資源簡(jiǎn)介 磨尖課02 嵌套函數(shù)的零點(diǎn)問(wèn)題嵌套函數(shù)的零點(diǎn)問(wèn)題是很多學(xué)生難以跨越的一道“鴻溝”.求解時(shí)通常先“換元解套”,將復(fù)合函數(shù)拆解為兩個(gè)相對(duì)簡(jiǎn)單的函數(shù),再借助函數(shù)的圖象、性質(zhì)求解,下面我們一起探討如何跨越這道“鴻溝”.磨尖點(diǎn)一 求嵌套函數(shù)的零點(diǎn)個(gè)數(shù)(1)若函數(shù)f(x)=x3+ax2+bx+c有極值點(diǎn)x1,x2,且f(x1)=x1,則關(guān)于x的方程3[f(x)]2+2af(x)+b=0的不同實(shí)根的個(gè)數(shù)是( ).A.3 B.4 C.5 D.6(2)(2024·長(zhǎng)沙模擬)已知函數(shù)f(x)=則函數(shù)y=f(f(x)+1)的零點(diǎn)個(gè)數(shù)是( ).A.2 B.3 C.4 D.5答案 (1)A (2)D解析 (1)令f(x)=t,則3t2+2at+b=0.又由題意知f'(x)=3x2+2ax+b=0,兩根分別為x1,x2,即方程3t2+2at+b=0的根分別為x1,x2,所以f(x)=x1或f(x)=x2.如圖所示.由圖象可知f(x)=x1有2個(gè)解,f(x)=x2有1個(gè)解,因此方程3[f(x)]2+2af(x)+b=0的不同實(shí)根個(gè)數(shù)為3,故選A.(2)令t=f(x)+1=①當(dāng)t>0時(shí),f(t)=ln t-,則函數(shù)f(t)在(0,+∞)上單調(diào)遞增,因?yàn)閒(1)=-1<0,f(2)=ln 2->0,所以由零點(diǎn)存在定理可知,存在t1∈(1,2),使得f(t1)=0.②當(dāng)t≤0時(shí),f(t)=t2+2t,令f(t)=t2+2t=0,解得t2=-2,t3=0,作出函數(shù)t=f(x)+1的圖象,直線t=t1,t=-2,t=0,如圖所示,由圖象可知,直線t=t1與函數(shù)t=f(x)+1的圖象有兩個(gè)交點(diǎn),直線t=0與函數(shù)t=f(x)+1的圖象有兩個(gè)交點(diǎn),直線t=-2與函數(shù)t=f(x)+1的圖象有且只有一個(gè)交點(diǎn).綜上所述,函數(shù)y=f(f(x)+1)的零點(diǎn)個(gè)數(shù)為5.故選D.求嵌套函數(shù)零點(diǎn)個(gè)數(shù)的關(guān)鍵是“換元解套”.其易錯(cuò)點(diǎn)如下:①不理解函數(shù)f(x)與f(t)是同一個(gè)函數(shù);②畫(huà)錯(cuò)了f(x)的圖象;③誤將t的個(gè)數(shù)看作f(g(x))或a[f(x)]2+bf(x)+c的零點(diǎn)個(gè)數(shù).1.(多選題)(2024·保定模擬)已知函數(shù)f(x)=若g(x)=f(f(x))+1,則下列說(shuō)法正確的是( ).A.當(dāng)a>0時(shí),g(x)有4個(gè)零點(diǎn)B.當(dāng)a>0時(shí),g(x)有5個(gè)零點(diǎn)C.當(dāng)a<0時(shí),g(x)有1個(gè)零點(diǎn)D.當(dāng)a<0時(shí),g(x)有2個(gè)零點(diǎn)答案 AC解析 令f(x)=t,則f(t)+1=0.當(dāng)a≠0時(shí),由at+1+1=0得,t=-;由-|log3t|+1=0得,t=3或t=.當(dāng)a>0時(shí),t=-<0,符合題意.g(x)的零點(diǎn)個(gè)數(shù)等價(jià)于f(x)的圖象與曲線t=-、直線t=3和直線t=的交點(diǎn)個(gè)數(shù),作出f(x)的圖象,如圖1所示,由圖象可知,f(x)的圖象與曲線t=-、直線t=3和直線t=共有4個(gè)交點(diǎn),即g(x)有4個(gè)零點(diǎn),A正確,B錯(cuò)誤.