資源簡介 培優(yōu)沖刺04 新結(jié)構(gòu)19題型卷導(dǎo)數(shù)“降溫”題型歸類目錄題型一:切線型·········································································································································································1題型二:零點型·········································································································································································2題型三:單調(diào)或者不單調(diào)型··················································································································································3題型四:常規(guī)型不等式的證明··············································································································································4題型五:不等式“恒成立”求參···············································································································································4題型六:不等式“能成立”求參···············································································································································5題型七:求整數(shù)型參數(shù)···························································································································································6題型八:二次求導(dǎo)型································································································································································7題型九:雙變量型構(gòu)造···························································································································································7題型十:數(shù)列型不等式證明··················································································································································8題型十一:老高考壓軸型導(dǎo)數(shù)題·········································································································································8題型一:切線型求切線的步驟: (1) 已知切點求斜率,即求該點處的導(dǎo)數(shù); (2) 己知斜率求切點即解方程; (3) 已知切線過某點(不是切點) 求切點, 設(shè)出切點利用求解. 若切線與函數(shù)交點個數(shù),可以通過聯(lián)立方程,幾個解來證明或者求參1.已知函數(shù).(1)求函數(shù)的極值點;(2)記曲線在處的切線為,求證,與有唯一公共點.2.已知函數(shù)().(1)討論函數(shù)的單調(diào)性;(2)若函數(shù)在點處的切線與直線垂直,解不等式.3.已知函數(shù)(1)判斷函數(shù)的單調(diào)性;(2)曲線在點處的切線與曲線只有一個公共點,求a的值.4.已知函數(shù)的圖象在處的切線方程為.(1)求的解析式;(2)若過點可作圖象的三條切線,證明:.題型二:零點型極值點個數(shù)的判斷問題,一般轉(zhuǎn)化為零點的個數(shù),注意求出導(dǎo)函數(shù)的零點,此零點不一定是原函數(shù)的極值點,還要結(jié)合函數(shù)的單調(diào)性或函數(shù)圖象進行驗證.1.已知函數(shù).(1)當(dāng)曲線在點處的切線與直線垂直時,求a的值;(2)討論的極值點的個數(shù).2.已知函數(shù),.(1)求函數(shù)圖象上一點處的切線方程;(2)若函數(shù)有兩個零點(),求的取值范圍.3.已知函數(shù).(1)設(shè),證明:當(dāng)時,過原點O有且僅有一條直線與曲線相切;(2)若函數(shù)有兩個零點,求a的取值范圍.4.已知函數(shù)(為常數(shù)),函數(shù).(1)若函數(shù)有兩個零點,求實數(shù)的取值的范圍;(2)當(dāng),設(shè)函數(shù),若在上有零點,求的最小值.題型三:單調(diào)或者不單調(diào)型利用導(dǎo)數(shù)解決不含參數(shù)函數(shù)的單調(diào)性的步驟: ①確定函數(shù)的定義域; ②求; ③在定義域內(nèi)解不等式,得單調(diào)遞增區(qū)間; ④在定義域內(nèi)解不等式,得單調(diào)遞增區(qū)間. 利用導(dǎo)數(shù)解決已知函數(shù)的單調(diào)性求參數(shù)問題的一般方法: ①利用集合間的包含關(guān)系處理:在上單調(diào), 則區(qū)間是相應(yīng)單調(diào)區(qū)間的子集. ②為增函數(shù)的充要條件是對任意的都有且在內(nèi)的任一 非空子區(qū)間上,不恒為零,應(yīng)注意此時式子中的等號不能省略,否則漏解. ③函數(shù)在某一個區(qū)間存在單調(diào)區(qū)間可轉(zhuǎn)化為不等式有解問題.1.已知函數(shù).(1)若,證明:當(dāng)時,;(2)求所有的實數(shù),使得函數(shù)在上單調(diào).2.已知函數(shù).(1)若,求證:;(2)若函數(shù)在上不單調(diào),求實數(shù)的取值范圍.3.已知,函數(shù)(是自然對數(shù)的底數(shù)).(Ⅰ)若,證明:曲線沒有經(jīng)過點的切線;(Ⅱ)若函數(shù)在其定義域上不單調(diào),求的取值范圍;4.已知函數(shù).(1)若直線與曲線相切,求的值;(2)若函數(shù)在上不單調(diào),且函數(shù)有三個零點,求的取值范圍.題型四:常規(guī)型不等式的證明利用導(dǎo)數(shù)證明不等式問題,方法如下: (1)直接構(gòu)造函數(shù)法:證明不等式(或)轉(zhuǎn)化為證明(或),進而構(gòu)造輔助函數(shù); (2)適當(dāng)放縮構(gòu)造法:一是根據(jù)已知條件適當(dāng)放縮;二是利用常見放縮結(jié)論; (3)構(gòu)造“形似”函數(shù),稍作變形再構(gòu)造,對原不等式同解變形,根據(jù)相似結(jié)構(gòu)構(gòu)造輔助函數(shù).1.