資源簡介 人教版七年級數(shù)學下冊第八章《實際問題與二元一次工程組》學習任務單及作業(yè)設計第一課時(共3課時)【學習目標】1.能夠找出實際問題中的已知和未知,分析它們之間的數(shù)量關系,列出方程組;2.會用二元一次方程組解決實際問題;3.能夠歸納出利用二元一次方程組解決實際問題的一般步驟.【學習準備】聽課的同時認真思考,做好記錄。【學習方式和環(huán)節(jié)】按老師指令完成相應的課上練習,學習環(huán)節(jié)主要有:1.通過復習回顧,引出利用二元一次方程組解決實際問題;2.能夠找出實際問題中的已知和未知,分析它們之間的數(shù)量關系,列出方程組,會用二元一次方程組解決實際問題;3.通過練習,鞏固本節(jié)教學內(nèi)容4.反思與小結【作業(yè)設計】一、選擇題1.某班為了獎勵在校運會上獲得好成績的運動員,花了200元錢購買甲乙兩種獎品共 30 件,其中甲種獎品 8 元/件,乙種獎品 6 元/件,若設購買甲種獎品x,乙種獎品y件,則所列方程組正確的是( )2.根據(jù)以下對話, 可以求得小紅所買的筆和筆記本的單價分別是( )A.3元、2元 B.2元、3元 C.3.4元、1.6元 D.1.6元、3.4元3.《九章算術》是中國傳統(tǒng)數(shù)學最重要的著作,奠定了中國傳統(tǒng)數(shù)學的基本框架,它的代數(shù)成就主要包括開方術、正負術和方程術,其中,方程術是《九章算術》最高的數(shù)學成就,《九章算術》中記載:“今有牛五、羊二, 直金十兩;牛二、羊五,直金八兩,問: 牛、羊各直金幾何 ”譯文:“假設有 5 頭牛、2 只羊, 值金 10 兩;2頭牛、5只羊,值金8兩,問: 每頭牛、每只羊各值金多少兩 ”每頭牛值金x兩,每只羊值金y兩,可列方程組為( )4.我國古代數(shù)學名著《孫子算經(jīng)》記載一道題,大意為100個和尚吃了100個饅頭,已知1個大和尚吃3個饅頭,3個小和尚吃1個饅頭,問有幾個大和尚,幾個小和尚?若設有m個大和尚,n個小和尚,那么可列方程組為( )二、填空題5.一次智力競賽有20道選擇題, 每答對一道題得5分,答錯一道題扣2分,不答題不給分也不扣分,小亮答完全部測試題共得65分,那么他答錯了 道題.6.為表彰“我愛讀書”演講比賽中獲獎的同學, 老師決定購買筆記本與鋼筆作為獎品,已知買5個筆記本和2支鋼筆共需100元;買4個筆記本和7支鋼筆共需161 元,設每個筆記本x元,每支鋼筆y元,根據(jù)題意可列方程組為 .7.某運輸隊只有大、小兩種貨車,已知 1 輛大車能運 3 噸貨物,3 輛小車能運 1 噸貨物,100噸貨物恰好由100輛車一次運完,設有x輛大車,y輛小車,根據(jù)題意可列方程組為______.8.今年“五一”,A、B兩人到商場購物,A購3件甲商品和2件乙商品共支付16元,B購5件甲商品和3件乙商品共支付25元,求一件甲商品和一件乙商品各售多少元.設甲商品售價x元/件,乙商品售價y元/件,則可列出方程組_______.三、解答題9.為落實“促民生、促經(jīng)濟”政策,某公司今年1月份調(diào)整了職工的月工資分配方案,調(diào)整后月工資由基本保障工資和計件獎勵工資兩部分組成(計件獎勵工資= 銷售每件產(chǎn)品的獎勵金額×銷售件數(shù)),下表是甲、乙兩位職工今年1月份的工資情況:(1)試求調(diào)整后職工的月基本保障工資和銷售每件產(chǎn)品的獎勵金額各為多少元;(2)如果職工丙想在今年二月份工資達到2600元,那么丙當月應銷售多少件產(chǎn)品 10.學生在素質(zhì)教育基地進行社會實踐活動,幫助農(nóng)民伯伯采摘了黃瓜和茄子共40kg,了解到這些蔬菜的種植成本共42元, 還了解到如下信息:(1)請問采摘的黃瓜和茄子各多少千克 (2)這些采摘的黃瓜和茄子可賺多少元 12.隨著中國傳統(tǒng)節(jié)日“端午節(jié)”的臨近,東方紅商場決定開展“歡度端午,回饋顧客”的讓利促銷活動,對部分品牌粽子進行打折銷售,其中甲品牌粽子打八折,乙品牌粽子打七五折,已知打折前,買6盒甲品牌粽子和3盒乙品牌粽子需600元;打折后,買50盒甲品牌粽子和40盒乙品牌粽子需要5200元.(1)打折前甲、乙兩種品牌粽子每盒分別為多少元?(2)陽光敬老院需購買甲品牌粽子80盒,乙品牌粽子100盒,問:打折后購買這批粽子比不打折節(jié)省了多少錢?【參考答案一、1.C 2.D 3.A 4.C二、5.5三、解答題9.