當(dāng)a<0時(shí),t=->0,不符合題意,舍去,則g(x)的零點(diǎn)個(gè)數(shù)等價(jià)于f(x)的圖象與直線t=3和直線t=的交點(diǎn)個(gè)數(shù),作出f(x)的圖象,如圖2所示,由圖象可知,f(x)圖象與直線t=3和直線t=有且僅有1個(gè)交點(diǎn),即g(x)有且僅有1個(gè)零點(diǎn),C正確,D錯(cuò)誤.故選AC.2.(2024·鄭州模擬)已知函數(shù)f(x)=則函數(shù)g(x)=f(f(x))-2f(x)+1的零點(diǎn)個(gè)數(shù)是( ).A.4 B.5 C.6 D.7答案 B解析 令t=f(x),由g(x)=0,則f(t)-2t+1=0,分別作出y=f(x)的圖象和直線y=2x-1,如圖所示,由圖象可得y=f(x)的圖象與直線y=2x-1有兩個(gè)交點(diǎn),橫坐標(biāo)設(shè)為t1,t2,則t1=0,1所以f(x)=0有2個(gè)不等實(shí)根;當(dāng)1綜上,g(x)=0的實(shí)根個(gè)數(shù)為5,即函數(shù)g(x)=f(f(x))-2f(x)+1的零點(diǎn)個(gè)數(shù)是5.故選B.磨尖點(diǎn)二 由嵌套函數(shù)的零點(diǎn)個(gè)數(shù)情況求參數(shù)范圍(2024·云南模擬)已知函數(shù)f(x)=若函數(shù)g(x)=[f(f(x))]2-(a+1)·f(f(x))+a(a∈R)恰有8個(gè)不同零點(diǎn),則實(shí)數(shù)a的取值范圍是 . 答案 (0,1)解析 由已知得[f(f(x))-1][f(f(x))-a]=0,則f(f(x))=1或f(f(x))=a,作出f(x)的圖象,如圖,則若f(x)=1,解得x=0或x=2.設(shè)t=f(x),由f(f(x))=1得f(t)=1,此時(shí)t=0或t=2,當(dāng)t=0時(shí),f(x)=t=0,有2個(gè)根,當(dāng)t=2時(shí),f(x)=t=2,有1個(gè)根,則必須有f(f(x))=a(a≠1)有5個(gè)根.設(shè)t=f(x),由f(f(x))=a得f(t)=a,若a=0,則由f(t)=a=0得t=-1或t=1,f(x)=-1有1個(gè)根,f(x)=1有2個(gè)根,此時(shí)有3個(gè)根,不滿足條件.若a>1,則由f(t)=a得t>2,f(x)=t有1個(gè)根,不滿足條件.若a<0,則由f(t)=a得-2若0當(dāng)-1當(dāng)1故0解決形如f(g(x))或a[f(x)]2+bf(x)+c的函數(shù)零點(diǎn)問(wèn)題,其解題原理基本一致,都是通過(guò)換元思想和整體代換思想進(jìn)行求解,具體步驟:1.換元,令t=g(x)(t=f(x));2.求解函數(shù)g(t)(f(t))的零點(diǎn)或零點(diǎn)個(gè)數(shù);3.求解方程t=g(x)(t=f(x))的實(shí)根或?qū)嵏鶄€(gè)數(shù)或通過(guò)已知零點(diǎn)個(gè)數(shù)判斷參數(shù)的取值范圍.這種方法的實(shí)質(zhì)是將f(g(x))或y=a[f(x)]2+bf(x)+c的零點(diǎn)分拆成上述步驟1,2進(jìn)行求解.(2024·江蘇模擬)已知函數(shù)f(x)=(a+1)x2-bx+a,若函數(shù)f(x)有零點(diǎn),且與函數(shù)y=f(f(x))的零點(diǎn)完全相同,則實(shí)數(shù)b的取值范圍是 . 答案 (-4,0]解析 設(shè)x0為函數(shù)f(x)的一個(gè)零點(diǎn).因?yàn)楹瘮?shù)f(x)與y=f(f(x))有相同的零點(diǎn),所以f(f(x0))=f(0)=0,即a=0,所以f(x)=x2-bx.若b=0,則f(x)=x2與y=f(f(x))=f(x2)=x4有相同的零點(diǎn)0.滿足題意.若b≠0,則f(x)=x2-bx=x(x-b)有2個(gè)零點(diǎn),分別為0和b,所以y=f(f(x))也有2個(gè)零點(diǎn)0和b.