已知函數(shù).(1)若函數(shù)的圖象在處的切線與軸平行,求的值;(2)當(dāng)時,求證:.2.已知函數(shù).(1)求函數(shù)的最小值;(2)當(dāng),時,求證:.3.已知函數(shù).(1)求函數(shù)的最小值;(2)當(dāng)時,求證:.4.已知函數(shù).(1)求函數(shù)的極值;(2)證明:.題型五:不等式“恒成立”求參對于利用導(dǎo)數(shù)研究不等式的恒成立與有解問題的求解策略: 1、通常要構(gòu)造新函數(shù),利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,求出最值,從而求出參數(shù)的取值范圍; 2、利用可分離變量,構(gòu)造新函數(shù),直接把問題轉(zhuǎn)化為函數(shù)的最值問題. 3、根據(jù)恒成立或有解求解參數(shù)的取值時,一般涉及分離參數(shù)法,但壓軸試題中很少碰到分離參數(shù)后構(gòu)造的新函數(shù)能直接求出最值點的情況,進行求解,若參變分離不易求解問題,就要考慮利用分類討論法和放縮法,注意恒成立與存在性問題的區(qū)別.1.(23-24高三上·河南南陽·已知函數(shù)(1)當(dāng)時,求的最小值;(2)若關(guān)于x的不等式恒成立,求a的取值范圍.2.(23-24高三上·湖南長沙·階段練習(xí))已知函數(shù).(1)求的單調(diào)區(qū)間;(2)若對于任意的恒成立,求實數(shù)的取值范圍.3.(22-23高三·河南焦作)已知函數(shù),.(1)當(dāng)時,求函數(shù)的圖像在點處的切線方程;(2)若,求證:當(dāng)時,;(3)若對任意恒成立,求的取值范圍.題型六:不等式“能成立”求參有解和恒成立求參問題常轉(zhuǎn)化為最值問題處理: (1)恒成立;有解; (2)恒成立;有解.1.(23-24高三·北京順義·階段練習(xí))已知函數(shù).(1)求曲線在點處的切線方程;(2)判斷函數(shù)在區(qū)間上的單調(diào)性;(3)是否存在,使得成立,若存在,求出的取值范圍;若不存在,請說明理由.2.(23-24高三山東·階段練習(xí))設(shè)函數(shù).(a,),滿足在和處取得極值.(1)求a、b的值;(2)若存在,使得不等式成立,求實數(shù)c的最小值.3.(23-24高三·天津靜海·階段練習(xí))已知,(1)若對于任意的,都有成立,求的取值范圍;(2)若存在,使得成立,求的取值范圍;(3)若函數(shù),若存在,使得成立,求的取值范圍.題型七:求整數(shù)型參數(shù)隱零點的處理思路: 第一步:用零點存在性定理判定導(dǎo)函數(shù)零點的存在性,其中難點是通過合理賦值,敏銳捕捉零點存在的區(qū)間,有時還需結(jié)合函數(shù)單調(diào)性明確零點的個數(shù); 第二步:虛設(shè)零點并確定取范圍,抓住零點方程實施代換,如指數(shù)與對數(shù)互換,超越函數(shù)與簡單函數(shù)的替換,利用同構(gòu)思想等解決,需要注意的是,代換可能不止一次.1.(22-23高三上·四川綿陽·階段練習(xí))已知函數(shù) .(1)求曲線 在點 處的切線方程(2)若 對任意的 恒成立,求滿足條件的實數(shù) 的最小整數(shù)值.2.(23-24高三·吉林長春·階段練習(xí))已知函數(shù)在點處的切線方程為(1)求;(2)求的單調(diào)區(qū)間;(3)求使成立的最小整數(shù).3.(22-23高三·陜西渭南·)已知函數(shù)(1)若,討論的單調(diào)性.(2)當(dāng)時,都有成立,求整數(shù)的最大值.題型八:二次求導(dǎo)型函數(shù)與導(dǎo)數(shù)綜合簡答題常常以壓軸題的形式出現(xiàn),難度相對較大,主要考向有以下幾點: 1、求函數(shù)的單調(diào)區(qū)間(含參數(shù))或判斷函數(shù)(含參數(shù))的單調(diào)性; 2、求函數(shù)在某點處的切線方程,或知道切線方程求參數(shù); 3、求函數(shù)的極值(最值); 4、求函數(shù)的零點(零點個數(shù)),或知道零點個數(shù)求參數(shù)的取值范圍; 5、證明不等式. 解決方法:對函數(shù)進行求導(dǎo),結(jié)合函數(shù)導(dǎo)數(shù)與函數(shù)的單調(diào)性等性質(zhì)解決,在證明不等式或求參數(shù)取值范圍時,通常會對函數(shù)進行參變分離,構(gòu)造新函數(shù),對新函數(shù)求導(dǎo),再結(jié)合導(dǎo)數(shù)與單調(diào)性等解決.1.(23-24高三·山東淄博·階段練習(xí))已知函數(shù),.(1)討論的單調(diào)性;(2)若,試判斷函數(shù)與的圖象的交點個數(shù),并說明理由.2.(23-24高三下·江西撫州·階段練習(xí))已知函數(shù).(1)當(dāng)時,,求的取值范圍;(2)若在上單調(diào)遞增,求的取值范圍.3.(23-24高三上·浙江寧波·期末)已知函數(shù),.(1)當(dāng)時,求函數(shù)的單調(diào)區(qū)間;(2)若在內(nèi)恒成立,求整數(shù)的最大值.題型九:雙變量型構(gòu)造1.(23-24高三山東·階段練習(xí))已知函數(shù).(1)求函數(shù)的單調(diào)區(qū)間;(2)當(dāng)時(為大于0的常數(shù)),求的最大值;(3)若當(dāng)時,不等式恒成立,求的取值范圍.2.(23-24高三 江蘇常州·階段練習(xí))已知函數(shù).(1)求函數(shù)的單調(diào)區(qū)間;(2)若對任意的,且,都有,求實數(shù)的取值范圍.3.(23-24高三·江蘇蘇州·階段練習(xí))已知函數(shù).(1)若函數(shù)在處取到極值,求實數(shù)a的值;(2)若,對于任意,當(dāng)時,不等式恒成立,求實數(shù)m的取值范圍.題型十:數(shù)列型不等式證明1.(23-24高三·遼寧沈陽·階段練習(xí))已知函數(shù).(1)求的單調(diào)區(qū)間;(2)對任意的,求證:.2.(23-24高三·湖北武漢·)已知函數(shù).(1)求的單調(diào)區(qū)間;(2)試證明,.3.(23-24高三上·陜西·階段練習(xí))已知函數(shù),.(1)若函數(shù)在R上單調(diào)遞減,求a的取值范圍;(2)已知,,,,求證:;(3)證明:.題型十一:老高考壓軸型導(dǎo)數(shù)題1.(【2014年全國普通高等學(xué)校招生統(tǒng)一考試文科數(shù)學(xué)(新課標(biāo)Ⅰ))設(shè)函數(shù),曲線處的切線斜率為0求b;若存在使得,求a的取值范圍.2.(【2011年普通高等學(xué)校招生全國統(tǒng)一考試理科數(shù)學(xué)(新課標(biāo)卷))已知函數(shù),曲線在點處的切線方程為.(1)求、的值;(2)如果當(dāng),且時,,求的取值范圍.3.(2012年全國普通高等學(xué)校招生統(tǒng)一考試理科數(shù)學(xué)(課標(biāo)卷))已知函數(shù)滿足滿足;(1)求的解析式及單調(diào)區(qū)間;(2)若,求的最大值.