資源簡(jiǎn)介
第 05 講 數(shù)列求和
目錄
01 考情透視·目標(biāo)導(dǎo)航 .........................................................................................................................2
02 知識(shí)導(dǎo)圖·思維引航 .........................................................................................................................3
03 考點(diǎn)突破·題型探究 .........................................................................................................................4
知識(shí)點(diǎn) 1:數(shù)列求和常用方法.............................................................................................................4
解題方法總結(jié)........................................................................................................................................5
題型一:通項(xiàng)分析法............................................................................................................................8
題型二:公式法....................................................................................................................................9
題型三:錯(cuò)位相減法..........................................................................................................................10
題型四:分組求和法..........................................................................................................................11
題型五:裂項(xiàng)相消法之等差型..........................................................................................................13
題型六:裂項(xiàng)相消法之根式型..........................................................................................................15
題型七:裂項(xiàng)相消法之指數(shù)型..........................................................................................................16
題型八:裂項(xiàng)相消法之三角型..........................................................................................................18
題型九:倒序相加法..........................................................................................................................20
題型十:分段數(shù)列求和......................................................................................................................21
題型十一:并項(xiàng)求和法之 + +( ― ) = + 型...............................................................22
題型十二:并項(xiàng)求和法之 = ( ― ) ( )型................................................................................23
題型十三:先放縮后裂項(xiàng)求和..........................................................................................................24
04 真題練習(xí)·命題洞見........................................................................................................................25
05 課本典例·高考素材........................................................................................................................26
06 易錯(cuò)分析·答題模板........................................................................................................................28
易錯(cuò)點(diǎn):用錯(cuò)位相減法求和時(shí)項(xiàng)數(shù)處理不恰當(dāng)出錯(cuò)......................................................................28
答題模板:錯(cuò)位相減法求前 n 項(xiàng)和..................................................................................................28
考點(diǎn)要求 考題統(tǒng)計(jì) 考情分析
高考對(duì)數(shù)列求和的考查相對(duì)穩(wěn)定,考
(1)公式法 查內(nèi)容、頻率、題型、難度均變化不
(2)奇偶討論、并項(xiàng)分類 2023 年甲卷(理)第 17 題,12 分 大.?dāng)?shù)列的求和主要考查等差、等比數(shù)列
(3)倒序相加法 2023 年 II 卷第 18 題,12 分 的前 項(xiàng)和公式及非等差、等比數(shù)列的求和
(4)裂項(xiàng)相消法 2023 年 I 卷第 20 題,12 分 方法,其綜合性較強(qiáng).?dāng)?shù)列求和問題以解
(5)錯(cuò)位相減法 答題的形式為主,偶爾出現(xiàn)在選擇填空題
當(dāng)中,常結(jié)合函數(shù)、不等式綜合考查.
復(fù)習(xí)目標(biāo):
(1)熟練掌握等差、等比數(shù)列的前 n 項(xiàng)和公式.
(2)掌握非等差數(shù)列、非等比數(shù)列求和的幾種常見方法.
知識(shí)點(diǎn) 1:數(shù)列求和常用方法
一.公式法
n(a + a ) n(n -1)
(1)等差數(shù)列 an 的前 n 項(xiàng)和 S 1 nn = = na1 + d ,推導(dǎo)方法:倒序相加法.2 2
ìna1 ,q = 1
(2)等比數(shù)列 an 的前 n 項(xiàng)和 Sn =
ía1(1- q
n ) ,推導(dǎo)方法:乘公比,錯(cuò)位相減法.
,q 1
1- q
(3)一些常見的數(shù)列的前 n 項(xiàng)和:
n n
① k = 1+ 2 + 3 +L + n 1= n(n +1); 2k = 2 + 4 + 6 +L + 2n = n(n +1)
k =1 2 k =1
n
② (2k -1) = 1+ 3 + 5 +L+ (2n -1) = n2 ;
k =1
n
③ k 2 = 12 + 22 1+ 32 +L+ n2 = n(n +1)(2n +1);
k =1 6
n
④ k 3 13 23 33 L n3 [n(n + 1)= + + + + = ]2
k =1 2
二.幾種數(shù)列求和的常用方法
(1)分組轉(zhuǎn)化求和法:一個(gè)數(shù)列的通項(xiàng)公式是由若干個(gè)等差或等比或可求和的數(shù)列組成的,則求和
時(shí)可用分組求和法,分別求和后相加減.
