中文字幕精品无码一区二区,成全视频在线播放观看方法,大伊人青草狠狠久久,亚洲一区影音先锋色资源

滬科版七年級數學下冊8.2.3多項式與多項式相乘(教師版+學生版)

資源下載
  1. 二一教育資源

滬科版七年級數學下冊8.2.3多項式與多項式相乘(教師版+學生版)

資源簡介

中小學教育資源及組卷應用平臺
8.2.3多項式與多項式相乘
學習目標:
1.理解和掌握多項式與多項式乘法法則及推導。
2.熟練運用法則進行多項式與多項式的乘法運算。
學習重點:多項式乘以多項式的法則
學習難點:計算過程中項與項相乘時的符號處理
學習過程
一、學習準備
敘述單項式乘以多項式的法則:
【答案】單項式與多項式相乘,用單項項和多項式的每一項分別相乘,再把所得的積相加。
計算
(1) ax·(cx+d)= (2) b·(cx+d) =
(3) (-2x-1)·3x= (4)(-2x-1)·(-2) =
【答案】(1)ax2+adx
bcx+bd
-6x2-3x
4x+2
二、合作探究
(一)獨立思考,解決問題
1、問題:一塊長方形菜地,長為a,寬為m。現將它的長增加b,寬增加n,求擴大后的菜地的面積。
結合圖形,考慮有幾種算法?
算法一:擴大后菜地的長是a+b,寬是m+n,所以它的面積是 ;
算法二:先算4小塊矩形的面積,再求總面積。擴大后菜地的面積是 m2。
因此,(a+b)(m+n)=am+bm+an+bn
【答案】(a+b)(m+n)
am+bm+an+bn
2、你能用乘法分配律來求出(a+b)(m+n)的結果嗎?
解:(a+b)(m+n)=(a+b)·m+(a+b)·n
=am+bm+an+bn
3、根據上面的計算過程,你能嘗試總結多項式乘以多項式的法則嗎?
【答案】多項式與多項式相乘,先用一個多項式的第一項與另一個多項式的每一項相乘,再把所得的積相加。
(二)師生探究,合作交流
1、例6 計算:
(1) (-2x- 1)(3x-2); (2) (ax +b)(cx +d).
解(1) (-2x -1)(3x -2)
= (-2x) .3x+(-2x). (-2) +(-1) .3x+(-1) x(-2)
=-6x2+4x-3x+2
=-6x2+x+2
(2) (ax +b)(cx +d)
= ax·cx +ax. d+b. cx+bd
=acx2+(ad+bc)x+bd.
2、例7 計算
(1)(a+b)(a2-ab+b2) (2)(y2+y+1)(y+2)
解:(1) (a +b)(a2 -ab+b2)
=a.a2-a.ab+a.b2+b.a2-b. ab +b.b2
= a3+b3.
(y2 +y+1)(y +2)
=y3+2y2+y2+2y+y+2
=y3 +3y2 +3y +2.
3、練一練 計算:
(1);
(2);
(3).
【答案】(1)
(2)
(3)
【分析】(1)先利用多項式乘多項式法則,再合并同類項;
(2)先利用多項式乘多項式法則,再合并同類項;
(3)先利用多項式乘多項式法則作乘法,再加減.
【詳解】(1)解:原式;
(2)解:原式;
(3)解:原式.
【點睛】本題考查了多項式乘多項式,掌握多項式乘多項式運算法則是解題的關鍵.
三、學習體會
對照學習目標,通過預習,你覺得自己有哪些方面的收獲?有什么疑惑?
四、自我測試
1.如果的乘積中不含項,則m= .
【答案】
【分析】本題主要考查多項式與多項式的乘法,先根據多項式的乘法法則展開,再根據題意二次項的系數等于0列式求解即可.
【詳解】
∵乘積中不含項,
∴,
解得,
故答案為:.
2.計算:
(1); (2);
(3); (4).
【答案】(1)
(2)
(3)
(4)
【分析】(1)根據多項式乘以多項式法則展開,再合并同類項即可;
(2)根據多項式乘以多項式法則展開,再合并同類項即可;
(3)根據多項式乘以多項式法則展開,再合并同類項即可;
(4)根據多項式乘以多項式法則展開,再合并同類項即可.
【詳解】(1);
(2);
(3);
(4)