培優(yōu)沖刺04 新結(jié)構(gòu)19題型卷導(dǎo)數(shù)“降溫”題型歸類目錄題型一:切線型·········································································································································································1題型二:零點型·········································································································································································4題型三:單調(diào)或者不單調(diào)型··················································································································································8題型四:常規(guī)型不等式的證明···········································································································································12題型五:不等式“恒成立”求參············································································································································15題型六:不等式“能成立”求參············································································································································17題型七:求整數(shù)型參數(shù)·························································································································································20題型八:二次求導(dǎo)型·····························································································································································23題型九:雙變量型構(gòu)造························································································································································26題型十:數(shù)列型不等式證明···············································································································································28題型十一:老高考壓軸型導(dǎo)數(shù)題······································································································································30題型一:切線型求切線的步驟: (1) 已知切點求斜率,即求該點處的導(dǎo)數(shù); (2) 己知斜率求切點即解方程; (3) 已知切線過某點(不是切點) 求切點, 設(shè)出切點利用求解. 若切線與函數(shù)交點個數(shù),可以通過聯(lián)立方程,幾個解來證明或者求參1.已知函數(shù).(1)求函數(shù)的極值點;(2)記曲線在處的切線為,求證,與有唯一公共點.【答案】(1)(2)證明過程見解析【分析】(1)利用導(dǎo)數(shù)的性質(zhì),結(jié)合極值點的定義進行求解即可;(2)根據(jù)導(dǎo)數(shù)的幾何意義,結(jié)合導(dǎo)數(shù)的性質(zhì)進行運算證明即可.【詳解】(1),令,當(dāng)時,單調(diào)遞減,當(dāng)時,單調(diào)遞增,當(dāng)時,單調(diào)遞減,所以函數(shù)的極值點為;(2)由(1)可知:,而,所以切線的方程為,由,或,當(dāng)時,,此時,與有公共點,當(dāng)時,設(shè),當(dāng)時,單調(diào)遞減,當(dāng)時,單調(diào)遞增,所以,即,當(dāng)且僅當(dāng)時取等號,所以由,即,此時與有公共點,綜上所述:與有唯一公共點.2.已知函數(shù)().(1)討論函數(shù)的單調(diào)性;(2)若函數(shù)在點處的切線與直線垂直,解不等式.【答案】(1)答案見解析(2)【分析】(1)先求原函數(shù)的導(dǎo)函數(shù),討論一元二次不等式的解,進而判定原函數(shù)的單調(diào)性;(2)利用導(dǎo)數(shù)的幾何意義與兩直線垂直的判定進而求得實數(shù)的值,借助原函數(shù)的單調(diào)性求不等式即可.【詳解】(1)∵,∴().令,其.①當(dāng),即時,恒成立,∴對恒成立,故在上遞增;②當(dāng),即時,方程的兩個根分別是,.若,則,,故時,;時,;所以在上單調(diào)遞減,在上單調(diào)遞增.若,則,,故或時,;時,.所以在和上均單調(diào)遞增,在上單調(diào)遞減;綜上,當(dāng)時,在上單調(diào)遞增;當(dāng)時,在和上均單調(diào)遞增,在上單調(diào)遞減;當(dāng)時,在上單調(diào)遞減,在上單調(diào)遞增.(2)直線的斜率為,由(1)知,,且函數(shù)在點處的切線與直線垂直,得,,當(dāng)時,函數(shù)在上單調(diào)遞增,又因為,∴,即,∴,即不等式的解集為.3.已知函數(shù)(1)判斷函數(shù)的單調(diào)性;(2)曲線在點處的切線與曲線只有一個公共點,求a的值.【答案】(1)答案見解析(2)或【分析】(1)求出根據(jù)的正負可得答案(2)根據(jù)導(dǎo)數(shù)的幾何意義求出切線方程,分、討論,結(jié)合直線的位置關(guān)系、一元二次方程根的判別式進行求解即可.【詳解】(1)由題意得,,因為時,,所以單調(diào)遞增,無單調(diào)遞減區(qū)間;(2)因為,所以切線的斜率為,所以切線方程為,即與曲線只有一個公共點,當(dāng)時,可得,因為,所以直線與相交,只有一個公共點,符合題意;當(dāng)時,若切線與曲線只有一個公共點,只需只有一個公共解,整理得,所以,解得.綜上所述,或.【點睛】思路點睛:第二問的解題思路是求出切線方程,且與曲線只有一個公共點,聯(lián)立方程求解即可.4.已知函數(shù)的圖象在處的切線方程為.(1)求的解析式;(2)若過點可作圖象的三條切線,證明:.【答案】(1)(2)證明見解析【分析】(1)求出導(dǎo)函數(shù)得到切線斜率值,利用點斜式方程即得切線方程;(2)設(shè)出切點,列出切線方程,將題設(shè)條件轉(zhuǎn)化成方程有三個實根,即函數(shù)有三個零點,就值分類討論即得.【詳解】(1)因為,,,所以切線方程為,即.(2)設(shè)切點為,則切線方程為:,因切線經(jīng)過點,故有,即.令,依題知有3個零點.,令得,①當(dāng)時,時,,時,,則在上單調(diào)遞減,在上單調(diào)遞增,此時至多有兩個零點,不合題意;②當(dāng)時,或時,,時,,則在,上單調(diào)遞增,在上單調(diào)遞減,又,,因,由有3個零點可知:,故得:,即.【點睛】關(guān)鍵點點睛:本題主要考查了曲線的切線方程求法和函數(shù)的零點問題.解決函數(shù)的零點問題一般可以考慮運用參變分離法或者分類討論法.此題中將曲線存在經(jīng)過某點的三條切線問題,轉(zhuǎn)化成對應(yīng)方程的三個實根,繼而又轉(zhuǎn)化成函數(shù)有三個零點問題,最后就參數(shù)分類討論得出結(jié)論.題型二:零點型極值點個數(shù)的判斷問題,一般轉(zhuǎn)化為零點的個數(shù),注意求出導(dǎo)函數(shù)的零點,此零點不一定是原函數(shù)的極值點,還要結(jié)合函數(shù)的單調(diào)性或函數(shù)圖象進行驗證.1.