中文字幕精品无码一区二区,成全视频在线播放观看方法,大伊人青草狠狠久久,亚洲一区影音先锋色资源

教科版高中物理選擇性必修第一冊(cè)第二章2簡(jiǎn)諧運(yùn)動(dòng)的回復(fù)力及能量課件+學(xué)案

資源下載
  1. 二一教育資源

教科版高中物理選擇性必修第一冊(cè)第二章2簡(jiǎn)諧運(yùn)動(dòng)的回復(fù)力及能量課件+學(xué)案

資源簡(jiǎn)介

2.簡(jiǎn)諧運(yùn)動(dòng)的回復(fù)力及能量
1.知道回復(fù)力的概念,理解簡(jiǎn)諧運(yùn)動(dòng)的能量。
2.利用守恒觀點(diǎn)研究彈簧振子,分析能量轉(zhuǎn)化過(guò)程。
3.應(yīng)用動(dòng)力學(xué)方法和能量轉(zhuǎn)化思想分析彈簧振子回復(fù)力特點(diǎn)和能量變化規(guī)律。
4.經(jīng)歷探究彈簧振子系統(tǒng)的能量轉(zhuǎn)化過(guò)程。
5.培養(yǎng)學(xué)生比較、歸納分析問(wèn)題的思想方法。
知識(shí)點(diǎn)一 回復(fù)力
1.回復(fù)力
(1)定義:當(dāng)振動(dòng)質(zhì)點(diǎn)偏離平衡位置時(shí),受到的一個(gè)指向平衡位置的力。
(2)方向:指向平衡位置。
(3)表達(dá)式:F=-kx。
2.簡(jiǎn)諧運(yùn)動(dòng)的動(dòng)力學(xué)特征
做簡(jiǎn)諧運(yùn)動(dòng)的物體受到總是指向平衡位置,且大小與位移成正比的回復(fù)力的作用。
 公式F=-kx中k是比例系數(shù),并非彈簧的勁度系數(shù)(水平彈簧振子中的k才為彈簧的勁度系數(shù)),其值由振動(dòng)系統(tǒng)決定,與振幅無(wú)關(guān)。
 回復(fù)力為零時(shí),物體所受合外力一定為零嗎?
提示:不一定。
知識(shí)點(diǎn)二 簡(jiǎn)諧運(yùn)動(dòng)的能量轉(zhuǎn)化
1.振動(dòng)系統(tǒng)(彈簧振子)的狀態(tài)與能量的對(duì)應(yīng)關(guān)系
彈簧振子運(yùn)動(dòng)的過(guò)程就是動(dòng)能和勢(shì)能互相轉(zhuǎn)化的過(guò)程。
(1)在最大位移處,勢(shì)能最大,動(dòng)能為零。
(2)在平衡位置處,動(dòng)能最大,勢(shì)能為零。
2.簡(jiǎn)諧運(yùn)動(dòng)的能量特點(diǎn):在簡(jiǎn)諧運(yùn)動(dòng)中,振動(dòng)系統(tǒng)的機(jī)械能守恒,而在實(shí)際運(yùn)動(dòng)中都有一定的能量損耗,因此簡(jiǎn)諧運(yùn)動(dòng)是一種理想化的模型。
1:思考辨析(正確的打√,錯(cuò)誤的打×)
(1)回復(fù)力的方向總是與位移的方向相反。 (√)
(2)回復(fù)力的方向總是與速度方向相反。 (×)
(3)水平彈簧振子運(yùn)動(dòng)到平衡位置時(shí),回復(fù)力為零。 (√)
(4)水平彈簧振子做簡(jiǎn)諧運(yùn)動(dòng)時(shí)機(jī)械能守恒。 (√)
(5)做簡(jiǎn)諧運(yùn)動(dòng)的物體在平衡位置處動(dòng)能最大,在最大位移處動(dòng)能最小。 (√)
(6)做簡(jiǎn)諧運(yùn)動(dòng)的物體能量變化的周期等于簡(jiǎn)諧運(yùn)動(dòng)的周期。 (×)
2:填空
如圖所示的彈簧振子,O為平衡位置,B、C為最大位移位置,以向右的方向?yàn)檎较颍瑒t振子從B運(yùn)動(dòng)到O的過(guò)程中回復(fù)力方向?yàn)開(kāi)_____________,大小逐漸______________,動(dòng)能逐漸______________,勢(shì)能逐漸______________(均選填“正”“負(fù)”“增大”或“減小”)。
[答案] 負(fù) 減小 增大 減小
觀察水平彈簧振子的振動(dòng)。
問(wèn)題1:如圖所示,當(dāng)把振子從靜止的位置O拉開(kāi)一小段距離到A再放開(kāi)后,它為什么會(huì)在A—O —A′之間振動(dòng)呢?
問(wèn)題2:彈簧振子振動(dòng)時(shí),回復(fù)力與位移有什么關(guān)系呢?
提示:1.當(dāng)振子離開(kāi)平衡位置后,振子受到總是指向平衡位置的回復(fù)力作用,這樣振子就能不斷地振動(dòng)下去。
2.振子的回復(fù)力跟其偏離平衡位置的位移大小成正比,方向相反。
考點(diǎn)1 簡(jiǎn)諧運(yùn)動(dòng)的回復(fù)力
1.回復(fù)力的性質(zhì)
回復(fù)力是根據(jù)力的效果命名的,它可以是一個(gè)力,也可以是多個(gè)力的合力,還可以由某個(gè)力的分力提供。如圖甲所示,水平方向的彈簧振子,彈力充當(dāng)回復(fù)力;如圖乙所示,豎直方向的彈簧振子,彈力和重力的合力充當(dāng)回復(fù)力;如圖丙所示,m隨M一起振動(dòng),m的回復(fù)力是靜摩擦力。
 甲      乙        丙   
2.簡(jiǎn)諧運(yùn)動(dòng)的回復(fù)力的特點(diǎn)
(1)由F=-kx知,簡(jiǎn)諧運(yùn)動(dòng)的回復(fù)力大小與振子的相對(duì)平衡位置位移大小成正比,回復(fù)力的方向與位移的方向相反,即回復(fù)力的方向總是指向平衡位置。
(2)根據(jù)牛頓第二定律得,a==-x,表明彈簧振子做簡(jiǎn)諧運(yùn)動(dòng)時(shí)振子的加速度大小也與位移大小成正比,加速度方向與位移方向相反。
名師點(diǎn)睛:因x=A sin (ωt+φ),故回復(fù)力F=-kx=-kA sin (ωt+φ),可見(jiàn)回復(fù)力隨時(shí)間按正弦規(guī)律變化。
【典例1】 一質(zhì)量為m的小球,通過(guò)一根輕質(zhì)彈簧懸掛在天花板上,如圖所示。
(1)小球在振動(dòng)過(guò)程中的回復(fù)力實(shí)際上是_______________________________;
(2)該小球的振動(dòng)是否為簡(jiǎn)諧運(yùn)動(dòng)?
[解析] (1)此振動(dòng)過(guò)程的回復(fù)力實(shí)際上是彈簧的彈力與重力的合力。
(2)設(shè)振子的平衡位置為O,向下方向?yàn)檎较颍藭r(shí)彈簧已經(jīng)有了一個(gè)伸長(zhǎng)量h,設(shè)彈簧的勁度系數(shù)為k,由平衡條件得kh=mg ①
當(dāng)振子向下偏離平衡位置的距離為x時(shí),回復(fù)力即合外力為F回=mg-k(x+h) ②
