資源簡(jiǎn)介 高考數(shù)學(xué)橢圓中常見(jiàn)的焦點(diǎn)三角形的性質(zhì)及應(yīng)用春暉中學(xué) 過(guò)月圓定義:橢圓上任意一點(diǎn)與兩焦點(diǎn)所構(gòu)成的三角形稱(chēng)為焦點(diǎn)三角形。性質(zhì)一:已知橢圓方程為兩焦點(diǎn)分別為設(shè)焦點(diǎn)三角形中則。21世紀(jì)教育網(wǎng)性質(zhì)二:已知橢圓方程為左右兩焦點(diǎn)分別為設(shè)焦點(diǎn)三角形,若最大,則點(diǎn)P為橢圓短軸的端點(diǎn)證明:設(shè),由焦半徑公式可知:,在中, = 性質(zhì)三:已知橢圓方程為兩焦點(diǎn)分別為設(shè)焦點(diǎn)三角形中則證明:設(shè)則在中,由余弦定理得: 命題得證。已知橢圓的兩焦點(diǎn)分別為若橢圓上存在一點(diǎn)使得求橢圓的離心率的取值范圍。簡(jiǎn)解:由橢圓焦點(diǎn)三角形性質(zhì)可知即 ,于是得到的取值范圍是性質(zhì)四:已知橢圓方程為兩焦點(diǎn)分別為設(shè)焦點(diǎn)三角形,則橢圓的離心率。 由正弦定理得:由等比定理得:而,∴。已知橢圓的焦點(diǎn)是F1(-1,0)、F2(1,0),P為橢圓上一點(diǎn),且|F1F2|是|PF1|和|PF2|的等差中項(xiàng).(1)求橢圓的方程;(2)若點(diǎn)P在第三象限,且∠PF1F2=120°,求tanF1PF2.解:(1)由題設(shè)2|F1F2|=|PF1|+|PF2|∴2a=4,又2c=2,∴b=∴橢圓的方程為=1.(2)設(shè)∠F1PF2=θ,則∠PF2F1=60°-θ橢圓的離心率則,整理得:5sinθ=(1+cosθ)∴故,tanF1PF2=tanθ=.21世紀(jì)教育網(wǎng) 展開(kāi)更多...... 收起↑ 資源預(yù)覽 縮略圖、資源來(lái)源于二一教育資源庫(kù)