已知函數(shù).(1)當(dāng)曲線在點處的切線與直線垂直時,求a的值;(2)討論的極值點的個數(shù).【答案】(1)或(2)時,有且只有1個極值點,當(dāng)時,有2個極值點.【分析】(1)求導(dǎo),利用導(dǎo)數(shù)的幾何意義得到切線斜率,進而表達出切線方程,根據(jù)斜率乘積為-1得到方程,求出a的值;(2)求定義域,求導(dǎo),對導(dǎo)函數(shù)因式分解,分和兩種情況,進行分類討論,得到函數(shù)的極值點情況.【詳解】(1),,故,故在點處的切線方程為,由于該切線與直線垂直,故,解得或,綜上,或(2)定義域為R,,當(dāng)時,令得,當(dāng)時,,單調(diào)遞增,當(dāng)時,,單調(diào)遞減,故為的極小值點,當(dāng)時,令得或,令,則,當(dāng)時,,單調(diào)遞增,當(dāng)時,,單調(diào)遞減,故在處取得極小值,也是最小值,最小值為,所以恒成立,令得或,此時單調(diào)遞增,令得,此時單調(diào)遞減,故為函數(shù)的極小值點,為函數(shù)的極大值點,此時函數(shù)有2個零點,綜上,時,有且只有1個極值點,當(dāng)時,有2個極值點.2.已知函數(shù),.(1)求函數(shù)圖象上一點處的切線方程;(2)若函數(shù)有兩個零點(),求的取值范圍.【答案】(1)(2)【分析】(1)求導(dǎo),根據(jù)導(dǎo)數(shù)的幾何意義結(jié)合直線的點斜式方程運算求解;(2)先求出函數(shù)的導(dǎo)函數(shù),分和時,得出函數(shù)的單調(diào)性,從而只需要,即可求出答案.【詳解】(1)由,解得,所以,則,則,所以切線方程為,即.(2),當(dāng)時,在上單調(diào)遞減,不合題意,舍去;當(dāng)時,在單調(diào)遞減,在上單調(diào)遞增.由時,,時,,則,令,則,在單調(diào)遞增.又,時,,時,,,所以.3.已知函數(shù).(1)設(shè),證明:當(dāng)時,過原點O有且僅有一條直線與曲線相切;(2)若函數(shù)有兩個零點,求a的取值范圍.【答案】(1)證明過程見解析(2)【分析】(1)由題意設(shè)出切點,進一步將原問題轉(zhuǎn)換為證明當(dāng)時,方程有為一解,故只需證明即可;(2)對分類討論,即分和討論,結(jié)合導(dǎo)數(shù)與單調(diào)性的關(guān)系以及零點存在定理即可求解.【詳解】(1)當(dāng)時,,設(shè)過原點O的直線與曲線相切于點,則,變形得,設(shè),則,若,則當(dāng)時,恒有,此時方程有唯一解,所以過原點O有且僅有一條直線與曲線相切;當(dāng)時,由得,由得,所以此時,方程有唯一解,所以過原點O有且僅有一條直線與曲線相切;綜上所述,當(dāng)時,過原點O有且僅有一條直線與曲線相切;(2),由(1)知,當(dāng)時,,所以當(dāng)時,,當(dāng)時,,所以,此時最多有一個零點,不符合題意;當(dāng)時,由(1)可知,又,所以在內(nèi)各有一個零點,不妨設(shè)為,所以的導(dǎo)數(shù)有三個零點,當(dāng)或時,,當(dāng)或時,,所以的極大值,的極小值為,且,又當(dāng)或時,都有,所以恰在和各有一個零點,符合題意,綜上所述,a的取值范圍為.【點睛】關(guān)鍵點點睛:第二問的關(guān)鍵是分類討論,利用導(dǎo)數(shù)研究函數(shù)單調(diào)性以及最值即可順利得解.4.已知函數(shù)(為常數(shù)),函數(shù).(1)若函數(shù)有兩個零點,求實數(shù)的取值的范圍;(2)當(dāng),設(shè)函數(shù),若在上有零點,求的最小值.【答案】(1)(2)【分析】(1)利用導(dǎo)數(shù)確定函數(shù)的單調(diào)性,再根據(jù)函數(shù)有2個零點建立不等式求解即可.(2)由在上有零點可得方程,據(jù)此可看作在直線上,可轉(zhuǎn)化為點到原點距離的平方的最小值,利用導(dǎo)數(shù)求最小值即可.【詳解】(1),,①時,,則在上單調(diào)遞增,至多有一個零點.②時,令得,則在上單調(diào)遞增;令得,則在上單調(diào)遞減;若有2個零點,則需滿足,則,又,且,令,則,令,得,故在上單調(diào)遞增;令,得,故在上單調(diào)遞減;∴,則,即,則.故在上有唯一零點,在上有唯一零點,符合題意,所以為所求.(2)設(shè)函數(shù)在上的零點為,則,所以在直線上,設(shè)為坐標(biāo)原點,則,其最小值就是到直線的距離的平方,所以,又,∴,令,則,,∴在上單調(diào)遞減,,即,所以的最小值為.【點睛】關(guān)鍵點點睛:第(2)問中關(guān)鍵在于利用函數(shù)在上的零點為,得到方程后轉(zhuǎn)化為點在直線上,再利用的幾何意義求解.題型三:單調(diào)或者不單調(diào)型利用導(dǎo)數(shù)解決不含參數(shù)函數(shù)的單調(diào)性的步驟: ①確定函數(shù)的定義域; ②求; ③在定義域內(nèi)解不等式,得單調(diào)遞增區(qū)間; ④在定義域內(nèi)解不等式,得單調(diào)遞增區(qū)間. 利用導(dǎo)數(shù)解決已知函數(shù)的單調(diào)性求參數(shù)問題的一般方法: ①利用集合間的包含關(guān)系處理:在上單調(diào), 則區(qū)間是相應(yīng)單調(diào)區(qū)間的子集. ②為增函數(shù)的充要條件是對任意的都有且在內(nèi)的任一 非空子區(qū)間上,不恒為零,應(yīng)注意此時式子中的等號不能省略,否則漏解. ③函數(shù)在某一個區(qū)間存在單調(diào)區(qū)間可轉(zhuǎn)化為不等式有解問題.1.已知函數(shù).(1)若,證明:當(dāng)時,;(2)求所有的實數(shù),使得函數(shù)在上單調(diào).【答案】(1)證明見解析(2)【分析】(1)設(shè)(),對求導(dǎo),設(shè)(),對求導(dǎo),討論與的大小,可得,即可證明;(2)先求出為奇函數(shù),要使函數(shù)在上單調(diào),只要函數(shù)在上單調(diào),解法1:對求導(dǎo),由解出實數(shù),即可得出答案;解法2:討論,和結(jié)合零點存在性定理即可得出答案.【詳解】(1)設(shè)(),則,設(shè)(),則,顯然所以在上單調(diào)遞增,故,所以.則在上單調(diào)遞增,所以,因此(2)解法1:因為,所以為奇函數(shù).要使函數(shù)在上單調(diào),只要函數(shù)在上單調(diào).又.因為,所以函數(shù)在只能單調(diào)遞減,由,解得.下證當(dāng)時,在上單調(diào).由于是奇函數(shù),只要在單調(diào),因為,所以在單調(diào)遞減.解法2:因為,所以為奇函數(shù).要使函數(shù)在上單調(diào),只要函數(shù)在上單調(diào).又.(ⅰ)若,即時,,所以函數(shù)在上單調(diào)遞減,所以滿足題意;(ⅱ)若,則,故,所以由零點存在定理得存在,,使得當(dāng)時,,當(dāng)時,,所以在單調(diào)遞增,在單調(diào)遞減,因此不合題意;(ⅲ)若,則,故,所以由零點存在定理得存在,,使得當(dāng)時,,當(dāng)時,,所以在單調(diào)遞減,在單調(diào)遞增,因此不合題意;因此所求實數(shù)的取值范圍是.2.已知函數(shù).(1)若,求證:;(2)若函數(shù)在上不單調(diào),求實數(shù)的取值范圍.【答案】(1)證明見解析;(2).【分析】(1)當(dāng)時討論其單調(diào)性得出在上的最小值為,即證.(2)對求導(dǎo),對的取值范圍分類討論,結(jié)合對應(yīng)的單調(diào)性即可求出的取值范圍.【詳解】解:(1)當(dāng)時,,所以;當(dāng)時,,在區(qū)間上單調(diào)遞減;當(dāng)時,,在區(qū)間上單調(diào)遞增;所以是在區(qū)間上的最小值,所以.(2)依題意,.若,則當(dāng)時,,在區(qū)間上單調(diào)遞增,不合題意,舍去;若,令,則.因為時,,所以在上單調(diào)遞增.