將①代入②式得:F回=-kx,可見(jiàn)小球所受合外力與它的位移的關(guān)系符合簡(jiǎn)諧運(yùn)動(dòng)的受力特點(diǎn),該振動(dòng)系統(tǒng)的振動(dòng)是簡(jiǎn)諧運(yùn)動(dòng)。
[答案] (1)彈力和重力的合力 (2)是簡(jiǎn)諧運(yùn)動(dòng)
  判斷是否為簡(jiǎn)諧運(yùn)動(dòng)的方法
(1)以平衡位置為原點(diǎn),沿運(yùn)動(dòng)方向建立直線坐標(biāo)系。
(2)在振動(dòng)過(guò)程中任選一個(gè)位置(平衡位置除外),對(duì)振動(dòng)物體進(jìn)行受力分析。
(3)將力在振動(dòng)方向上分解,求出振動(dòng)方向上的合力。
(4)判定振動(dòng)方向上合外力(或加速度)與位移關(guān)系是否符合F=-kx(或a=-x),若符合,則為簡(jiǎn)諧運(yùn)動(dòng),否則不是簡(jiǎn)諧運(yùn)動(dòng)。
[跟進(jìn)訓(xùn)練]
1.(多選)如圖所示,彈簧振子在光滑水平桿上的A、B兩點(diǎn)之間做往復(fù)運(yùn)動(dòng),下列說(shuō)法正確的是(  )
A.彈簧振子在運(yùn)動(dòng)過(guò)程中受重力、支持力和彈簧彈力的作用
B.彈簧振子在運(yùn)動(dòng)過(guò)程中受重力、支持力、彈簧彈力和回復(fù)力作用
C.彈簧振子由A向O運(yùn)動(dòng)的過(guò)程中,回復(fù)力逐漸增大
D.彈簧振子由O向B運(yùn)動(dòng)的過(guò)程中,回復(fù)力的方向指向平衡位置
AD [回復(fù)力是根據(jù)力的效果命名的,不是做簡(jiǎn)諧運(yùn)動(dòng)的物體受到的具體的力,它是由物體受到的具體的力提供的,在此情境中彈簧振子受重力、支持力和彈簧彈力的作用,故A正確,B錯(cuò)誤;回復(fù)力與位移的大小成正比,彈簧振子由A向O運(yùn)動(dòng)的過(guò)程中位移在減小,則在此過(guò)程中回復(fù)力逐漸減小,故C錯(cuò)誤;回復(fù)力的方向總是指向平衡位置,故D正確。]
考點(diǎn)2 簡(jiǎn)諧運(yùn)動(dòng)的能量
1.簡(jiǎn)諧運(yùn)動(dòng)的能量
做簡(jiǎn)諧運(yùn)動(dòng)的物體在振動(dòng)中經(jīng)過(guò)某一位置時(shí)所具有的勢(shì)能和動(dòng)能之和,稱為簡(jiǎn)諧運(yùn)動(dòng)的能量。
2.對(duì)簡(jiǎn)諧運(yùn)動(dòng)的能量的理解注意以下幾點(diǎn)
決定因素 簡(jiǎn)諧運(yùn)動(dòng)的能量由振幅決定。
能量的獲得 最初的能量來(lái)自外部,通過(guò)外力做功獲得。
能量的轉(zhuǎn)化 系統(tǒng)只發(fā)生動(dòng)能和勢(shì)能的相互轉(zhuǎn)化,機(jī)械能守恒。
理想化模型 (1)力的角度:簡(jiǎn)諧運(yùn)動(dòng)不考慮阻力。 (2)能量轉(zhuǎn)化角度:簡(jiǎn)諧運(yùn)動(dòng)不考慮因克服阻力做功帶來(lái)的能量損耗。
3.決定能量大小的因素
振動(dòng)系統(tǒng)的機(jī)械能跟振幅有關(guān),對(duì)一個(gè)給定的振動(dòng)系統(tǒng),振幅越大,振動(dòng)越強(qiáng),振動(dòng)的機(jī)械能越大;振幅越小,振動(dòng)越弱,振動(dòng)的機(jī)械能越小。
名師點(diǎn)睛:(1)在振動(dòng)的一個(gè)周期內(nèi),動(dòng)能和勢(shì)能完成兩次周期性變化。
(2)振子運(yùn)動(dòng)經(jīng)過(guò)平衡位置兩側(cè)的對(duì)稱點(diǎn)時(shí),具有相等的動(dòng)能和相等的勢(shì)能。
【典例2】 如圖所示,一水平彈簧振子在A、B間做簡(jiǎn)諧運(yùn)動(dòng),平衡位置為O,已知振子的質(zhì)量為M。
(1)簡(jiǎn)諧運(yùn)動(dòng)的能量取決于______________,振子振動(dòng)時(shí)動(dòng)能和______________相互轉(zhuǎn)化,總機(jī)械能______________。
(2)若振子運(yùn)動(dòng)到B處時(shí)將一質(zhì)量為m的物體放到M的上面,且m和M無(wú)相對(duì)滑動(dòng)而一起運(yùn)動(dòng),下列說(shuō)法正確的是______________。
A.振幅不變 B.振幅減小
C.最大動(dòng)能不變 D.最大動(dòng)能減小
[解析] (1)簡(jiǎn)諧運(yùn)動(dòng)的能量取決于振幅,振子振動(dòng)時(shí)動(dòng)能和彈性勢(shì)能相互轉(zhuǎn)化,總機(jī)械能守恒。
(2)振子運(yùn)動(dòng)到B點(diǎn)時(shí)速度恰為零,此時(shí)放上m,系統(tǒng)的總能量即為此時(shí)彈簧儲(chǔ)存的彈性勢(shì)能,由于簡(jiǎn)諧運(yùn)動(dòng)中機(jī)械能守恒,所以振幅保持不變,A正確,B錯(cuò)誤;由于機(jī)械能守恒,所以最大動(dòng)能不變,C正確,D錯(cuò)誤。
[答案] (1)振幅 彈性勢(shì)能 守恒 (2)AC
 分析簡(jiǎn)諧運(yùn)動(dòng)中能量變化情況的技巧
(1)分析簡(jiǎn)諧運(yùn)動(dòng)中各物理量的變化情況時(shí),一定要以位移為橋梁,位移增大時(shí),振動(dòng)質(zhì)點(diǎn)的勢(shì)能均增大,動(dòng)能均減小;反之,則產(chǎn)生相反的變化。
(2)分析過(guò)程中要特別注意簡(jiǎn)諧運(yùn)動(dòng)的對(duì)稱性。位移相同時(shí),動(dòng)能相同、勢(shì)能相同。
[跟進(jìn)訓(xùn)練]
2. (多選)彈簧振子在水平方向做簡(jiǎn)諧運(yùn)動(dòng),下列說(shuō)法中正確的是(  )
A.振子在平衡位置時(shí),動(dòng)能最大,勢(shì)能最小
B.振子在最大位移處,勢(shì)能最大,動(dòng)能最小
C.振子在向平衡位置運(yùn)動(dòng)時(shí),由于振子振幅減小,故總機(jī)械能減小
D.在任意時(shí)刻,動(dòng)能與勢(shì)能之和保持不變
ABD [振子在平衡位置兩側(cè)做往復(fù)運(yùn)動(dòng),在最大位移處速度為零,動(dòng)能為零,此時(shí)彈簧形變量最大,勢(shì)能最大,B正確;在任意時(shí)刻,只有彈簧的彈力做功,所以動(dòng)能和勢(shì)能之和保持不變,D正確;振子在平衡位置時(shí)速度達(dá)到最大值,動(dòng)能最大,勢(shì)能最小,A正確;振幅的大小與振子的位置無(wú)關(guān),C錯(cuò)誤。]
