則復(fù)平面內(nèi)點(diǎn)Z的軌跡是( ).A.點(diǎn) B.圓 C.線段 D.圓環(huán)【答案】B【分析】根據(jù)復(fù)數(shù)模的知識(shí)求得正確答案.【詳解】由于,故對(duì)應(yīng)點(diǎn)到原點(diǎn)的距離為,所以復(fù)平面內(nèi)點(diǎn)Z的軌跡是單位圓.故選:B17.若復(fù)數(shù)滿足,則復(fù)數(shù)在復(fù)平面內(nèi)對(duì)應(yīng)點(diǎn)組成圖形的面積為( )A. B. C. D.【答案】D【分析】根據(jù)復(fù)數(shù)的幾何意義判斷在復(fù)平面對(duì)應(yīng)的點(diǎn)是半徑為2的圓及圓內(nèi)所有點(diǎn),進(jìn)而求出其面積.【詳解】在復(fù)平面對(duì)應(yīng)的點(diǎn)是半徑為2的圓及圓內(nèi)所有點(diǎn),,故選:D.18.設(shè)復(fù)數(shù)滿足,在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)為(x,y),則( )A.y=x-1 B.y=-x-1 C.y=x+1 D.y=-x+1【答案】B【分析】根據(jù)復(fù)數(shù)的模長(zhǎng)公式列出方程,整理后得到答案.【詳解】由已知得,化簡(jiǎn)得y=-x-1,故選:B.考點(diǎn)07:判斷復(fù)數(shù)對(duì)應(yīng)的點(diǎn)所在的象限19.設(shè),則在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)位于( )A.第一象限 B.第二象限C.第三象限 D.第四象限【答案】B【分析】根據(jù)復(fù)數(shù)的幾何意義求出即可.【詳解】因?yàn)椋?br/>所以對(duì)應(yīng)復(fù)平面內(nèi)點(diǎn)的坐標(biāo),所以位于第二象限,故選:B20.若復(fù)數(shù),則在復(fù)平面上的點(diǎn)在( )A.第一象限 B.第二象限 C.第三象限 D.第四象限【答案】D【分析】利用復(fù)數(shù)的幾何意義即可求解.【詳解】復(fù)數(shù)在復(fù)平面上的對(duì)應(yīng)的點(diǎn)為,所以在復(fù)平面上的點(diǎn)在第四象限.故選:D.21.已知,若復(fù)數(shù)為純虛數(shù),則復(fù)數(shù)在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)所在的象限為( )A.第一象限 B.第二象限 C.第三象限 D.第四象限【答案】D【分析】先由復(fù)數(shù)為純虛數(shù),求出的值,從而可求出復(fù)數(shù)在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)所在的象限【詳解】因?yàn)闉榧兲摂?shù),所以,解得,所以復(fù)數(shù),其復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)在第四象限,故選:D考點(diǎn)08:根據(jù)復(fù)數(shù)的坐標(biāo)寫(xiě)出對(duì)應(yīng)的復(fù)數(shù)22.復(fù)數(shù)與復(fù)平面內(nèi)的點(diǎn)一一對(duì)應(yīng),則復(fù)平面內(nèi)的點(diǎn)對(duì)應(yīng)的復(fù)數(shù)是( )A. B. C. D.【答案】A【分析】由復(fù)數(shù)的幾何意義得到復(fù)平面內(nèi)的點(diǎn)對(duì)應(yīng)的復(fù)數(shù).【詳解】復(fù)平面內(nèi)的點(diǎn)對(duì)應(yīng)的復(fù)數(shù)為.故選:A23.在復(fù)平面內(nèi),復(fù)數(shù)對(duì)應(yīng)的點(diǎn)關(guān)于直線對(duì)稱(chēng),若,則( )A. B.2 C. D.4【答案】C【分析】根據(jù)對(duì)稱(chēng)性得到,從而計(jì)算出,求出模長(zhǎng).【詳解】對(duì)應(yīng)的點(diǎn)為,其中關(guān)于的對(duì)稱(chēng)點(diǎn)為,故,故.故選:C24.在復(fù)平面內(nèi),復(fù)數(shù)與所對(duì)應(yīng)的向量分別是和,其中O是原點(diǎn),則向量對(duì)應(yīng)的復(fù)數(shù)為( )A. B. C. D.【答案】D【分析】根據(jù)復(fù)數(shù)的幾何意義即可求解.【詳解】解:因?yàn)閺?fù)數(shù)與所對(duì)應(yīng)的向量分別是和,其中O是原點(diǎn),所以,,所以,所以對(duì)應(yīng)的復(fù)數(shù)為,故選:D.考點(diǎn)09:根據(jù)復(fù)數(shù)對(duì)應(yīng)坐標(biāo)的特點(diǎn)求參數(shù)25.(多選)在復(fù)平面內(nèi),復(fù)數(shù)對(duì)應(yīng)的點(diǎn)位于第四象限,則實(shí)數(shù)的可能取值為( )A.2 B.0 C. D.1【答案】AD【分析】根據(jù)復(fù)數(shù)的幾何意義求出的取值范圍,即可判斷.