(2)裂項(xiàng)相消法:把數(shù)列的通項(xiàng)拆成兩項(xiàng)之差,在求和時(shí)中間的一些項(xiàng)可以相互抵消,從而求得前
n 項(xiàng)和.
(3)錯(cuò)位相減法:如果一個(gè)數(shù)列的各項(xiàng)是由一個(gè)等差數(shù)列和一個(gè)等比數(shù)列的對(duì)應(yīng)項(xiàng)之積構(gòu)成的,那
么求這個(gè)數(shù)列的前 n項(xiàng)和即可用錯(cuò)位相減法求解.
(4)倒序相加法:如果一個(gè)數(shù)列 an 與首末兩端等“距離”的兩項(xiàng)的和相等或等于同一個(gè)常數(shù),那么
求這個(gè)數(shù)列的前 n項(xiàng)和即可用倒序相加法求解.
【診斷自測(cè)】已知等差數(shù)列 an 的前 n項(xiàng)和為 Sn , S6 = 9S2,且 a2n = 2an +1.
(1)求數(shù)列 an 的通項(xiàng)公式;
14
(2)設(shè)bn = an + ,數(shù)列 bn 的前 n項(xiàng)和為Mn ,定義 x 為不超過 x 的最大整數(shù),例如 1.6 =1a ,n × an+1
5.4 = 5,求數(shù)列 M n 的前 n項(xiàng)和Tn .
n
12 22 32 n2 n +1 2n +1 (說明: + + + ×××+ = )
6
解題方法總結(jié)
常見的裂項(xiàng)技巧
積累裂項(xiàng)模型 1:等差型
1 1 1 1( ) = -
n(n +1) n n +1
2 1 1 (1 1( ) = - )
n(n + k) k n n + k
(3 1 1 ( 1 1) = - )
4n2 -1 2 2n -1 2n +1
4 1 1 é 1 1 ù( ) = -
n(n +1)(n + 2) 2 ê n(n +1) (n +1)(n + 2)
ú
5 1 1 1 ( 1 1( ) 2 = = - )n(n -1) n(n -1)(n +1) 2 (n -1)n n(n +1)
2
6 n 1 é1 1 ù( ) = +
4n2 -1 4 ê (2n +1)(2n -1) ú
7 3n +1 4(n +1) - (n + 3) 4( 1 1 ) ( 1 1( ) = = - - - )
(n +1)(n + 2)(n + 3) (n +1)(n + 2)(n + 3) n + 2 n + 3 n +1 n + 2
1
(8) n(n +1) = n(n +1)(n + 2) - (n -1)n(n +1) .
3
(9) n(n +1)(n + 2) 1= n(n +1)(n + 2)(n + 3) - (n -1)n(n +1)(n + 2)
4
1 1 é 1 1 ù
(10) = -
n(n +1)(n + 2)(n + 3) 3 ê n(n +1)(n + 2) (n +1)(n + 2)(n + 3)
ú
11 2n +1 1 1( ) 2 = -n (n +1)2 n2 (n +1)2
12 n +1 1 é 1 1 ù( )
n2 (n + 2)2
= ê 2 -4 n (n + 2)
2 ú
積累裂項(xiàng)模型 2:根式型
1
(1) = n +1 - n
n +1 + n
(2 1 1) = ( n + k - n)
n + k + n k
3 1 1( ) = ( 2n +1 - 2n -1)
2n -1 + 2n +1 2
4 1 1 1 n(n +1) +1 1 1( ) +
n2
+ 2 = = 1+ -(n +1) n(n +1) n n +1
1
(5)
3 n2 + 2n +1 + 3 n2 -1 + 3 n2 - 2n +1
3 3
3 n 1 3 n n +1 - n= + - -1( 3 n2 + 2n +1 + 3 n2 -1 + 3 n2 - 2n +1) =
2
1 (n +1) n - n n +1 (n +1) n - n n +1 1 1
(6) = = = -
(n +1) n + n n +1 2é(n +1) n ù - (n n +1)2 n(n +1) n n +1
積累裂項(xiàng)模型 3:指數(shù)型
2n (2n+1 -1) - (2n -1) 1 1
(1) = =
(2n+1 -1)(2n -1) (2n+1 -1)(2n -1) 2n
-
-1 2n+1 -1
3n 1 ( 1 1(2) = - )
(3n -1)(3n+1 -1) 2 3n -1 3n+1 -1
n + 2 2(n +1) - n 2 1 1 1 1
(3) = = - × = -
n(n +1) × 2n n(n +1) × 2n è n n +1÷ 2n n × 2n-1 (n +1) × 2n
n-1 n+1 n-1