1.(多選)彈簧振子在光滑水平面上做簡(jiǎn)諧運(yùn)動(dòng),在振子向平衡位置運(yùn)動(dòng)的過(guò)程中(  )
A.振子所受的回復(fù)力逐漸增大
B.振子的位移逐漸減小
C.振子的速度逐漸減小
D.振子的加速度逐漸減小
BD [該題考查的是回復(fù)力、加速度、速度隨位移的變化關(guān)系,應(yīng)根據(jù)牛頓第二定律進(jìn)行分析。當(dāng)振子向平衡位置運(yùn)動(dòng)時(shí),位移逐漸減小,而回復(fù)力與位移大小成正比,故回復(fù)力也減小;由牛頓第二定律a=可知加速度也減小;振子向著平衡位置運(yùn)動(dòng)時(shí),回復(fù)力與速度方向一致,即加速度與速度方向一致,故振子的速度逐漸增大。故正確答案為BD。]
2.(多選)一彈簧振子在水平方向上做簡(jiǎn)諧運(yùn)動(dòng),其位移x與時(shí)間t的關(guān)系曲線如圖所示,在t=3.2 s時(shí),振子的(  )
A.速度正在增大,加速度沿正方向且正在減小
B.速度正在減小,回復(fù)力沿負(fù)方向且正在增大
C.動(dòng)能正在轉(zhuǎn)化為勢(shì)能
D.勢(shì)能正在轉(zhuǎn)化為動(dòng)能
BC [當(dāng)t=3.2 s時(shí)振子正在向最大位移處運(yùn)動(dòng),位移為正,速度正在減小,加速度和回復(fù)力沿負(fù)方向且正在增大,振子動(dòng)能減小,彈簧彈性勢(shì)能增大,動(dòng)能正在轉(zhuǎn)化為勢(shì)能,BC正確,AD錯(cuò)誤。]
3.(新情境題,以釣魚的魚漂為背景,考查簡(jiǎn)諧運(yùn)動(dòng)的回復(fù)力)如圖為某魚漂的示意圖,魚漂上部可視為圓柱體。當(dāng)魚漂受到微小擾動(dòng)而上下振動(dòng),某釣友發(fā)現(xiàn)魚漂向下運(yùn)動(dòng)時(shí)圓柱體上的M點(diǎn)恰好可以到達(dá)水面,向上運(yùn)動(dòng)時(shí)圓柱體上的N點(diǎn)恰好可以露出水面。忽略水的阻力和水面波動(dòng)影響,則(  )
A.魚漂的振動(dòng)為簡(jiǎn)諧運(yùn)動(dòng)
B.魚漂振動(dòng)過(guò)程中機(jī)械能守恒
C.M點(diǎn)到達(dá)水面時(shí),魚漂的動(dòng)能最大
D.N點(diǎn)到達(dá)水面時(shí),魚漂的加速度最小
A [設(shè)魚漂靜止時(shí)水下部分的長(zhǎng)度為x0,根據(jù)平衡條件得mg=ρSx0g,取向下為正方向,魚漂從平衡位置再向下位移為x時(shí),魚漂的合力為F=mg-ρgS(x0+x),解得F=-ρgSx,設(shè)k=ρgS,則有F=-kx,魚漂的振動(dòng)為簡(jiǎn)諧運(yùn)動(dòng),A正確;魚漂振動(dòng)過(guò)程中水的浮力做功,所以魚漂的機(jī)械能不守恒,B錯(cuò)誤;M點(diǎn)到達(dá)水面時(shí),魚漂位于最低點(diǎn),魚漂的動(dòng)能最小等于零,C錯(cuò)誤;N點(diǎn)到達(dá)水面時(shí),魚漂位于最高點(diǎn),相對(duì)于平衡位置的位移最大,合力最大,魚漂的加速度最大,D錯(cuò)誤。故選A。]
回歸本節(jié)知識(shí),自我完成以下問(wèn)題:
1.簡(jiǎn)諧運(yùn)動(dòng)的回復(fù)力有什么特點(diǎn)?
提示:回復(fù)力是效果力,作用是使物體回到平衡位置,大小與位移大小成正比,方向與位移方向相反。
2.對(duì)于一個(gè)確定的振動(dòng)系統(tǒng),簡(jiǎn)諧運(yùn)動(dòng)的能量由什么決定?
提示:振幅,振幅越大,能量越大。
3.簡(jiǎn)諧運(yùn)動(dòng)的彈簧振子系統(tǒng)機(jī)械能是否守恒?
提示:守恒。
課時(shí)分層作業(yè)(七) 簡(jiǎn)諧運(yùn)動(dòng)的回復(fù)力及能量
?題組一 簡(jiǎn)諧運(yùn)動(dòng)的回復(fù)力
1.在某電影中有一種地心車,無(wú)需額外動(dòng)力就可以讓人在幾十分鐘內(nèi)到達(dá)地球的另一端,不考慮地球自轉(zhuǎn)的影響、車與軌道及空氣之間的摩擦,乘客和車的運(yùn)動(dòng)為簡(jiǎn)諧運(yùn)動(dòng),則(  )
A.乘客達(dá)到地心時(shí)的速度最大,加速度最大
B.乘客只有在地心處才處于完全失重狀態(tài)
C.乘客在地心處所受的回復(fù)力最小
D.乘客所受地球的萬(wàn)有引力大小與到地心的距離的平方成反比
C [乘客做簡(jiǎn)諧運(yùn)動(dòng),地心是簡(jiǎn)諧運(yùn)動(dòng)的平衡位置,此時(shí)回復(fù)力最小為零,乘客到達(dá)地心即到達(dá)平衡位置時(shí)速度最大,加速度最小為零,故A錯(cuò)誤,C正確;乘客在駛向地心的過(guò)程中全程處于完全失重狀態(tài),故B錯(cuò)誤;地心是簡(jiǎn)諧運(yùn)動(dòng)的平衡位置,乘客做簡(jiǎn)諧運(yùn)動(dòng),萬(wàn)有引力提供回復(fù)力,回復(fù)力與相對(duì)于平衡位置的位移大小即相對(duì)于地心的距離成正比,即乘客所受地球的萬(wàn)有引力大小與到地心的距離的成正比,故D錯(cuò)誤。故選C。]
2.如圖所示,能正確反映做簡(jiǎn)諧運(yùn)動(dòng)的物體所受回復(fù)力與位移關(guān)系的圖像是(  )
A   B   C   D
B [由F=-kx可知,回復(fù)力F與位移大小x成正比,方向與位移方向相反,故B正確。]
3.(多選)如圖甲所示的彈簧振子做簡(jiǎn)諧運(yùn)動(dòng),從某一時(shí)刻開(kāi)始計(jì)時(shí),規(guī)定豎直向上為正方向,彈簧對(duì)小球的彈力與運(yùn)動(dòng)時(shí)間的關(guān)系如圖乙所示,重力加速度為g,根據(jù)圖像所給的信息分析,下列說(shuō)法正確的是(  )
A.圖乙從小球處在平衡位置開(kāi)始計(jì)時(shí)
B.小球的質(zhì)量為
C.簡(jiǎn)諧運(yùn)動(dòng)的周期為t0
D.彈簧對(duì)小球彈力的最小值為2F1-F2
CD [當(dāng)彈力最大時(shí),小球處在最低點(diǎn),則題圖乙從小球處在最低點(diǎn)開(kāi)始計(jì)時(shí),故A錯(cuò)誤;由F-t圖像的上下對(duì)稱性可得,小球處在平衡位置時(shí),彈簧的彈力為F1,由回復(fù)力為0,可得F1=mg,解得小球的質(zhì)量m為,故B錯(cuò)誤;由F-t圖像的左右周期性可得T=t0,解得簡(jiǎn)諧運(yùn)動(dòng)的周期T為t0,故C正確;設(shè)小球在最高點(diǎn)時(shí),彈簧對(duì)小球的最小彈力為Fmin,由彈簧振子的回復(fù)力(合力)在最低點(diǎn)、最高點(diǎn)等大反向可得F2-mg=mg-Fmin,結(jié)合F1=mg,解得Fmin=2F1-F2,故D正確。故選C、D。]
