資源簡介 1.1 等腰三角形的性質學習目標 1.通過證明“AAS”掌握證明定理的基本步驟;2.證明等腰三角形的性質定理并會定理解簡單的圖形問題.3.培養發展推理能力重點難點 等腰三角形性質定理的推理,及定理的靈活運用學 習 過 程交流預習 1.請你用自己的語言說一說證明的基本步驟.2.列舉我們已知道的公理①公理:同位角 ,兩直線平行.②公理:兩直線 ,同位角 . ③公理: 的兩個三角形全等.(簡稱 ,字母表示 )④公理: 的兩個三角形全等.(簡稱 ,字母表示 ) ⑤公理: 的兩個三角形全等.(簡稱 ,字母表示 )⑥公理:全等三角形的對應邊 ,對應角 .注:等式的有關性質和不等式的有關性質都可以看作公理.預習檢測:已知如圖,△ABC中AB=AC,點D.E在BC上且AD=AE,求證:BD=CE合作探究 探究展示1:三角形全等的判定判定一般的三角形全等還有一種方法是什么? 推論: (簡寫為 ) 你能證明嗎?已知:在△ABC和△DEF中,∠A=∠D,∠B=∠E,BC=EF,求證:△ABC≌△DEF探究展示2:等腰三角形的性質定理1.等腰三角形性質:等腰三角形的兩個 相等(簡稱:等 對等 )已知:如圖,在△ABC中,AB=AC,求證:∠B=∠C證明一:取BC的中點D,連接AD想一想:線段AD還具有怎樣的性質?為什么?推論: 簡稱為( )任務清單 1.在△ABC和△DEF中,以下四個命題中假命題是( ) A.由AB=DE,BC=EF,∠B=∠E,可判斷△ABC≌△DEF; B.由∠A=∠D,∠C=∠F,AC=DF,可判斷△ABC≌△DEF; C.由AB=DE,AC=DF,BC=EF,可判斷△ABC≌△DEF; D.由∠A=∠D,∠B=∠E,AC=EF,可判斷△ABC≌△DEF.2.下列各組幾何圖形中,一定全等的是( )A.各有一個角是550的兩個等腰三角形; B.兩個等邊三角形;C.腰長相等的兩個等腰直角三角形;D.各有一個角是500,腰長都為6 cm的兩個等腰三角形.3.如圖,已知:∥,AB=CD,若要使△ABE≌△CDF,仍需添加一個條件,下列條件中,哪一個不能使△ABE≌△CDF的是( )A.∠A=∠B ; B.BF=CE; C.AE∥DF; D.AE=DF.若等腰三角形中有一個角等于50°,則等腰三角形的頂角度數為 .5.某等腰三角形的兩條邊長分別為3 cm和6 cm,則它的周長為 .6.等腰三角形的周長為13 cm,其中一邊長為3 cm,則該等腰三角形的腰長為 .7.如圖3,A,B,F,D在同一直線上,AB=DF,AE=BC,且AE∥BC. 求證:⑴△AEF≌△BCD,⑵EF∥CD作業ABFDEC圖31 展開更多...... 收起↑ 資源預覽 縮略圖、資源來源于二一教育資源庫