解: 設調(diào)整后職工的月基本保障工資為x元, 銷售每件產(chǎn)品的獎勵金額為y元, 根據(jù)題意得∴調(diào)整后職工的月基本保障工資為 800 元, 銷售每件產(chǎn)品的獎勵金額為 5 元,(2)設丙當月應銷售z件產(chǎn)品,根據(jù)題意得800+5z=2600,解得z=360,∴丙當月應銷售360件產(chǎn)品,10.解:( 1)設采摘黃瓜x千克,茄子y千克,答: 采摘的黃瓜和茄子分別為30千克、10千克.(2)30×(1. 5-1)+10×(2-1. 2)=23(元) ,答: 這些采摘的黃瓜和茄子可賺23元.11.解:(1)設打折前甲品牌粽子每盒x元,乙品牌粽子每盒y元,則答:打折前甲粽子每盒40元,乙粽子每盒120元.(2)80×40×(1-80%)+100×120×(1-75%)=3640(元).答:打折后購買這批粽子比不打折節(jié)省了3640 元.第二課時【學習目標】1.掌握列二元一次方程組解實際問題的步驟.2.通過解決開放性問題體會多角度思考問題.3.探究較難實際問題,提升分析等量關系、解方程組的能力.【學習準備】邊聽課邊做記錄和練習。【學習方式和環(huán)節(jié)】按老師指令完成相應的課上練習,學習環(huán)節(jié)主要有:復習二元一次方程組解實際問題的步驟—→實際問題—→方法探索.【作業(yè)設計】1.如圖,8塊相同的長方形地磚拼成一個長方形,每塊長方形地磚的長和寬分別是________2.如圖,寬為50cm 的距形圖案是10個全等的小長方形拼成,其中一個小長方形的面積是_________cm2.3.如圖一邊長為5cm和2cm的長方形紙板,一塊邊長為2cm和4cm的長方形紙板和另外兩塊紙板和正方形紙板拼成一個大正方形,則大正方形的邊長_______cm,小正方形的邊長________cm.4.小紅做拼圖游戲時,發(fā)現(xiàn)用8個一樣的長方形能拼成如下圖(1)所示的長方形,也可拼成如圖(2)所示的正方形,里面的空白處也是一個小正方形邊長是2cm,則大正方形的邊長為________cm.5.李明以兩種形式分別儲蓄了2000 元和1000 元,一年后全部取出,扣除利息所得稅可得利息43.92元.已知兩種儲蓄的年利率的和為 3.24%,問這兩種儲蓄的年利率是_____%和______%(注:公民應交利息所得稅=利息全額×20%)【參考答案】1.解: 設長方形的長為xcm,寬為ycm答:長方形的長為45cm,寬為15cm4006, 3222.25%和0.99%第三課時【學習目標】1.鞏固列方程組解應用題的一般步驟.2.學會用列表的方式分析問題中蘊含的數(shù)量關系,并會列二元一次方程組解決問題.【學習準備】準備好直尺、鉛筆和橡皮。邊聽課邊做記錄。【學習方式和環(huán)節(jié)】按老師指令完成相應的課上練習。學習環(huán)節(jié)主要有:了解本節(jié)課的學習目標—→解決探究 3 的實際問題—→隨堂演練—→課堂小結—→課后作業(yè)。【作業(yè)設計】1.A地至B地的航線長9750km,一架飛機從A地順風飛往B地需12.5h,它逆風飛行同樣的航線需13h,求飛機的平均速度與風速.2.打折前,買60件A商品和30件B商品用了1080元,買50件A商品和10件B商品用了840元.打折后,買500件A商品和500件B商品用了9600元,比不打折少花多少錢?3.某廠家生產(chǎn)三種不同型號的電視機,出廠價甲種每臺1500元,乙種每臺2000元,丙種每臺2500元.(1)若某商場同時購進該廠家兩種不同型號電視機共80臺,正好用去15萬元,請你設計出幾種不同的進貨方案,并說明理由.(2)商場銷售一臺甲種電視機可獲利160元,銷售一臺乙種電視機可獲利210元,銷售一臺丙種電視機可獲利260元.在同時購進兩種不同型號電視機的方案中,為使銷售時獲利最多,你選擇哪種進貨方案?【參考答案】1.解:設飛機的平均速度為x km/h,風速為y km/h.由題意,得解得答:飛機的平均速度為 765km/h,風速為15km/h2. 解:設打折前A商品每件x元,B商品每件y元.由題意,得解得答:比不打折少花400元.3.解:(1)設購進甲種電視機x臺,乙種電視機y臺,則有解方程組,得設購進乙種電視機 y 臺,丙種電視機 z 臺,則有解方程組,得舍去設購進甲種電視機 x 臺,丙種電視機 z 臺,則有解方程組,得答:有兩種進貨方案,購進甲種電視機20臺,乙種電視機60臺;或購進甲種電視機50臺,丙種電視機 30 臺.(2)只購進甲種電視機20臺,乙種電視機60臺:獲利:20×160+60×260=18800(元)只購進甲種電視機50臺,丙種電視機30臺:獲利:50×160+30×260=15800(元)答:只購進甲種電視機20臺,丙種電視機60臺獲利最多. 展開更多...... 收起↑ 資源預覽 縮略圖、資源來源于二一教育資源庫