?題組二 簡(jiǎn)諧運(yùn)動(dòng)的能量
4.(多選)把一個(gè)小球套在光滑細(xì)桿上,球與輕彈簧相連組成彈簧振子,小球沿桿在水平方向做簡(jiǎn)諧運(yùn)動(dòng),它圍繞平衡位置O在A、B間振動(dòng),如圖所示,下列結(jié)論正確的是(  )
A.小球在O位置時(shí),動(dòng)能最大,加速度最小
B.小球在A、B位置時(shí),動(dòng)能最小,加速度最大
C.小球從A經(jīng)O到B的過(guò)程中,回復(fù)力一直做正功
D.小球從B到O的過(guò)程中,振子振動(dòng)的能量不斷增加
AB [小球在平衡位置O時(shí),彈簧處于原長(zhǎng),彈性勢(shì)能為零,動(dòng)能最大,位移為零,加速度為零,A正確;在最大位移A、B處,動(dòng)能為零,加速度最大,B正確;由A→O,回復(fù)力做正功,由O→B,回復(fù)力做負(fù)功,C錯(cuò)誤;由B→O,動(dòng)能增加,彈性勢(shì)能減少,總能量不變,D錯(cuò)誤。]
5.如圖甲所示是一個(gè)浮漂改裝而成的浮力振子,振子上的刻度表示振子受到的浮力大小,某次在平靜水面的振動(dòng)中振子所受浮力F隨時(shí)間t變化如圖乙所示,則(  )
A.振子重力大小為F2
B.振子做簡(jiǎn)諧運(yùn)動(dòng)的最大回復(fù)力是F1
C.振子在0.5 s時(shí)的動(dòng)能最大
D.從0到0.5 s的過(guò)程中,振子向下運(yùn)動(dòng)
A [由題圖乙可知,振子重力大小為F2,選項(xiàng)A正確;振子做簡(jiǎn)諧運(yùn)動(dòng)的最大回復(fù)力是F1-F2,選項(xiàng)B錯(cuò)誤;振子在0.5 s時(shí)振子受浮力最小,則振子在最高點(diǎn),此時(shí)速度為零,動(dòng)能最小,選項(xiàng)C錯(cuò)誤;從0到0.5 s的過(guò)程中,振子從浮力最大位置向浮力最小位置振動(dòng),即振子向上運(yùn)動(dòng),選項(xiàng)D錯(cuò)誤。故選A。]
6.(多選)光滑斜面上有一物塊A被平行于斜面的輕質(zhì)彈簧拉住并靜止于O點(diǎn),如圖所示,現(xiàn)將A沿斜面拉到B點(diǎn)無(wú)初速釋放,物塊A在B、C之間做簡(jiǎn)諧運(yùn)動(dòng),則下列說(shuō)法正確的是(  )
A.物塊A在運(yùn)動(dòng)過(guò)程中機(jī)械能守恒
B.物塊A在C點(diǎn)時(shí)彈簧的彈性勢(shì)能最小
C.物塊A在C點(diǎn)時(shí)系統(tǒng)的勢(shì)能最大,在O點(diǎn)時(shí)系統(tǒng)的勢(shì)能最小
D.物塊A在B點(diǎn)時(shí)機(jī)械能最小
CD [在運(yùn)動(dòng)過(guò)程中,物塊A和彈簧組成的系統(tǒng)的機(jī)械能守恒,由于彈簧的彈性勢(shì)能是變化的,故物塊A的機(jī)械能不守恒,A錯(cuò)誤;當(dāng)物塊A被平行于斜面的輕質(zhì)彈簧拉住并靜止于O點(diǎn)時(shí),物塊A受到彈簧沿斜面向上的彈力,彈簧處于伸長(zhǎng)狀態(tài),結(jié)合簡(jiǎn)諧運(yùn)動(dòng)的對(duì)稱性可知,物塊A在B點(diǎn)時(shí)彈簧的伸長(zhǎng)量一定最大,而物塊A在C點(diǎn)時(shí),彈簧可能處于原長(zhǎng)狀態(tài),也可能處于壓縮狀態(tài)或伸長(zhǎng)狀態(tài),可知在C點(diǎn)時(shí),彈簧的彈性勢(shì)能不一定最小,故B錯(cuò)誤;物塊A和彈簧組成的系統(tǒng)的機(jī)械能守恒,物塊A在C點(diǎn)時(shí),動(dòng)能為零,故物塊A與彈簧構(gòu)成的系統(tǒng)的勢(shì)能(重力勢(shì)能和彈性勢(shì)能之和)最大,在O點(diǎn)時(shí),動(dòng)能最大,故勢(shì)能最小,C正確;物塊A和彈簧組成的系統(tǒng)的機(jī)械能守恒,物塊A在B點(diǎn)時(shí),彈簧的伸長(zhǎng)量最大,彈簧的彈性勢(shì)能最大,物塊A的機(jī)械能最小,故D正確。]
?題組三 簡(jiǎn)諧運(yùn)動(dòng)的綜合應(yīng)用
7.如圖所示,質(zhì)量為m的物體A放置在質(zhì)量為M的物體B上,B與彈簧相連,它們一起在光滑水平面上做簡(jiǎn)諧運(yùn)動(dòng),運(yùn)動(dòng)過(guò)程中A、B之間無(wú)相對(duì)運(yùn)動(dòng)。設(shè)彈簧的勁度系數(shù)為k。當(dāng)物體離開(kāi)平衡位置的位移為x時(shí),A、B間摩擦力的大小等于(  )
A.0 B.kx
C.kx D.kx
D [A、B整體做簡(jiǎn)諧運(yùn)動(dòng),則對(duì)整體有,回復(fù)力F=-kx,則整體的加速度a=。對(duì)于物體A,由牛頓第二定律可知,受到的摩擦力f=ma=-kx。D正確。]
8.(多選)如圖所示,豎直輕彈簧下端固定在水平面上,上端連一質(zhì)量為M的物塊A,A的上面置一質(zhì)量為m的物塊B,系統(tǒng)可在豎直方向做簡(jiǎn)諧運(yùn)動(dòng),則(  )
A.當(dāng)振動(dòng)到最低點(diǎn)時(shí),B對(duì)A的壓力最大
B.當(dāng)振動(dòng)到最高點(diǎn)時(shí),B對(duì)A的壓力最小
C.當(dāng)向上振動(dòng)經(jīng)過(guò)平衡位置時(shí),B對(duì)A的壓力最大
D.當(dāng)向下振動(dòng)經(jīng)過(guò)平衡位置時(shí),B對(duì)A的壓力最大
AB [當(dāng)系統(tǒng)做簡(jiǎn)諧運(yùn)動(dòng)時(shí),A、B均做簡(jiǎn)諧運(yùn)動(dòng),B做簡(jiǎn)諧運(yùn)動(dòng)的回復(fù)力由B的重力和A對(duì)B的支持力的合力提供,要判斷B對(duì)A的壓力大小,根據(jù)牛頓第三定律可知,只要判斷出A對(duì)B支持力的大小即可。設(shè)最大加速度為am,根據(jù)簡(jiǎn)諧運(yùn)動(dòng)的對(duì)稱性可知,在最高點(diǎn)和最低點(diǎn)加速度的大小都是am,最高點(diǎn)時(shí)am向下,最低點(diǎn)時(shí)am向上,在經(jīng)平衡位置時(shí)a=0。對(duì)于B物體,由牛頓第二定律可得,在最高點(diǎn)時(shí)有mg-F高=mam,得F高=mg-mam,在最低點(diǎn)時(shí)有F低-mg=mam,得F低=mg+mam。在經(jīng)過(guò)平衡位置時(shí)有F平-mg=0,即F平=mg,可知F低>F平>F高。因此可知在最高點(diǎn)時(shí)B對(duì)A的壓力最小,在最低點(diǎn)時(shí)B對(duì)A的壓力最大。故A、B正確。]