(4 (4n -1) ×3 1 é 9 1 ù 1 3 3) = - ×3n-1 = -
n(n + 2) 2 ê (n + 2) n
ú 2 n + 2 n ÷ è
(2n +1) × (-1)n (-1)n (-1)n+1
(5) = -
n(n +1) n n +1
(6) an = n × 3
n-1 ,設(shè) an = (an + b)3
n - [a(n -1) + b] ×3n-1 1 1,易得 a = ,b = - ,
2 4
于是 a 1n = (2n -1)3
n 1- (2n - 3) ×3n-1
4 4
n 2 n n 2 (-1)n én2 + n + 2(n +1) + nù
(7 (-1) (n + 4n + 2)2 (-1) (n + 4n + 2)) = =
n × 2n × (n +1)2n+1 n × (n +1)2n+1 n × (n +1)2n+1
(-1)n ( 1)n é 1 1 ù 1 1
é (-1)n (-1)n+1 ù
= n+1 + - ê n + n+1 ú = (- )
n + -
2 n × 2 (n +1) × 2 2 2
ê
n × 2
n (n +1) × 2n+1 ú
積累裂項(xiàng)模型 4:對(duì)數(shù)型
log an+1a = log
an+1
a - loga aa nn
積累裂項(xiàng)模型 5:三角型
1 1 1( ) = (tana - tan b )
cosa cos b sin(a - b )
1 1
(2) = tan(n +1)° - tan n°
cos n°cos(n +1)° sin1°
(3) tana tan b 1= (tana - tan b ) -1
tan(a - b )
(4) an = tan× tan(n -1); tan1 = tan n - (n -1)
tan n - tan(n -1)
= ,
1+ tan n × tan(n -1)
tan n tan(n 1) tan n - tan(n -1) 1,a tan n - tan(n -1)則 × - = - n = -1tan1 tan1
積累裂項(xiàng)模型 6:階乘
1 n 1 1( ) = -
(n +1)! n! (n +1)!
2 n + 2 n + 2 1 n +1 1 1( ) = = = = -
n!+ (n +1)!+ (n + 2)! n!(n + 2)2 n!(n + 2) (n + 2)! (n +1)! (n + 2)!
常見放縮公式:
1 1 1 1
(1) 2 < = - n 2 ;n n -1 n n -1 n
1 1 1 1
(2) > = - ;
n2 n n +1 n n +1
1 4 4 1 1
(3) 2 = 2 < 2 = 2
-
;
n 4n 4n -1 è 2n -1 2n +1÷
T C r 1 n! 1 1 1 1 1(4) r+1 = n × r = × < < = - r 2 ;n r! n - r ! nr r! r r -1 r -1 r
5 1 1
n
1 1 1
( ) + ÷ < 1+1+ + +L+ < 3;
è n 1 2 2 3 n -1 n
6 1 2 2( ) = < = 2 - n -1 + n n 2 ;
n n + n n -1 + n
1 2 2
(7) = > = 2 - n + n +1 ;
n n + n n + n +1
8 1 2 2 2 2( ) = < = = 2 - 2n -1 + 2n +1 ;
n n + n n 1 n 1 2n -1 + 2n +1- + +
2 2
9 2
n 2n 2n 2n-1 1 1
( ) 2 = < = = n 2 n 2n -1 2n -1 2n -1 2n - 2 2n -1 2n-1 -1 2n-1
- n ;
2 -1 -1 2 -1
10 1 1 1 n +1 - n -1 1( ) = < = ×
n3 n × n2 n -1 n n +1 n -1 n n +1 n +1 - n -1
é
ê 1 1
ù
ú 1= - × = 2 1 1 n +1 + n -1
ê
- ÷ ×
n -1 n n n +1 ú n +1 - n -1 è n -1 n +1 2 n
< 2 1 1 - ÷ n 2 ;
è n -1 n +1
11 1 2 2 2( ) = < =
n3 n2 × n + n × n2 n n -1 + n -1 n n -1 n n + n -1
-2 n -1 - n 2 2
= = - n 2 ;
n -1 n n -1 n
(12 1 1 1 2 2 2)
2n
= < = = - ;
-1 1+1 n -1 C0n + C1 2n + Cn -1 n n +1 n n +1
n-1
(13 1 2 1 1) < = - n 2 .