因為,而,所以存在,使得.此時函數(shù)在上單調(diào)遞減,在上單調(diào)遞增,符合條件;綜上所述,實數(shù)的取值范圍是.3.已知,函數(shù)(是自然對數(shù)的底數(shù)).(Ⅰ)若,證明:曲線沒有經(jīng)過點的切線;(Ⅱ)若函數(shù)在其定義域上不單調(diào),求的取值范圍;【答案】(Ⅰ)見解析(Ⅱ)【分析】(Ⅰ)假設(shè)存在切線經(jīng)過,設(shè)切點為,利用切線方程推出矛盾得到證明.(Ⅱ)函數(shù)在其定義域上不單調(diào),等價于有變號零點,取導(dǎo)數(shù)為0,參數(shù)分離,設(shè)新函數(shù)利用函數(shù)的單調(diào)性求取值范圍.【詳解】解:(Ⅰ)因為,所以,此時,設(shè)曲線在點處的切線經(jīng)過點則曲線在點處的切線所以 化簡得:令,則,所以當(dāng)時,,為減函數(shù),當(dāng)時, , 為增函數(shù),所以,所以無解所以曲線的切線都不經(jīng)過點(Ⅱ)函數(shù)的定義域為,因為,所以在定義域上不單調(diào),等價于有變號零點,令,得,令.因為,令,,所以是上的減函數(shù),又,故1是的唯一零點,當(dāng),,,遞增;當(dāng),,,遞減;故當(dāng)時,取得極大值且為最大值,所以,即的取值范圍是【點睛】本題考查了函數(shù)的切線問題,函數(shù)單調(diào)性問題,將在定義域上不單調(diào),等價于有變號零點,是解題的關(guān)鍵.4.已知函數(shù).(1)若直線與曲線相切,求的值;(2)若函數(shù)在上不單調(diào),且函數(shù)有三個零點,求的取值范圍.【答案】(1);(2).【詳解】分析:(1)設(shè)切點為,由題意結(jié)合導(dǎo)函數(shù)的幾何意義可得關(guān)于的方程,解方程可得或,結(jié)合題意可知,.(2)求導(dǎo)可得,利用導(dǎo)函數(shù)與原函數(shù)的單調(diào)性的關(guān)系可得.結(jié)合導(dǎo)函數(shù)的解析式可得的極大值為,的極小值為,據(jù)此可得關(guān)于a的不等式組,求解不等式組,結(jié)合函數(shù)的單調(diào)性可得的取值范圍.詳解:(1)設(shè)切點為,則,所以,解得或,當(dāng)時,,不合題意.當(dāng)時,,因為,所以.(2),因為在上不是單調(diào)函數(shù),所以.因為在,上單調(diào)遞增,在上單調(diào)遞減,所以的極大值為,的極小值為,函數(shù)有三個零點,即的圖象與直線有三個交點,所以,解得.點睛:本題主要考查導(dǎo)數(shù)研究函數(shù)的單調(diào)性,導(dǎo)數(shù)研究函數(shù)的極值等知識,意在考查學(xué)生的轉(zhuǎn)化能力和計算求解能力.題型四:常規(guī)型不等式的證明利用導(dǎo)數(shù)證明不等式問題,方法如下: (1)直接構(gòu)造函數(shù)法:證明不等式(或)轉(zhuǎn)化為證明(或),進而構(gòu)造輔助函數(shù); (2)適當(dāng)放縮構(gòu)造法:一是根據(jù)已知條件適當(dāng)放縮;二是利用常見放縮結(jié)論; (3)構(gòu)造“形似”函數(shù),稍作變形再構(gòu)造,對原不等式同解變形,根據(jù)相似結(jié)構(gòu)構(gòu)造輔助函數(shù).1.已知函數(shù).(1)若函數(shù)的圖象在處的切線與軸平行,求的值;(2)當(dāng)時,求證:.【答案】(1)(2)證明見解析【分析】(1)求得,根據(jù)題意,結(jié)合,即可求解;(2)構(gòu)造函數(shù),利用兩次求導(dǎo),結(jié)合隱零點求,再結(jié)合二次函數(shù)的性質(zhì)即可得解.【詳解】(1)由函數(shù),可得,可得,因為函數(shù)的圖象在處的切線與軸平行,可得,解得.(2)當(dāng)時,,令,則,令,則恒成立,所以在上單調(diào)遞增,且,由零點存在性定理可得存在,使得,即,當(dāng)時,單調(diào)遞減;當(dāng)時,單調(diào)遞增,所以,由二次函數(shù)性質(zhì)可得,所以,即.2.已知函數(shù).(1)求函數(shù)的最小值;(2)當(dāng),時,求證:.【答案】(1)0(2)證明見解析【分析】(1)求導(dǎo)確定函數(shù)的單調(diào)性即可求出最值;(2)令,由的單調(diào)性可知,變形可得到,結(jié)合(1)知即,即可證明.【詳解】(1),,在上單調(diào)遞減,的最小值為.(2)令,則.在上單調(diào)遞減,,又,,,又由(1)知,,.【點睛】思路點睛:利用導(dǎo)數(shù)證明不等式,經(jīng)常將所證不等式進行等價轉(zhuǎn)化,構(gòu)造新函數(shù),再借助函數(shù)的單調(diào)性求出最值或極值進行變形得到.3.已知函數(shù).(1)求函數(shù)的最小值;(2)當(dāng)時,求證:.【答案】(1)2(2)證明見解析【分析】(1)直接求導(dǎo)得函數(shù)單調(diào)性,進一步即可得解;(2)由(1)有,當(dāng)時,結(jié)論是平凡的,所以只需證明當(dāng)時,,構(gòu)造函數(shù)結(jié)合導(dǎo)數(shù)即可進一步得證.【詳解】(1),所以單調(diào)遞增,從而函數(shù)的最小值為.(2)由(1)當(dāng)時,,所以要證當(dāng)時,有,即,只需證,當(dāng)時,結(jié)論是顯然的,所以只需證當(dāng)時,,不妨設(shè)令,則,令,則,從而單調(diào)遞增,所以,從而單調(diào)遞增,所以,綜上所述,命題得證.【點睛】關(guān)鍵點點睛:第二問的關(guān)鍵是將原問題轉(zhuǎn)換為只需證當(dāng)時,,由此即可順利得解.4.已知函數(shù).(1)求函數(shù)的極值;(2)證明:.【答案】(1)極小值0,無極大值;(2)證明見解析.【分析】(1)利用導(dǎo)數(shù)求出函數(shù)的極值.(2)利用(1)中信息,構(gòu)建關(guān)于的不等式,再利用累加法求和即可.【詳解】(1)函數(shù)的定義域為,求導(dǎo)得,當(dāng)時,,當(dāng)時,,則函數(shù)在上遞減,在上遞增,所以函數(shù)在處取得極小值,無極大值.(2)證明:由(1)知,,即,,因此,當(dāng)且僅當(dāng)時取等號,令,,則,,而,所以.【點睛】關(guān)鍵點睛:證明第(2)問的數(shù)列不等式,利用第(1)的結(jié)論,變形構(gòu)造不等式,再結(jié)合累加法求和是解題之關(guān)鍵.題型五:不等式“恒成立”求參對于利用導(dǎo)數(shù)研究不等式的恒成立與有解問題的求解策略: 1、通常要構(gòu)造新函數(shù),利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,求出最值,從而求出參數(shù)的取值范圍; 2、利用可分離變量,構(gòu)造新函數(shù),直接把問題轉(zhuǎn)化為函數(shù)的最值問題. 3、根據(jù)恒成立或有解求解參數(shù)的取值時,一般涉及分離參數(shù)法,但壓軸試題中很少碰到分離參數(shù)后構(gòu)造的新函數(shù)能直接求出最值點的情況,進行求解,若參變分離不易求解問題,就要考慮利用分類討論法和放縮法,注意恒成立與存在性問題的區(qū)別.1.(23-24高三上·河南南陽·已知函數(shù)(1)當(dāng)時,求的最小值;(2)若關(guān)于x的不等式恒成立,求a的取值范圍.【答案】(1)(2)【分析】(1)由題意寫出函數(shù)解析式,利用導(dǎo)數(shù)研究其單調(diào)性,求得其最值;(2)根據(jù)函數(shù)解析式求得導(dǎo)數(shù),結(jié)合分類討論思想,可得答案.【詳解】(1)當(dāng)時,,則由,得,由,得,則在上單調(diào)遞減,在上單調(diào)遞增,故.(2)由題意可得.當(dāng)時,由,得,由,得,則在上單調(diào)遞減,在上單調(diào)遞增,故.因為不等式恒成立,所以,解得.當(dāng)時,,不符合題意.綜上,a的取值范圍是.2.