9.如圖所示,在光滑水平面上,用兩根勁度系數(shù)分別為k1與k2的輕彈簧系住一個(gè)質(zhì)量為m的小球,開(kāi)始時(shí),兩彈簧均處于原長(zhǎng),然后使小球向左偏離x后放手,可以看到小球在水平面上做往復(fù)運(yùn)動(dòng),試問(wèn):小球是否做簡(jiǎn)諧運(yùn)動(dòng)?
[解析] 以小球?yàn)檠芯繉?duì)象進(jìn)行受力分析,小球在豎直方向處于受力平衡狀態(tài),水平方向受到兩根彈簧的彈力作用。設(shè)小球位于平衡位置左方某處時(shí),偏離平衡位置的位移為x。
左方彈簧受壓,對(duì)小球的彈力大小為
F1=k1x,方向向右
右方彈簧被拉,對(duì)小球的彈力大小為
F2=k2x,方向向右
小球所受的回復(fù)力等于兩個(gè)彈力的合力,其大小為F=F1+F2=(k1+k2)x,方向向右
令k=k1+k2
上式可寫成F=kx
由于小球所受回復(fù)力的方向與位移x的方向相反,考慮方向后,上式可表示為F=-kx。
所以小球?qū)⒃趦筛鶑椈傻淖饔孟拢谒矫鎯?nèi)做簡(jiǎn)諧運(yùn)動(dòng)。
[答案] 是
1.(多選)如圖所示為一款近期火爆的玩具“彈簧小人”,由頭部、彈簧及底部組成,頭部質(zhì)量為m,彈簧質(zhì)量不計(jì),勁度系數(shù)為k,底部質(zhì)量為,開(kāi)始彈簧小人靜止于桌面上,現(xiàn)輕壓頭部后由靜止釋放,小人不停上下振動(dòng),已知當(dāng)彈簧形變量為x時(shí),其彈性勢(shì)能Ep=kx2,不計(jì)一切摩擦和空氣阻力,重力加速度為g,彈簧始終在彈性限度內(nèi),則下列判斷中正確的是(  )
A.若剛釋放時(shí)頭部的加速度大小為g,則小人在振動(dòng)過(guò)程中底部能離開(kāi)桌面
B.若剛釋放時(shí)頭部的加速度大小為g,則小人在運(yùn)動(dòng)過(guò)程中頭部的最大速度為g
C.若小人在振動(dòng)過(guò)程中底部恰好不能離開(kāi)桌面,頭部在最高點(diǎn)的加速度為g
D.若小人在振動(dòng)過(guò)程中底部恰好不能離開(kāi)桌面,則輕壓頭部釋放時(shí)彈簧的壓縮量為
BC [設(shè)頭部在初始位置時(shí)彈簧的壓縮量為x0,對(duì)頭部列平衡方程可得mg=kx0,施加力F后彈簧再壓縮x,頭部的平衡方程為F+mg=k(x0+x),若剛釋放時(shí)頭部的加速度大小為g,根據(jù)牛頓第二定律得k(x0+x)-mg=mg,則F=mg,聯(lián)立可得kx=mg,撤去力F的瞬間,頭部所受的回復(fù)力為F回=k(x0+x)-mg=kx,當(dāng)頭部向上運(yùn)動(dòng)到距離初始位置上方x處時(shí),由對(duì)稱性知F回=kx,而kx=mg,可見(jiàn)頭部所受彈簧彈力恰好是零,以底部為研究對(duì)象,受力分析知地面對(duì)底部的支持力為N=g,因此小人在振動(dòng)過(guò)程中底部不能離開(kāi)桌面,A錯(cuò)誤;剛釋放時(shí)彈簧的形變量為x1=,彈簧振子在平衡位置時(shí)的動(dòng)能最大,根據(jù)能量守恒得Ekm==,此時(shí)頭部的動(dòng)能為Ekm=,解得小人在運(yùn)動(dòng)過(guò)程中頭部的最大速度為g,B正確;若小人在振動(dòng)過(guò)程中底部恰好不能離開(kāi)桌面,即當(dāng)頭部在最高點(diǎn)時(shí),底部受到桌面的彈力為0,受力分析得彈簧此時(shí)的彈力等于底部的重力,kx2=mg,此時(shí)對(duì)頭部受力分析,根據(jù)牛頓第二定律有mg+kx2=ma,故頭部在最高點(diǎn)的加速度為g,C正確;若小人在振動(dòng)過(guò)程中底部恰好不能離開(kāi)桌面,開(kāi)始施加力F′后彈簧再壓縮x′,頭部的平衡方程為F′+mg=k(x0+x′),由對(duì)稱性可知F′=ma=mg,則輕壓頭部釋放時(shí)彈簧的壓縮量為Δx=x0+x′=,D錯(cuò)誤。故選BC。]
2.某同學(xué)用如圖所示裝置探究勻速圓周運(yùn)動(dòng)與簡(jiǎn)諧運(yùn)動(dòng)間的關(guān)系。長(zhǎng)為L(zhǎng)的輕質(zhì)細(xì)線一端與質(zhì)量為m的小球連接,另一端固定在光滑水平面上的O點(diǎn),在水平面上合適位置豎直放置一光屏。先將小球移到使細(xì)線伸直且與光屏平行的位置,t=0時(shí)刻給小球一個(gè)沿水平面垂直于細(xì)線的初速度v0,使小球在水平面內(nèi)做勻速圓周運(yùn)動(dòng);與此同時(shí),用一束平行光垂直光屏照射,小球在光屏上的影子做往復(fù)運(yùn)動(dòng),關(guān)于小球影子的運(yùn)動(dòng),下列說(shuō)法正確的是(  )
A.小球的影子做簡(jiǎn)諧運(yùn)動(dòng)的振幅為2L
B.小球的影子做簡(jiǎn)諧運(yùn)動(dòng)的頻率為f=
C.小球的影子做簡(jiǎn)諧運(yùn)動(dòng)的運(yùn)動(dòng)學(xué)方程為x=L sin t
D.小球的影子做簡(jiǎn)諧運(yùn)動(dòng)的虛擬回復(fù)力為F=x
D [由題圖可知,小球的影子做簡(jiǎn)諧運(yùn)動(dòng)的振幅等于細(xì)線的長(zhǎng)度L,故A錯(cuò)誤;由題可知,小球的影子做簡(jiǎn)諧運(yùn)動(dòng)的周期等于小球做勻速圓周運(yùn)動(dòng)的周期,則有T=,則頻率為f==,故B錯(cuò)誤;設(shè)小球的影子做簡(jiǎn)諧運(yùn)動(dòng)的運(yùn)動(dòng)學(xué)方程為x=A cos ωt,由題知A=L,ω=,則有x=L cos t,故C錯(cuò)誤;設(shè)當(dāng)球轉(zhuǎn)到圖中B點(diǎn)時(shí)OB與OO′的夾角為α,B點(diǎn)在光屏的投影點(diǎn)B′與O′的距離為x,則在B點(diǎn)有FT=,將拉力分解,可知拉力平行光屏方向的分力為F=FT sin α,由幾何關(guān)系可知sin α=,聯(lián)立解得F=x,又根據(jù)簡(jiǎn)諧運(yùn)動(dòng)的特點(diǎn)可知,回復(fù)力與位移方向相反,則小球的影子做簡(jiǎn)諧運(yùn)動(dòng)的虛擬回復(fù)力為F=x,故D正確。故選D。