【詳解】復(fù)數(shù)在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)的坐標(biāo)為位于第四象限,則,所以符合題意的只有A、D.故選:AD26.當(dāng)實(shí)數(shù)為何值時(shí),.(1)為純虛數(shù);(2)復(fù)數(shù)對(duì)應(yīng)的點(diǎn)在直線.【答案】(1)(2)【分析】(1)由純虛數(shù)定義列方程組求參數(shù)即可;(2)由題意,即可求參數(shù).【詳解】(1)由題意,則,可得.(2)由題意,可得.27.已知復(fù)數(shù):,.(1)若復(fù)數(shù)在復(fù)平面上對(duì)應(yīng)的點(diǎn)在虛軸上,求的值.(2)若復(fù)數(shù)在復(fù)平面上對(duì)應(yīng)的點(diǎn)在第一象限,求的范圍.【答案】(1)或(2)或【分析】(1)復(fù)數(shù)在復(fù)平面上對(duì)應(yīng)的點(diǎn)在虛軸上可知實(shí)部為零,解之可得;(2)復(fù)數(shù)在復(fù)平面上對(duì)應(yīng)的點(diǎn)在第一象限,可知實(shí)部虛部都大于零,解之可得的范圍.【詳解】(1),且復(fù)數(shù)在復(fù)平面上對(duì)應(yīng)的點(diǎn)在虛軸上解得或(2),且復(fù)數(shù)在復(fù)平面上對(duì)應(yīng)的點(diǎn)在第一象限即則解得:或7.1.2 復(fù)數(shù)的幾何意義知識(shí)點(diǎn):1.復(fù)數(shù)的幾何意義對(duì)任意復(fù)數(shù)z=a+bi(a,b∈R),a稱(chēng)實(shí)部記作Re(z),b稱(chēng)虛部記作Im(z). z=ai稱(chēng)為代數(shù)形式,它由實(shí)部、虛部?jī)刹糠謽?gòu)成;若將(a,b)作為坐標(biāo)平面內(nèi)點(diǎn)的坐標(biāo),那么z與坐標(biāo)平面唯一一個(gè)點(diǎn)相對(duì)應(yīng),從而可以建立復(fù)數(shù)集與坐標(biāo)平面內(nèi)所有的點(diǎn)構(gòu)成的集合之間的一一映射。因此復(fù)數(shù)可以用點(diǎn)來(lái)表示,表示復(fù)數(shù)的平面稱(chēng)為復(fù)平面,x軸稱(chēng)為實(shí)軸,y軸去掉原點(diǎn)稱(chēng)為虛軸,點(diǎn)稱(chēng)為復(fù)數(shù)的幾何形式;如果將(a,b)作為向量的坐標(biāo),復(fù)數(shù)z又對(duì)應(yīng)唯一一個(gè)向量。2.復(fù)平面:建立直角坐標(biāo)系來(lái)表示復(fù)數(shù)的平面叫復(fù)平面;,對(duì)應(yīng)點(diǎn)坐標(biāo)為;(象限的復(fù)習(xí))3.復(fù)數(shù)的摸若向量表示復(fù)數(shù),則稱(chēng)的模為復(fù)數(shù)的模,(復(fù)數(shù)復(fù)平面內(nèi)的點(diǎn)Z(a,b)平面向量)考點(diǎn)01:復(fù)數(shù)的坐標(biāo)表示1.如圖,復(fù)平面內(nèi)點(diǎn)所表示的復(fù)數(shù)為(每個(gè)小方格的邊長(zhǎng)為1)( )A. B. C. D.2.在復(fù)平面內(nèi),復(fù)數(shù)和表示的點(diǎn)關(guān)于虛軸對(duì)稱(chēng),則復(fù)數(shù)z=( )A. B. C. D.3.已知復(fù)平面上有點(diǎn)和點(diǎn),使得向量所對(duì)應(yīng)的復(fù)數(shù)是,則點(diǎn)的坐標(biāo)為 .考點(diǎn)02:在各象限內(nèi)點(diǎn)對(duì)應(yīng)復(fù)數(shù)的特征4.已知是復(fù)平面內(nèi)表示復(fù)數(shù)的點(diǎn),若復(fù)數(shù)是虛數(shù),則點(diǎn)P( )A.在虛軸上 B.不在虛軸上 C.在實(shí)軸上 D.不在實(shí)軸上5.(多選)已知復(fù)平面內(nèi)表示復(fù)數(shù):的點(diǎn)為,則下列結(jié)論中正確的為( )A.若,則 B.若在直線上,則C.若為純虛數(shù),則 D.若在第四象限,則6.(多選)若復(fù)數(shù),則下列說(shuō)法正確的是( )A.若為實(shí)數(shù),則B.若為純虛數(shù),則或C.在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)不可能在第二象限D.在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)不可能在第三象限考點(diǎn)03:實(shí)軸、虛軸上點(diǎn)對(duì)應(yīng)的復(fù)數(shù)7.(多選)對(duì)于復(fù)數(shù)(,),下列說(shuō)法正確的是( )A.