(23-24高三上·湖南長沙·階段練習(xí))已知函數(shù).(1)求的單調(diào)區(qū)間;(2)若對于任意的恒成立,求實數(shù)的取值范圍.【答案】(1)遞增區(qū)間為,遞減區(qū)間為(2)【分析】(1)利用導(dǎo)數(shù)求解函數(shù)的單調(diào)區(qū)間即可;(2)由題知對于任意的恒成立,進而分和兩種情況討論即可得解.【詳解】(1)因為,則,令,則,即,解得的遞增區(qū)間為;令,則,即,解得的遞減區(qū)間為;所以的遞增區(qū)間為,遞減區(qū)間為.(2)因為對于任意的恒成立,所以對于任意的恒成立,當(dāng)時,;當(dāng)時,,令,所以,令,所以在上恒成立,所以在上單調(diào)遞減,所以,即在上恒成立所以在上單調(diào)遞減,所以,所以.綜上,實數(shù)的取值范圍為.3.(22-23高三·河南焦作)已知函數(shù),.(1)當(dāng)時,求函數(shù)的圖像在點處的切線方程;(2)若,求證:當(dāng)時,;(3)若對任意恒成立,求的取值范圍.【答案】(1)(2)證明見解析(3)【分析】(1)利用導(dǎo)數(shù)的意義求出斜率,再用點斜式求出直線方程;(2)恒成立問題,只需證明,構(gòu)造函數(shù),求導(dǎo)判斷單調(diào)性,求出最小值即可證明;(3)恒成立問題,構(gòu)造函數(shù),得到,求導(dǎo);再令分子等于,由二次函數(shù)的性質(zhì)得到,最后求出結(jié)果.【詳解】(1)當(dāng)時,,.所以,.所以函數(shù)的圖像在點處的切線方程為,即(2)證明:當(dāng)時,,,即證.令,則,所以在上單調(diào)遞增,所以,即.(3)由,令.首先由,此時,令.因為所以,所以恒成立,即.所以在遞增,故.綜上:的取值范圍.題型六:不等式“能成立”求參有解和恒成立求參問題常轉(zhuǎn)化為最值問題處理: (1)恒成立;有解; (2)恒成立;有解.1.(23-24高三·北京順義·階段練習(xí))已知函數(shù).(1)求曲線在點處的切線方程;(2)判斷函數(shù)在區(qū)間上的單調(diào)性;(3)是否存在,使得成立,若存在,求出的取值范圍;若不存在,請說明理由.【答案】(1);(2)遞增;(3)存在,.【分析】(1)求出函數(shù)的導(dǎo)數(shù),利用導(dǎo)數(shù)的幾何意義求出切線方程.(2)由導(dǎo)數(shù)值恒正判斷函數(shù)單調(diào)遞增.(3)假定存在,分離參數(shù)構(gòu)造函數(shù),利用導(dǎo)數(shù)探討最大值即可得解.【詳解】(1)函數(shù),求導(dǎo)得,則,而,所以曲線在點處的切線方程為.(2)當(dāng)時,,,因此,所以函數(shù)在區(qū)間上的單調(diào)遞增.(3)假定存在,使得成立,即存在,不等式成立,令,求導(dǎo)得,令,求導(dǎo)得,即函數(shù)在上遞增,則,即,于是,而,因此,函數(shù)在上單調(diào)遞增,,,則,所以的取值范圍是.2.(23-24高三山東·階段練習(xí))設(shè)函數(shù).(a,),滿足在和處取得極值.(1)求a、b的值;(2)若存在,使得不等式成立,求實數(shù)c的最小值.【答案】(1)(2)【分析】(1)函數(shù)在和處取得極值,所以且,從而求出a、b的值;(2)分離參數(shù)得,利用導(dǎo)數(shù)求出函數(shù)的最小值,從而求出c的最小值.【詳解】(1)因為,定義域為,所以,因為在和處取得極值,所以,且,解得,即所求a、b值均為;當(dāng)時,,令得,令得或,所以函數(shù)在上單調(diào)遞增,在上和上單調(diào)遞減,所以為函數(shù)的極小值點,為函數(shù)的極大值點,符合題意.(2)存在,使得不等式成立,則只需,由(1)知,,所以當(dāng)時,,函數(shù)單調(diào)遞減;當(dāng)時,,函數(shù)單調(diào)遞增;當(dāng)時,,函數(shù)單調(diào)遞減;所以在處有極小值,而,,又,因為,所以,所以,所以,即實數(shù)c的最小值為.3.(23-24高三·天津靜海·階段練習(xí))已知,(1)若對于任意的,都有成立,求的取值范圍;(2)若存在,使得成立,求的取值范圍;(3)若函數(shù),若存在,使得成立,求的取值范圍.【答案】(1)(2)(3)【分析】(1)恒成立求參問題,先分參后轉(zhuǎn)換成求具體函數(shù)的最值問題即可求出結(jié)果.(2)有解問題,解法同恒成立求參問題.(3)恒成立和有解問題統(tǒng)一轉(zhuǎn)化成最值問題解決.【詳解】(1)對于任意的,都有成立,則恒成立,即恒成立,又,所以當(dāng)時,恒成立,所以在上單調(diào)遞減,所以,所以,所以的取值范圍為.(2)存在,使得成立,即,使得成立,所以有解,又,所以當(dāng)時,恒成立,所以在上單調(diào)遞減,所以,所以,所以的取值范圍為.(3)存在,使得成立,即,使得,成立,令,則,所以當(dāng)時,恒成立,所以在上單調(diào)遞減,所以,所以,所以的取值范圍為.題型七:求整數(shù)型參數(shù)隱零點的處理思路: 第一步:用零點存在性定理判定導(dǎo)函數(shù)零點的存在性,其中難點是通過合理賦值,敏銳捕捉零點存在的區(qū)間,有時還需結(jié)合函數(shù)單調(diào)性明確零點的個數(shù); 第二步:虛設(shè)零點并確定取范圍,抓住零點方程實施代換,如指數(shù)與對數(shù)互換,超越函數(shù)與簡單函數(shù)的替換,利用同構(gòu)思想等解決,需要注意的是,代換可能不止一次.1.(22-23高三上·四川綿陽·階段練習(xí))已知函數(shù) .(1)求曲線 在點 處的切線方程(2)若 對任意的 恒成立,求滿足條件的實數(shù) 的最小整數(shù)值.【答案】(1).(2).【分析】(1)求出在處的導(dǎo)數(shù)值,求出,即可得出切線方程;(2)先由題意,將問題轉(zhuǎn)化為:得到,對任意的恒成立;,求出其導(dǎo)數(shù),得出存在,函數(shù)在區(qū)間上單調(diào)遞增,在區(qū)間上單調(diào)遞減,由隱零點的整體代換的處理方法可得出答案.【詳解】(1),,曲線 在點 處的切線方程為,即.(2)對任意的恒成立,,令 ,則函數(shù)在上單調(diào)遞增,. 在唯一,使得使得,即,且當(dāng)時,,即;當(dāng)時,,即.所以,函數(shù)在區(qū)間上單調(diào)遞增,在區(qū)間上單調(diào)遞減,∴,則在上單調(diào)遞增,所以,滿足條件的實數(shù)的最小整數(shù)值為.2.(23-24高三·吉林長春·階段練習(xí))已知函數(shù)在點處的切線方程為(1)求;(2)求的單調(diào)區(qū)間;(3)求使成立的最小整數(shù).【答案】(1)(2)在上單調(diào)遞增(3)【分析】(1)求得,結(jié)合,列出方程,即可求解;(2)由(1)知,令,求得,求得的單調(diào)性和,即可求解;(3)根據(jù)題意轉(zhuǎn)換為,令,結(jié)合,得到成立,再由時,轉(zhuǎn)化為,設(shè),利用導(dǎo)數(shù)求得函數(shù)的單調(diào)性,解得,即可求解.【詳解】(1)解:由函數(shù),可得因為函數(shù)在點處的切線方程為,可得,即且,解得.(2)解:由(1)知且,令,可得,當(dāng)時,,單調(diào)遞減;當(dāng)時,,單調(diào)遞增,所以,當(dāng)時,,即,則,所以函數(shù)在上單調(diào)遞增.(3)解:由不等式,即,令,可知,因為,則,可得,即,則,可知,且為整數(shù),所以成立(必要性);下面證明:時,恒成立,當(dāng)時,可得,即,因為,上式等價于,設(shè),可得,當(dāng)時,,單調(diào)遞增;當(dāng)時,,單調(diào)遞減,所以,所以時,不等式恒成立,綜上可得,實數(shù)的最小值為.3.(22-23高三·陜西渭南·)已知函數(shù)(1)若,討論的單調(diào)性.(2)當(dāng)時,都有成立,求整數(shù)的最大值.【答案】(1)答案見解析(2)1【分析】(1)求定義域,求導(dǎo),分與兩種情況,得到的單調(diào)性;(2)變形得到,令,,只需,求導(dǎo),結(jié)合隱零點得到的單調(diào)性和極值,最值情況,得到,從而求出整數(shù)的最大值.