]
3.如圖所示,一輕彈簧一端固定,另一端連接一物塊構(gòu)成彈簧振子, 該物塊是由a、b兩個(gè)小物塊粘在一起組成的。物塊在光滑水平面上左右振動(dòng),振幅為A0,周期為T0。當(dāng)物塊向右通過(guò)平衡位置時(shí),a、b之間的粘膠脫開(kāi);以后小物塊a振動(dòng)的振幅和周期分別為A和T,則A______________A0(選填“>”“<”或“=”),T______________T0(選填“>”“<”或“=”)。
[解析] 彈簧振子通過(guò)平衡位置時(shí)彈性勢(shì)能為零,動(dòng)能最大。向右通過(guò)平衡位置,a由于受到彈簧彈力做減速運(yùn)動(dòng),b做勻速運(yùn)動(dòng),兩者分離。小物塊a與彈簧組成的系統(tǒng)的機(jī)械能小于原來(lái)系統(tǒng)的機(jī)械能,所以小物塊a振動(dòng)的振幅減小,A<A0。由于振子質(zhì)量減小,小物塊a的加速度的大小增大,所以周期減小,T<T0。
[答案] < <
4.如圖所示,勁度系數(shù)為k=100 N/m的足夠長(zhǎng)豎直輕彈簧,一端固定在地面上,另一端與質(zhì)量m=1 kg的物體A相連,質(zhì)量M=2 kg的物體B與物體A用跨過(guò)光滑定滑輪的輕繩相連,整個(gè)系統(tǒng)靜止,A、B等高。剪斷輕繩,A在豎直方向做簡(jiǎn)諧運(yùn)動(dòng),B做自由落體運(yùn)動(dòng)。已知彈簧振子的周期公式為T=2π(m為振子質(zhì)量,K為回復(fù)力與位移的比例系數(shù),本題中K等于彈簧的勁度系數(shù)k),重力加速度g取10 m/s2求:
(1)剪斷輕繩瞬間,物體A的加速度大小a;
(2)物體A從最高點(diǎn)第一次到最低點(diǎn)的時(shí)間t;
(3)物體A做簡(jiǎn)諧運(yùn)動(dòng)過(guò)程中的最大動(dòng)能Ek。
[解析] (1)當(dāng)系統(tǒng)靜止時(shí),有
T=Mg
T=mg+kx1
則剪斷輕繩時(shí),由牛頓第二定律可知
mg+kx1=ma
聯(lián)立解得
x1=0.1 m,a=20 m/s2。
(2)彈簧振子的周期公式為
T=2π= s
第一次運(yùn)動(dòng)到最低點(diǎn)所用的時(shí)間為半個(gè)周期,即
t=0.5T= s。
(3)剪斷繩子時(shí),物體A速度為零,位于簡(jiǎn)諧運(yùn)動(dòng)的最高點(diǎn),當(dāng)彈簧彈力等于A的重力時(shí),A位于簡(jiǎn)諧運(yùn)動(dòng)的平衡位置,設(shè)此時(shí)彈簧的壓縮量為x2,則
kx2=mAg
振幅為x=x1+x2
聯(lián)立可得x2=0.1 m,x=0.2 m
物體A在整個(gè)運(yùn)動(dòng)過(guò)程中,在平衡位置處動(dòng)能最大,彈簧在平衡位置時(shí)的形變量與在最高點(diǎn)時(shí)的形變量相等,即彈性勢(shì)能相等,則由功能關(guān)系得
Ek=mgx=2 J。
[答案] (1)20 m/s2 (2) s (3)2 J
21世紀(jì)教育網(wǎng)(www.21cnjy.com)(共32張PPT)
2.簡(jiǎn)諧運(yùn)動(dòng)的回復(fù)力及能量
第二章 機(jī)械運(yùn)動(dòng)
學(xué)習(xí)任務(wù)
1.知道回復(fù)力的概念,理解簡(jiǎn)諧運(yùn)動(dòng)的能量。
2.利用守恒觀點(diǎn)研究彈簧振子,分析能量轉(zhuǎn)化過(guò)程。
3.應(yīng)用動(dòng)力學(xué)方法和能量轉(zhuǎn)化思想分析彈簧振子回復(fù)力特點(diǎn)和能量變化規(guī)律。
4.經(jīng)歷探究彈簧振子系統(tǒng)的能量轉(zhuǎn)化過(guò)程。
5.培養(yǎng)學(xué)生比較、歸納分析問(wèn)題的思想方法。
必備知識(shí)·自主預(yù)習(xí)儲(chǔ)備
知識(shí)點(diǎn)一 回復(fù)力
1.回復(fù)力
(1)定義:當(dāng)振動(dòng)質(zhì)點(diǎn)偏離平衡位置時(shí),受到的一個(gè)指向__________的力。
(2)方向:指向__________。
(3)表達(dá)式:F=______。
平衡位置
平衡位置
-kx
2.簡(jiǎn)諧運(yùn)動(dòng)的動(dòng)力學(xué)特征
做簡(jiǎn)諧運(yùn)動(dòng)的物體受到總是指向__________,且大小與位移成正比的回復(fù)力的作用。
平衡位置
提醒 公式F=-kx中k是比例系數(shù),并非彈簧的勁度系數(shù)(水平彈簧振子中的k才為彈簧的勁度系數(shù)),其值由振動(dòng)系統(tǒng)決定,與振幅無(wú)關(guān)。
思考 回復(fù)力為零時(shí),物體所受合外力一定為零嗎?
提示:不一定。
知識(shí)點(diǎn)二 簡(jiǎn)諧運(yùn)動(dòng)的能量轉(zhuǎn)化
1.振動(dòng)系統(tǒng)(彈簧振子)的狀態(tài)與能量的對(duì)應(yīng)關(guān)系
彈簧振子運(yùn)動(dòng)的過(guò)程就是______和______互相轉(zhuǎn)化的過(guò)程。
(1)在最大位移處,______最大,______為零。
(2)在平衡位置處,______最大,______為零。
2.簡(jiǎn)諧運(yùn)動(dòng)的能量特點(diǎn):在簡(jiǎn)諧運(yùn)動(dòng)中,振動(dòng)系統(tǒng)的機(jī)械能______,而在實(shí)際運(yùn)動(dòng)中都有一定的能量損耗,因此簡(jiǎn)諧運(yùn)動(dòng)是一種________的模型。
動(dòng)能
勢(shì)能
勢(shì)能
動(dòng)能
動(dòng)能
勢(shì)能
守恒
理想化
體驗(yàn) 1:思考辨析(正確的打√,錯(cuò)誤的打×)
(1)回復(fù)力的方向總是與位移的方向相反。 (  )
(2)回復(fù)力的方向總是與速度方向相反。 (  )
(3)水平彈簧振子運(yùn)動(dòng)到平衡位置時(shí),回復(fù)力為零。 (  )
(4)水平彈簧振子做簡(jiǎn)諧運(yùn)動(dòng)時(shí)機(jī)械能守恒。 (  )
(5)做簡(jiǎn)諧運(yùn)動(dòng)的物體在平衡位置處動(dòng)能最大,在最大位移處動(dòng)能最小。 (  )
(6)做簡(jiǎn)諧運(yùn)動(dòng)的物體能量變化的周期等于簡(jiǎn)諧運(yùn)動(dòng)的周期。 (  )