又因?yàn)閒(x)=0有2個(gè)零點(diǎn),所以f(x)=b無(wú)實(shí)數(shù)解,即x2-bx=b無(wú)實(shí)數(shù)解,所以Δ=b2+4b<0,解得-4綜上,實(shí)數(shù)b的取值范圍為(-4,0].磨尖課02 嵌套函數(shù)的零點(diǎn)問(wèn)題嵌套函數(shù)的零點(diǎn)問(wèn)題是很多學(xué)生難以跨越的一道“鴻溝”.求解時(shí)通常先“換元解套”,將復(fù)合函數(shù)拆解為兩個(gè)相對(duì)簡(jiǎn)單的函數(shù),再借助函數(shù)的圖象、性質(zhì)求解,下面我們一起探討如何跨越這道“鴻溝”.磨尖點(diǎn)一 求嵌套函數(shù)的零點(diǎn)個(gè)數(shù)(1)若函數(shù)f(x)=x3+ax2+bx+c有極值點(diǎn)x1,x2,且f(x1)=x1,則關(guān)于x的方程3[f(x)]2+2af(x)+b=0的不同實(shí)根的個(gè)數(shù)是( ).A.3 B.4 C.5 D.6(2)(2024·長(zhǎng)沙模擬)已知函數(shù)f(x)=則函數(shù)y=f(f(x)+1)的零點(diǎn)個(gè)數(shù)是( ).A.2 B.3 C.4 D.5求嵌套函數(shù)零點(diǎn)個(gè)數(shù)的關(guān)鍵是“換元解套”.其易錯(cuò)點(diǎn)如下:①不理解函數(shù)f(x)與f(t)是同一個(gè)函數(shù);②畫(huà)錯(cuò)了f(x)的圖象;③誤將t的個(gè)數(shù)看作f(g(x))或a[f(x)]2+bf(x)+c的零點(diǎn)個(gè)數(shù).1.(多選題)(2024·保定模擬)已知函數(shù)f(x)=若g(x)=f(f(x))+1,則下列說(shuō)法正確的是( ).A.當(dāng)a>0時(shí),g(x)有4個(gè)零點(diǎn)B.當(dāng)a>0時(shí),g(x)有5個(gè)零點(diǎn)C.當(dāng)a<0時(shí),g(x)有1個(gè)零點(diǎn)D.當(dāng)a<0時(shí),g(x)有2個(gè)零點(diǎn)2.(2024·鄭州模擬)已知函數(shù)f(x)=則函數(shù)g(x)=f(f(x))-2f(x)+1的零點(diǎn)個(gè)數(shù)是( ).A.4 B.5 C.6 D.7磨尖點(diǎn)二 由嵌套函數(shù)的零點(diǎn)個(gè)數(shù)情況求參數(shù)范圍(2024·云南模擬)已知函數(shù)f(x)=若函數(shù)g(x)=[f(f(x))]2-(a+1)·f(f(x))+a(a∈R)恰有8個(gè)不同零點(diǎn),則實(shí)數(shù)a的取值范圍是 . 解決形如f(g(x))或a[f(x)]2+bf(x)+c的函數(shù)零點(diǎn)問(wèn)題,其解題原理基本一致,都是通過(guò)換元思想和整體代換思想進(jìn)行求解,具體步驟:1.換元,令t=g(x)(t=f(x));2.求解函數(shù)g(t)(f(t))的零點(diǎn)或零點(diǎn)個(gè)數(shù);3.求解方程t=g(x)(t=f(x))的實(shí)根或?qū)嵏鶄€(gè)數(shù)或通過(guò)已知零點(diǎn)個(gè)數(shù)判斷參數(shù)的取值范圍.這種方法的實(shí)質(zhì)是將f(g(x))或y=a[f(x)]2+bf(x)+c的零點(diǎn)分拆成上述步驟1,2進(jìn)行求解.(2024·江蘇模擬)已知函數(shù)f(x)=(a+1)x2-bx+a,若函數(shù)f(x)有零點(diǎn),且與函數(shù)y=f(f(x))的零點(diǎn)完全相同,則實(shí)數(shù)b的取值范圍是 . 展開(kāi)更多...... 收起↑ 資源列表 磨尖課02 嵌套函數(shù)的零點(diǎn)問(wèn)題 - 學(xué)生版.docx 磨尖課02 嵌套函數(shù)的零點(diǎn)問(wèn)題.docx 縮略圖、資源來(lái)源于二一教育資源庫(kù)