【詳解】(1),定義域為R,且,當(dāng)時,恒成立,故在R上單調(diào)遞增,當(dāng)時,令得,,此時單調(diào)遞增,令得,,此時單調(diào)遞減,綜上:當(dāng)時,在R上單調(diào)遞增,當(dāng)時,在上單調(diào)遞減,在上單調(diào)遞增;(2)由題意得,在上恒成立,因為,所以,故,令,,只需,,令,,則在上恒成立,故在上單調(diào)遞增,又,故存在,使得,即,當(dāng)時,,,單調(diào)遞減,當(dāng)時,,,單調(diào)遞增,故在處取得極小值,也是最小值,,所以,故整數(shù)的最大值為1.題型八:二次求導(dǎo)型函數(shù)與導(dǎo)數(shù)綜合簡答題常常以壓軸題的形式出現(xiàn),難度相對較大,主要考向有以下幾點: 1、求函數(shù)的單調(diào)區(qū)間(含參數(shù))或判斷函數(shù)(含參數(shù))的單調(diào)性; 2、求函數(shù)在某點處的切線方程,或知道切線方程求參數(shù); 3、求函數(shù)的極值(最值); 4、求函數(shù)的零點(零點個數(shù)),或知道零點個數(shù)求參數(shù)的取值范圍; 5、證明不等式. 解決方法:對函數(shù)進行求導(dǎo),結(jié)合函數(shù)導(dǎo)數(shù)與函數(shù)的單調(diào)性等性質(zhì)解決,在證明不等式或求參數(shù)取值范圍時,通常會對函數(shù)進行參變分離,構(gòu)造新函數(shù),對新函數(shù)求導(dǎo),再結(jié)合導(dǎo)數(shù)與單調(diào)性等解決.1.(23-24高三·山東淄博·階段練習(xí))已知函數(shù),.(1)討論的單調(diào)性;(2)若,試判斷函數(shù)與的圖象的交點個數(shù),并說明理由.【答案】(1)答案見解析(2)無交點,理由見解析【分析】(1)求導(dǎo)可得,分類討論當(dāng)、時函數(shù)對應(yīng)的單調(diào)性即可求解;(2)由得,令,利用二次導(dǎo)數(shù)討論函數(shù)的性質(zhì)可得,即可下結(jié)論.【詳解】(1)函數(shù)的定義域為R,且,當(dāng)時恒成立,所以在R上單調(diào)遞減,當(dāng)時,令,解得,所以當(dāng)時,當(dāng)時,所以的單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為,綜上可得:當(dāng)時在R上單調(diào)遞減;當(dāng)時的單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為.(2),則,令,即,令,則,令,則,所以當(dāng)時,則單調(diào)遞減,且,當(dāng)時,則單調(diào)遞增,又,,故當(dāng)時,所以當(dāng)時,則單調(diào)遞減,當(dāng)時,則單調(diào)遞增,所以,所以方程無實根,所以函數(shù)與的圖象無交點.2.(23-24高三下·江西撫州·階段練習(xí))已知函數(shù).(1)當(dāng)時,,求的取值范圍;(2)若在上單調(diào)遞增,求的取值范圍.【答案】(1)(2)【分析】(1)求導(dǎo)后,設(shè),再次求導(dǎo)后結(jié)合的單調(diào)性討論可得的單調(diào)性即可得解;(2)在上單調(diào)遞增,可轉(zhuǎn)化為在上恒成立,且在的任意子區(qū)間上不恒為0,令,對分類討論研究的單調(diào)性即可得的單調(diào)性,即可得解.【詳解】(1)當(dāng)時,,令,,當(dāng)時,,所以在上單調(diào)遞減,則,所以在上單調(diào)遞減,所以,即,因為,所以的取值范圍是;(2),在上單調(diào)遞增等價于在上恒成立,且在的任意子區(qū)間上不恒為0,令,則,當(dāng)時,因為,所以,令,則在上恒成立,所以在上單調(diào)遞增,所以,即在上恒成立,所以,則在上單調(diào)遞增,所以,則在上單調(diào)遞增,符合題意;當(dāng)時,令,則在上單調(diào)遞增,且,由零點存在定理可知,存在實數(shù),使得,所以當(dāng)時,0,即在上單調(diào)遞減,當(dāng)時,,此時,所以在上單調(diào)遞減,所以0,則在上單調(diào)遞減,不符合題意,舍去;當(dāng)時,因為,所以在上不恒成立,不符合題意,舍去.綜上,的取值范圍是.3.(23-24高三上·浙江寧波·期末)已知函數(shù),.(1)當(dāng)時,求函數(shù)的單調(diào)區(qū)間;(2)若在內(nèi)恒成立,求整數(shù)的最大值.【答案】(1)在上單調(diào)遞減,在上單調(diào)遞增.(2)【分析】(1)求得函數(shù)的定義域為,求得,分別解不等式、可得出函數(shù)的單調(diào)遞減區(qū)間和遞增區(qū)間;(2)分析可知不等式在時恒成立,利用導(dǎo)數(shù)求出函數(shù)在時的最小值,構(gòu)造,利用導(dǎo)數(shù)研究其單調(diào)性,求得時,即可求得整數(shù)的最大值.【詳解】(1)函數(shù)的定義域為,當(dāng)時,,,令,解得:;令,解得:;所以在上單調(diào)遞減,在上單調(diào)遞增.(2)由可得:,記,,①若,即,,則在上單調(diào)遞增,又時,,不合題意;②若,即,令,則,令,則,則在上單調(diào)遞減,在上單調(diào)遞增,,令,,則令,解得:,令,解得:;所以在上單調(diào)遞減,在上單調(diào)遞增,且,,故整數(shù)的最大值為.題型九:雙變量型構(gòu)造1.(23-24高三山東·階段練習(xí))已知函數(shù).(1)求函數(shù)的單調(diào)區(qū)間;(2)當(dāng)時(為大于0的常數(shù)),求的最大值;(3)若當(dāng)時,不等式恒成立,求的取值范圍.【答案】(1)單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為(2)答案見解析(3)【分析】(1)求導(dǎo),利用導(dǎo)數(shù)求原函數(shù)的單調(diào)區(qū)間;(2)分和兩種情況,結(jié)合(1)中的單調(diào)性求函數(shù)最值;(3)構(gòu)建,分析可知在上單調(diào)遞減,可得在上恒成立,結(jié)合函數(shù)單調(diào)性分析求解.【詳解】(1)由題意可知:的定義域為,且,令,解得;令,解得;所以函數(shù)的單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為.(2)由(1)可知:函數(shù)的單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為,當(dāng)時,,所以;當(dāng)時,在上單調(diào)遞減,所以.(3)當(dāng)時,不等式,即恒成立,令,則,可知在上單調(diào)遞減,可得,即恒成立,易知在內(nèi)單調(diào)遞減,所以,可得,所以的取值范圍為.2.(23-24高三 江蘇常州·階段練習(xí))已知函數(shù).(1)求函數(shù)的單調(diào)區(qū)間;(2)若對任意的,且,都有,求實數(shù)的取值范圍.【答案】(1)答案見解析(2)【分析】(1)根據(jù)題意,求得,分類討論,即可求解函數(shù)的單調(diào)區(qū)間;(2)設(shè),轉(zhuǎn)化為,等價于在上是增函數(shù),求得恒成立,進而求得的取值范圍.【詳解】(1)由函數(shù),可得,①若,當(dāng)時,,單調(diào)遞增;當(dāng)時,,單調(diào)遞減;②若時,可得,所以在上遞增,無遞減區(qū)間;③若,當(dāng)時,,單調(diào)遞增;當(dāng)時,,單調(diào)遞減;當(dāng)時,,單調(diào)遞增;④若,當(dāng)時,,單調(diào)遞增;當(dāng)時,,單調(diào)遞減;當(dāng)時,,單調(diào)遞增;所以,①當(dāng)時,增區(qū)間為,減區(qū)間為;②當(dāng)時,增區(qū)間為,無減區(qū)間;③當(dāng)時,增區(qū)間為,減區(qū)間為;④當(dāng)時,增區(qū)間為,減區(qū)間為.