×



×
2:填空
如圖所示的彈簧振子,O為平衡位置,B、C為最大位移位置,以向右的方向?yàn)檎较颍瑒t振子從B運(yùn)動(dòng)到O的過(guò)程中回復(fù)力方向?yàn)開(kāi)_____,大小逐漸______,動(dòng)能逐漸_______,勢(shì)能逐漸______(均選填“正”“負(fù)”“增大”或“減小”)。
負(fù)
減小
增大
減小
關(guān)鍵能力·情境探究達(dá)成
觀察水平彈簧振子的振動(dòng)。
問(wèn)題1:如圖所示,當(dāng)把振子從靜止的位置O拉開(kāi)一小段距離到A再放開(kāi)后,它為什么會(huì)在A—O —A′之間振動(dòng)呢? 
問(wèn)題2:彈簧振子振動(dòng)時(shí),回復(fù)力與位移有什么關(guān)系呢?
提示:1.當(dāng)振子離開(kāi)平衡位置后,振子受到總是指向平衡位置的回復(fù)力作用,這樣振子就能不斷地振動(dòng)下去。
2.振子的回復(fù)力跟其偏離平衡位置的位移大小成正比,方向相反。
考點(diǎn)1 簡(jiǎn)諧運(yùn)動(dòng)的回復(fù)力
1.回復(fù)力的性質(zhì)
回復(fù)力是根據(jù)力的效果命名的,它可以是一個(gè)力,也可以是多個(gè)力的合力,還可以由某個(gè)力的分力提供。如圖甲所示,水平方向的彈簧振子,彈力充當(dāng)回復(fù)力;如圖乙所示,豎直方向的彈簧振子,彈力和重力的合力充當(dāng)回復(fù)力;如圖丙所示,m隨M一起振動(dòng),m的回復(fù)力是靜摩擦力。
 甲     乙       丙    
名師點(diǎn)睛:因x=A sin (ωt+φ),故回復(fù)力F=-kx=-kA sin (ωt+φ),可見(jiàn)回復(fù)力隨時(shí)間按正弦規(guī)律變化。
【典例1】 一質(zhì)量為m的小球,通過(guò)一根輕質(zhì)彈簧懸掛在天花板上,如圖所示。
(1)小球在振動(dòng)過(guò)程中的回復(fù)力實(shí)際上是___________________;
(2)該小球的振動(dòng)是否為簡(jiǎn)諧運(yùn)動(dòng)?
彈力和重力的合力
[答案] 是簡(jiǎn)諧運(yùn)動(dòng)
[解析] (1)此振動(dòng)過(guò)程的回復(fù)力實(shí)際上是彈簧的彈力與重力的合力。
(2)設(shè)振子的平衡位置為O,向下方向?yàn)檎较颍藭r(shí)彈簧已經(jīng)有了一個(gè)伸長(zhǎng)量h,設(shè)彈簧的勁度系數(shù)為k,由平衡條件得kh=mg ①
當(dāng)振子向下偏離平衡位置的距離為x時(shí),回復(fù)力即合外力為F回=mg-k(x+h) ②
將①代入②式得:F回=-kx,可見(jiàn)小球所受合外力與它的位移的關(guān)系符合簡(jiǎn)諧運(yùn)動(dòng)的受力特點(diǎn),該振動(dòng)系統(tǒng)的振動(dòng)是簡(jiǎn)諧運(yùn)動(dòng)。
[跟進(jìn)訓(xùn)練]
1.(多選)如圖所示,彈簧振子在光滑水平桿
上的A、B兩點(diǎn)之間做往復(fù)運(yùn)動(dòng),下列說(shuō)法正
確的是(  )

A.彈簧振子在運(yùn)動(dòng)過(guò)程中受重力、支持力和彈簧彈力的作用
B.彈簧振子在運(yùn)動(dòng)過(guò)程中受重力、支持力、彈簧彈力和回復(fù)力作用
C.彈簧振子由A向O運(yùn)動(dòng)的過(guò)程中,回復(fù)力逐漸增大
D.彈簧振子由O向B運(yùn)動(dòng)的過(guò)程中,回復(fù)力的方向指向平衡位置

AD [回復(fù)力是根據(jù)力的效果命名的,不是做簡(jiǎn)諧運(yùn)動(dòng)的物體受到的具體的力,它是由物體受到的具體的力提供的,在此情境中彈簧振子受重力、支持力和彈簧彈力的作用,故A正確,B錯(cuò)誤;回復(fù)力與位移的大小成正比,彈簧振子由A向O運(yùn)動(dòng)的過(guò)程中位移在減小,則在此過(guò)程中回復(fù)力逐漸減小,故C錯(cuò)誤;回復(fù)力的方向總是指向平衡位置,故D正確。]
考點(diǎn)2 簡(jiǎn)諧運(yùn)動(dòng)的能量
1.簡(jiǎn)諧運(yùn)動(dòng)的能量
做簡(jiǎn)諧運(yùn)動(dòng)的物體在振動(dòng)中經(jīng)過(guò)某一位置時(shí)所具有的勢(shì)能和動(dòng)能之和,稱為簡(jiǎn)諧運(yùn)動(dòng)的能量。
2.對(duì)簡(jiǎn)諧運(yùn)動(dòng)的能量的理解注意以下幾點(diǎn)
決定因素 簡(jiǎn)諧運(yùn)動(dòng)的能量由振幅決定。
能量的獲得 最初的能量來(lái)自外部,通過(guò)外力做功獲得。
能量的轉(zhuǎn)化 系統(tǒng)只發(fā)生動(dòng)能和勢(shì)能的相互轉(zhuǎn)化,機(jī)械能守恒。
理想化模型 (1)力的角度:簡(jiǎn)諧運(yùn)動(dòng)不考慮阻力。
(2)能量轉(zhuǎn)化角度:簡(jiǎn)諧運(yùn)動(dòng)不考慮因克服阻力做功帶來(lái)的能量損耗。
3.決定能量大小的因素
振動(dòng)系統(tǒng)的機(jī)械能跟振幅有關(guān),對(duì)一個(gè)給定的振動(dòng)系統(tǒng),振幅越大,振動(dòng)越強(qiáng),振動(dòng)的機(jī)械能越大;振幅越小,振動(dòng)越弱,振動(dòng)的機(jī)械能越小。
名師點(diǎn)睛:(1)在振動(dòng)的一個(gè)周期內(nèi),動(dòng)能和勢(shì)能完成兩次周期性變化。
(2)振子運(yùn)動(dòng)經(jīng)過(guò)平衡位置兩側(cè)的對(duì)稱點(diǎn)時(shí),具有相等的動(dòng)能和相等的勢(shì)能。
【典例2】 如圖所示,一水平彈簧振子在A、B間做簡(jiǎn)諧運(yùn)動(dòng),平衡位置為O,已知振子的質(zhì)量為M。
(1)簡(jiǎn)諧運(yùn)動(dòng)的能量取決于_______,振子振動(dòng)時(shí)動(dòng)能和_________相互轉(zhuǎn)化,總機(jī)械能_______。
振幅
彈性勢(shì)能
守恒
(2)若振子運(yùn)動(dòng)到B處時(shí)將一質(zhì)量為m的物體放到M的上面,且m和M無(wú)相對(duì)滑動(dòng)而一起運(yùn)動(dòng),下列說(shuō)法正確的是______。
A.振幅不變 B.振幅減小
C.最大動(dòng)能不變 D.最大動(dòng)能減小
AC
[解析] (1)簡(jiǎn)諧運(yùn)動(dòng)的能量取決于振幅,振子振動(dòng)時(shí)動(dòng)能和彈性勢(shì)能相互轉(zhuǎn)化,總機(jī)械能守恒。
(2)振子運(yùn)動(dòng)到B點(diǎn)時(shí)速度恰為零,此時(shí)放上m,系統(tǒng)的總能量即為此時(shí)彈簧儲(chǔ)存的彈性勢(shì)能,由于簡(jiǎn)諧運(yùn)動(dòng)中機(jī)械能守恒,所以振幅保持不變,A正確,B錯(cuò)誤;由于機(jī)械能守恒,所以最大動(dòng)能不變,C正確,D錯(cuò)誤。
規(guī)律方法 分析簡(jiǎn)諧運(yùn)動(dòng)中能量變化情況的技巧
(1)分析簡(jiǎn)諧運(yùn)動(dòng)中各物理量的變化情況時(shí),一定要以位移為橋梁,位移增大時(shí),振動(dòng)質(zhì)點(diǎn)的勢(shì)能均增大,動(dòng)能均減小;反之,則產(chǎn)生相反的變化。
(2)分析過(guò)程中要特別注意簡(jiǎn)諧運(yùn)動(dòng)的對(duì)稱性。位移相同時(shí),動(dòng)能相同、勢(shì)能相同。
[跟進(jìn)訓(xùn)練]
2. (多選)彈簧振子在水平方向做簡(jiǎn)諧運(yùn)動(dòng),下列說(shuō)法中正確的是
(  )
A.振子在平衡位置時(shí),動(dòng)能最大,勢(shì)能最小
B.振子在最大位移處,勢(shì)能最大,動(dòng)能最小
C.振子在向平衡位置運(yùn)動(dòng)時(shí),由于振子振幅減小,故總機(jī)械能減小
D.在任意時(shí)刻,動(dòng)能與勢(shì)能之和保持不變