若,則為實(shí)數(shù)B.若,則為純虛數(shù)C.若,,則在復(fù)平面上對(duì)應(yīng)的點(diǎn)位于第四象限D.若,則在復(fù)平面上對(duì)應(yīng)的點(diǎn)的集合所構(gòu)成的圖形的面積為48.若復(fù)數(shù)在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)位于虛軸上,則實(shí)數(shù)的取值集合為 .9.已知復(fù)數(shù)在復(fù)平面上對(duì)應(yīng)的點(diǎn)為Z,(1)求點(diǎn)Z在實(shí)軸上時(shí),實(shí)數(shù)m的取值;(2)求點(diǎn)Z在虛軸上時(shí),實(shí)數(shù)m的取值;(3)求點(diǎn)Z在第一象限時(shí),實(shí)數(shù)m的取值范圍.考點(diǎn)04:求復(fù)數(shù)的模10.已知復(fù)數(shù)(是虛數(shù)單位),則為( )A. B.1 C.2 D.311.已知復(fù)數(shù)滿足,其中是虛數(shù)單位,則( )A. B. C. D.12.已知,則( )A.2 B.4 C. D.8考點(diǎn)05:由復(fù)數(shù)模求參數(shù)13.已知復(fù)數(shù)的模為5,則 .14.已知復(fù)平面內(nèi)復(fù)數(shù)對(duì)應(yīng)的點(diǎn)在射線上,且,則 .15.已知復(fù)數(shù)的模是且其虛部大于0,則實(shí)數(shù) .考點(diǎn)06:與復(fù)數(shù)模相關(guān)的軌跡(圖形)問(wèn)題16.復(fù)數(shù)滿足,且在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)為Z,則復(fù)平面內(nèi)點(diǎn)Z的軌跡是( ).A.點(diǎn) B.圓 C.線段 D.圓環(huán)17.若復(fù)數(shù)滿足,則復(fù)數(shù)在復(fù)平面內(nèi)對(duì)應(yīng)點(diǎn)組成圖形的面積為( )A. B. C. D.18.設(shè)復(fù)數(shù)滿足,在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)為(x,y),則( )A.y=x-1 B.y=-x-1 C.y=x+1 D.y=-x+1【考點(diǎn)07:判斷復(fù)數(shù)對(duì)應(yīng)的點(diǎn)所在的象限19.設(shè),則在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)位于( )A.第一象限 B.第二象限C.第三象限 D.第四象限20.若復(fù)數(shù),則在復(fù)平面上的點(diǎn)在( )A.第一象限 B.第二象限 C.第三象限 D.第四象限21.已知,若復(fù)數(shù)為純虛數(shù),則復(fù)數(shù)在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)所在的象限為( )A.第一象限 B.第二象限 C.第三象限 D.第四象限考點(diǎn)08:根據(jù)復(fù)數(shù)的坐標(biāo)寫(xiě)出對(duì)應(yīng)的復(fù)數(shù)22.復(fù)數(shù)與復(fù)平面內(nèi)的點(diǎn)一一對(duì)應(yīng),則復(fù)平面內(nèi)的點(diǎn)對(duì)應(yīng)的復(fù)數(shù)是( )A. B. C. D.23.在復(fù)平面內(nèi),復(fù)數(shù)對(duì)應(yīng)的點(diǎn)關(guān)于直線對(duì)稱(chēng),若,則( )A. B.2 C. D.424.在復(fù)平面內(nèi),復(fù)數(shù)與所對(duì)應(yīng)的向量分別是和,其中O是原點(diǎn),則向量對(duì)應(yīng)的復(fù)數(shù)為( )A. B. C. D.考點(diǎn)09:根據(jù)復(fù)數(shù)對(duì)應(yīng)坐標(biāo)的特點(diǎn)求參數(shù)25.(多選)在復(fù)平面內(nèi),復(fù)數(shù)對(duì)應(yīng)的點(diǎn)位于第四象限,則實(shí)數(shù)的可能取值為( )A.2 B.0 C. D.126.當(dāng)實(shí)數(shù)為何值時(shí),.(1)為純虛數(shù);(2)復(fù)數(shù)對(duì)應(yīng)的點(diǎn)在直線.27.已知復(fù)數(shù):,.(1)若復(fù)數(shù)在復(fù)平面上對(duì)應(yīng)的點(diǎn)在虛軸上,求的值.(2)若復(fù)數(shù)在復(fù)平面上對(duì)應(yīng)的點(diǎn)在第一象限,求的范圍. 展開(kāi)更多...... 收起↑ 資源列表 7.1.2 復(fù)數(shù)的幾何意義 學(xué)案(原卷板).docx 7.1.2 復(fù)數(shù)的幾何意義 學(xué)案(解析版).docx 縮略圖、資源來(lái)源于二一教育資源庫(kù)