(2)由函數(shù),因為對任意的,且,都有,不妨設(shè),則等價于,設(shè),等價于在上是增函數(shù),因為,可得,依題意,對任意有恒成立,又由,可得,即實數(shù)的取值范圍為.3.(23-24高三·江蘇蘇州·階段練習(xí))已知函數(shù).(1)若函數(shù)在處取到極值,求實數(shù)a的值;(2)若,對于任意,當(dāng)時,不等式恒成立,求實數(shù)m的取值范圍.【答案】(1)1;(2).【分析】(1)根據(jù),求得,再進行驗證即可;(2)由題可得在單調(diào)遞減,則在恒成立,結(jié)合分離參數(shù)法,以及利用導(dǎo)數(shù)求函數(shù)最值,即可求得結(jié)果.【詳解】(1),,若函數(shù)在處取到極值,則,解得;又當(dāng)時,,,故當(dāng),,單調(diào)遞增;當(dāng),,單調(diào)遞減;當(dāng),,單調(diào)遞增;則當(dāng)時,滿足在處取到極值,故.(2)當(dāng)時,,,即,令;對于任意,當(dāng)時,不等式恒成立,即對于任意,當(dāng)時,恒成立,也即在單調(diào)遞減;又,故,由題可知,在恒成立,即在恒成立,也即在恒成立,令,則,又對稱軸為,其在單調(diào)遞減,,故在恒成立,則在單調(diào)遞減,又,則,也即的取值范圍為:.題型十:數(shù)列型不等式證明1.(23-24高三·遼寧沈陽·階段練習(xí))已知函數(shù).(1)求的單調(diào)區(qū)間;(2)對任意的,求證:.【答案】(1)遞減區(qū)間為,遞增區(qū)間為;(2)證明見解析.【分析】(1)求出函數(shù)的導(dǎo)數(shù),再由導(dǎo)數(shù)值的正負確定x值集合得解.(2)利用(1)的結(jié)論,賦值得,再利用不等式性質(zhì),結(jié)合對數(shù)運算求解即得.【詳解】(1)函數(shù)的定義域為,求導(dǎo)得,當(dāng)時,,當(dāng)時,,所以函數(shù)的遞減區(qū)間為,遞增區(qū)間為.(2)由(1)知在上單調(diào)遞增,當(dāng)時,,即:,令,得,化簡得:,于是有:,,,,相加得:,所以2.(23-24高三·湖北武漢·)已知函數(shù).(1)求的單調(diào)區(qū)間;(2)試證明,.【答案】(1)單調(diào)增區(qū)間為;單調(diào)減區(qū)間為(2)證明見解析【分析】(1)利用導(dǎo)數(shù)判斷單調(diào)性,進而得到單調(diào)區(qū)間;(2)根據(jù)(1)的結(jié)論,得到,進而得到,將裂成即可得證.【詳解】(1)的定義域為,,令,得,當(dāng)時,得,所以在上單調(diào)遞增;當(dāng)時,得,所以在上單調(diào)遞減;的單調(diào)增區(qū)間為;單調(diào)減區(qū)間為;(2)證明:由(1)知,在單調(diào)遞減,且,時,,即,當(dāng)時,用替換,得,即,即,,整理得,,.3.(23-24高三上·陜西·階段練習(xí))已知函數(shù),.(1)若函數(shù)在R上單調(diào)遞減,求a的取值范圍;(2)已知,,,,求證:;(3)證明:.【答案】(1)(2)證明見解析(3)證明見解析【分析】(1)由函數(shù)單調(diào)遞減得恒成立,分離參數(shù)法可得;(2)利用導(dǎo)數(shù)得函數(shù)單調(diào)性,由單調(diào)性證明不等式即可;(3)利用(2)結(jié)論,逐個賦值后累加法可證.【詳解】(1)對恒成立,即對恒成立.因為,則.(2),只需證明.令,,則在單調(diào)遞減,則,又,則,即成立,得證.(3)由(2)知,令,則有,即,,,…,,累加可得,故,從而命題得證.題型十一:老高考壓軸型導(dǎo)數(shù)題1.(【2014年全國普通高等學(xué)校招生統(tǒng)一考試文科數(shù)學(xué)(新課標(biāo)Ⅰ))設(shè)函數(shù),曲線處的切線斜率為0求b;若存在使得,求a的取值范圍.【答案】(1);(2).【詳解】試題分析:(1)根據(jù)曲線在某點處的切線與此點的橫坐標(biāo)的導(dǎo)數(shù)的對應(yīng)關(guān)系,可先對函數(shù)進行求導(dǎo)可得:,利用上述關(guān)系不難求得,即可得;(2)由第(1)小題中所求b,則函數(shù)完全確定下來,則它的導(dǎo)數(shù)可求出并化簡得:根據(jù)題意可得要對與的大小關(guān)系進行分類討論,則可分以下三類:(ⅰ)若,則,故當(dāng)時,,在單調(diào)遞增,所以,存在,使得的充要條件為,即,所以.(ⅱ)若,則,故當(dāng)時,;當(dāng)時,,在單調(diào)遞減,在單調(diào)遞增.所以,存在,使得的充要條件為,無解則不合題意.(ⅲ)若,則.綜上,a的取值范圍是.試題解析:(1),由題設(shè)知,解得.(2)的定義域為,由(1)知,,(ⅰ)若,則,故當(dāng)時,,在單調(diào)遞增,所以,存在,使得的充要條件為,即,所以.(ⅱ)若,則,故當(dāng)時,;當(dāng)時,,在單調(diào)遞減,在單調(diào)遞增.所以,存在,使得的充要條件為,而,所以不合題意.(ⅲ)若,則.綜上,a的取值范圍是.考點:1.曲線的切線方程;2.導(dǎo)數(shù)在研究函數(shù)性質(zhì)中的運用;3.分類討論的應(yīng)用2.(【2011年普通高等學(xué)校招生全國統(tǒng)一考試理科數(shù)學(xué)(新課標(biāo)卷))已知函數(shù),曲線在點處的切線方程為.(1)求、的值;(2)如果當(dāng),且時,,求的取值范圍.【答案】(1), (2)(-,0]【詳解】(1)由于直線的斜率為,且過點,故即解得,.(2)由(1)知,所以.考慮函數(shù),則.(i)設(shè),由知,當(dāng)時,,h(x)遞減.而故當(dāng)時,,可得;當(dāng)x(1,+)時,h(x)<0,可得 h(x)>0從而當(dāng)x>0,且x1時,f(x)-(+)>0,即f(x)>+.(ii)設(shè)00,故 (x)>0,而h(1)=0,故當(dāng)x(1,)時,h(x)>0,可得h(x)<0,與題設(shè)矛盾.(iii)設(shè)k1.此時,(x)>0,而h(1)=0,故當(dāng)x(1,+)時,h(x)>0,可得 h(x)<0,與題設(shè)矛盾.綜合得,k的取值范圍為(-,0]點評:求參數(shù)的范圍一般用離參法,然后用導(dǎo)數(shù)求出最值進行求解.若求導(dǎo)后不易得到極值點,可二次求導(dǎo),還不行時,就要使用參數(shù)討論法了.即以參數(shù)為分類標(biāo)準(zhǔn),看是否符合題意.求的答案.此題用的便是后者.3.(2012年全國普通高等學(xué)校招生統(tǒng)一考試理科數(shù)學(xué)(課標(biāo)卷))已知函數(shù)滿足滿足;(1)求的解析式及單調(diào)區(qū)間;(2)若,求的最大值.【答案】(1)的解析式為 且單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為(2)時,的最大值為【詳解】(1)令得:得:在 上單調(diào)遞增得: 的解析式為且單調(diào)遞增區(qū)間為 ,單調(diào)遞減區(qū)間為(2)得①當(dāng)時, 在上單調(diào)遞增時, 與矛盾②當(dāng)時,得:當(dāng)時,令;則當(dāng) 時,當(dāng)時, 的最大值為 展開更多...... 收起↑ 資源列表 2024年高考數(shù)學(xué)復(fù)習(xí)沖刺過關(guān)(新高考專用)培優(yōu)沖刺04 新結(jié)構(gòu)19題型卷導(dǎo)數(shù)大題“降溫”題型歸類(原卷版).docx 2024年高考數(shù)學(xué)復(fù)習(xí)沖刺過關(guān)(新高考專用)培優(yōu)沖刺04 新結(jié)構(gòu)19題型卷導(dǎo)數(shù)大題“降溫”題型歸類(解析版).docx 縮略圖、資源來源于二一教育資源庫