ABD [振子在平衡位置兩側(cè)做往復(fù)運(yùn)動(dòng),在最大位移處速度為零,動(dòng)能為零,此時(shí)彈簧形變量最大,勢(shì)能最大,B正確;在任意時(shí)刻,只有彈簧的彈力做功,所以動(dòng)能和勢(shì)能之和保持不變,D正確;振子在平衡位置時(shí)速度達(dá)到最大值,動(dòng)能最大,勢(shì)能最小,A正確;振幅的大小與振子的位置無(wú)關(guān),C錯(cuò)誤。]
學(xué)習(xí)效果·隨堂評(píng)估自測(cè)
1.(多選)彈簧振子在光滑水平面上做簡(jiǎn)諧運(yùn)動(dòng),在振子向平衡位置運(yùn)動(dòng)的過(guò)程中(  )
A.振子所受的回復(fù)力逐漸增大
B.振子的位移逐漸減小
C.振子的速度逐漸減小
D.振子的加速度逐漸減小


2.(多選)一彈簧振子在水平方向上做簡(jiǎn)諧運(yùn)動(dòng),其位移x與時(shí)間t的關(guān)系曲線如圖所示,在t=3.2 s時(shí),振子的(  )
A.速度正在增大,加速度沿正方向且正在減小
B.速度正在減小,回復(fù)力沿負(fù)方向且正在增大
C.動(dòng)能正在轉(zhuǎn)化為勢(shì)能
D.勢(shì)能正在轉(zhuǎn)化為動(dòng)能


BC [當(dāng)t=3.2 s時(shí)振子正在向最大位移處運(yùn)動(dòng),位移為正,速度正在減小,加速度和回復(fù)力沿負(fù)方向且正在增大,振子動(dòng)能減小,彈簧彈性勢(shì)能增大,動(dòng)能正在轉(zhuǎn)化為勢(shì)能,BC正確,AD錯(cuò)誤。]
3.(新情境題,以釣魚的魚漂為背景,考查簡(jiǎn)諧運(yùn)動(dòng)的回復(fù)力)如圖為某魚漂的示意圖,魚漂上部可視為圓柱體。當(dāng)魚漂受到微小擾動(dòng)而上下振動(dòng),某釣友發(fā)現(xiàn)魚漂向下運(yùn)動(dòng)時(shí)圓柱體上的M點(diǎn)恰好可以到達(dá)水面,向上運(yùn)動(dòng)時(shí)圓柱體上的N點(diǎn)恰好可以露出水面。忽略水的阻力和水面波動(dòng)影響,則(  )

A.魚漂的振動(dòng)為簡(jiǎn)諧運(yùn)動(dòng)
B.魚漂振動(dòng)過(guò)程中機(jī)械能守恒
C.M點(diǎn)到達(dá)水面時(shí),魚漂的動(dòng)能最大
D.N點(diǎn)到達(dá)水面時(shí),魚漂的加速度最小
A [設(shè)魚漂靜止時(shí)水下部分的長(zhǎng)度為x0,根據(jù)平衡條件得mg=ρSx0g,取向下為正方向,魚漂從平衡位置再向下位移為x時(shí),魚漂的合力為F=mg-ρgS(x0+x),解得F=-ρgSx,設(shè)k=ρgS,則有F=-kx,魚漂的振動(dòng)為簡(jiǎn)諧運(yùn)動(dòng),A正確;魚漂振動(dòng)過(guò)程中水的浮力做功,所以魚漂的機(jī)械能不守恒,B錯(cuò)誤;M點(diǎn)到達(dá)水面時(shí),魚漂位于最低點(diǎn),魚漂的動(dòng)能最小等于零,C錯(cuò)誤;N點(diǎn)到達(dá)水面時(shí),魚漂位于最高點(diǎn),相對(duì)于平衡位置的位移最大,合力最大,魚漂的加速度最大,D錯(cuò)誤。故選A。]
回歸本節(jié)知識(shí),自我完成以下問(wèn)題:
1.簡(jiǎn)諧運(yùn)動(dòng)的回復(fù)力有什么特點(diǎn)?
提示:回復(fù)力是效果力,作用是使物體回到平衡位置,大小與位移大小成正比,方向與位移方向相反。
2.對(duì)于一個(gè)確定的振動(dòng)系統(tǒng),簡(jiǎn)諧運(yùn)動(dòng)的能量由什么決定?
提示:振幅,振幅越大,能量越大。
3.簡(jiǎn)諧運(yùn)動(dòng)的彈簧振子系統(tǒng)機(jī)械能是否守恒?
提示:守恒。

展開(kāi)更多......

收起↑

資源列表

    <track id="r4fhd"></track>

    <pre id="r4fhd"><abbr id="r4fhd"><code id="r4fhd"></code></abbr></pre>
      <ul id="r4fhd"></ul>

        <menu id="r4fhd"></menu>
        1. 主站蜘蛛池模板: 澳门| 曲周县| 北安市| 德昌县| 嘉鱼县| 普洱| 邯郸县| 青阳县| 博兴县| 贵港市| 保山市| 新田县| 新宁县| 长岛县| 五大连池市| 湛江市| 浦城县| 保定市| 永仁县| 章丘市| 金平| 巴东县| 历史| 南澳县| 读书| 集贤县| 桂东县| 囊谦县| 交口县| 抚远县| 峡江县| 郴州市| 保靖县| 天等县| 德庆县| 临沂市| 客服| 巫溪县| 正镶白旗| 哈巴河县| 阜新|