【點睛】此題考查了多項式乘以多項式,解題的關鍵是熟練掌握多項式乘以多項式的運算法則.
3.計算:
(1); (2); (3);
(4); (5); (6).
【答案】(1)
(2)
(3)
(4)
(5)
(6)
【分析】(1)利用多項式乘以多項式的法則進行運算即可得到答案;
(2)利用多項式乘以多項式的法則進行運算即可得到答案;
(3)利用多項式乘以多項式的法則進行運算即可得到答案;
(4)利用多項式乘以多項式的法則進行運算即可得到答案;
(5)利用多項式乘以多項式的法則進行運算即可得到答案;
(6)利用多項式乘以多項式的法則進行運算即可得到答案.
【詳解】(1);
(2);
(3);
(4);
(5);
(6)
【點睛】本題考查的是多項式乘以多項式,掌握“多項式乘以多項式的法則:把一個多項式的每一項分別乘以另一個多項式的每一項,再把所得的積相加”是解題的關鍵.
五、應用拓展
1.化簡,其中
【答案】
【分析】本題主要考查整式乘法,注意按照多項式乘多項式運算法則,不要漏乘,最后合并同類項,結果為最簡.
【詳解】解:原式
當時,原式.
2.如圖,某社區有兩塊相連的長方形空地,一塊長為,寬為;另一塊長為,寬為.現將兩塊空地進行改造,計劃在中間邊長為的正方形(陰影部分)中種花,其余部分種植草坪.
(1)求計劃種植草坪的面積;
(2)已知,,若種植草坪的價格為30元/ ,求種植草坪應投入的資金是多少元?
【答案】(1)計劃種植草坪的面積為
(2)種植草坪應投入的資金是243000元
【分析】本題考查了列代數式,多項式乘多項式,以及整式的混合運算-化簡求值,弄清楚題意是解答本題的關鍵.
(1)計劃種植草坪的面積等于2個矩形的面積減去陰影部分的面積,利用多項式乘多項式法則,平方差公式和完全平方公式化簡,去括號合并得到最簡結果即可;
(2)將a與b的值代入(1)中求得的栽花面積和草坪面積,再根據總價=單價×數量計算即可求解.
【詳解】(1)解:(1)兩塊空地總面積:,

栽花面積:,
草坪面積:.
(2),,草坪價格為30元/,
應投入的資金元.
21世紀教育網 www.21cnjy.com 精品試卷·第 2 頁 (共 2 頁)
21世紀教育網(www.21cnjy.com)中小學教育資源及組卷應用平臺
8.2.3多項式與多項式相乘
學習目標:
1.理解和掌握多項式與多項式乘法法則及推導。
2.熟練運用法則進行多項式與多項式的乘法運算。
學習重點:多項式乘以多項式的法則
學習難點:計算過程中項與項相乘時的符號處理
學習過程
一、學習準備
敘述單項式乘以多項式的法則:
計算
(1) ax·(cx+d)= (2) b·(cx+d) =
(3) (-2x-1)·3x= (4)(-2x-1)·(-2) =
二、合作探究
(一)獨立思考,解決問題
1、問題:一塊長方形菜地,長為a,寬為m。現將它的長增加b,寬增加n,求擴大后的菜地的面積。
結合圖形,考慮有幾種算法?
算法一:擴大后菜地的長是a+b,寬是m+n,所以它的面積是 ;
算法二:先算4小塊矩形的面積,再求總面積。擴大后菜地的面積是 m2。
因此,(a+b)(m+n)=am+bm+an+bn
2、你能用乘法分配律來求出(a+b)(m+n)的結果嗎?
3、根據上面的計算過程,你能嘗試總結多項式乘以多項式的法則嗎?
(二)師生探究,合作交流
1、例6 計算:
(1) (-2x- 1)(3x-2); (2) (ax +b)(cx +d).
2、例7 計算
(1)(a+b)(a2-ab+b2) (2)(y2+y+1)(y+2)
3、練一練 計算:
(1);
(2);
(3).
三、學習體會
對照學習目標,通過預習,你覺得自己有哪些方面的收獲?有什么疑惑?
四、自我測試
1.如果的乘積中不含項,則m= .
2.計算:
(1); (2);
(3); (4).
3.計算:
(1); (2); (3);
(4); (5); (6).
五、應用拓展
1.化簡,其中
2.如圖,某社區有兩塊相連的長方形空地,一塊長為,寬為;另一塊長為,寬為.現將兩塊空地進行改造,計劃在中間邊長為的正方形(陰影部分)中種花,其余部分種植草坪.
(1)求計劃種植草坪的面積;
(2)已知,,若種植草坪的價格為30元/ ,求種植草坪應投入的資金是多少元?
21世紀教育網 www.21cnjy.com 精品試卷·第 2 頁 (共 2 頁)
21世紀教育網(www.21cnjy.com)

展開更多......

收起↑

資源列表

    <track id="r4fhd"></track>

    <pre id="r4fhd"><abbr id="r4fhd"><code id="r4fhd"></code></abbr></pre>
      <ul id="r4fhd"></ul>

        <menu id="r4fhd"></menu>
        1. 主站蜘蛛池模板: 泸溪县| 洛浦县| 岚皋县| 栖霞市| 吴江市| 凯里市| 宁晋县| 本溪| 南陵县| 南平市| 桂阳县| 阿坝县| 沧源| 边坝县| 邵阳市| 河北省| 资阳市| 晋江市| 苏尼特左旗| 济源市| 佛教| 崇义县| 阿拉尔市| 喀什市| 讷河市| 黄山市| 镇平县| 合阳县| 东城区| 襄垣县| 垣曲县| 江城| 蒙自县| 古丈县| 桐乡市| 隆德县| 义乌市| 大新县| 定西市| 怀安县| 临江市|