2n -1 2n-1 n n-1 n -1 2 -1 2 -1 2 -1
14 2 1 2( ) 2( n + 1 - n) = < < = 2( n - n - 1).
n + 1 + n n n + n - 1
題型一:通項(xiàng)分析法
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1【典例 1-1】觀察如下規(guī)律: , , , , , , , , , , , , , , , ,L ,該組數(shù)據(jù)的前 2025項(xiàng)和
3 3 3 5 5 5 5 5 7 7 7 7 7 7 7
為 .
1-2 S = 3+ 2 + 32 + 3 × 2 + 22 n n-1 n-2 2 n【典例 】求和 n + ×××+ 3 + 3 × 2 + 3 × 2 + ×××+ 2 .
【方法技巧】
先分析數(shù)列通項(xiàng)的特點(diǎn),再選擇合適的方法求和是求數(shù)列的前 項(xiàng)和問題應(yīng)該強(qiáng)化的意識(shí).
【變式 1-1】數(shù)列 9,99,999, 的前 n項(xiàng)和為 ( )
A 10. (10n 10-1) + n B.10n -1 C. (10n 1) D 10- . (10n -1) - n
9 9 9
【變式 1-2】求數(shù)列 1, (1+ 2) , (1+ 2 + 22 ), , (1+ 2 + 22 + + 2n-1) , 的前 n項(xiàng)之和.
【變式 1-3】(2024·上海徐匯·模擬預(yù)測(cè))如圖,在楊輝三角中,斜線 l上方,從 1 開始箭頭所示的數(shù)組
成一個(gè)鋸齒數(shù)列:1,3,3,4,6,5,10,…,記其前 n項(xiàng)和為 Sn ,則 S19 等于 .
題型二:公式法
【典例 2-1】(2024·湖北黃岡·一模)已知等比數(shù)列 an 的前 n項(xiàng)和為 Sn ,且 an+1 = 2 + Sn 對(duì)一切正整數(shù)
n恒成立.
(1)求數(shù)列 an 的通項(xiàng)公式;
(2)求數(shù)列 Sn 的前 n項(xiàng)和Tn .
【典例 2-2】(2024·高三·四川·學(xué)業(yè)考試)已知等差數(shù)列 an 的前 n項(xiàng)和為 Sn , a1 = 2, S3 =12 .
(1)求數(shù)列 an 的通項(xiàng)公式 an ;
(2)設(shè)b an *n = 2 n N ,求 bn 的前 n項(xiàng)和Tn .
【方法技巧】
針對(duì)數(shù)列的結(jié)構(gòu)特征,確定數(shù)列的類型,符合等差或等比數(shù)列時(shí),直接利用等差、等比數(shù)列相應(yīng)公式
求解.
【變式 2-1】已知等差數(shù)列 an 的前四項(xiàng)和為 10,且 a2 ,a3 ,a7 成等比數(shù)列
(1)求通項(xiàng)公式 an
(2) a設(shè)b nn = 2 ,求數(shù)列bn 的前n項(xiàng)和 Sn
【變式 2-2】已知數(shù)列 a *n 為等差數(shù)列,數(shù)列 bn 為等比數(shù)列,且bn N ,若
a1 = b2 = 2, a1 + a2 + a3 = b1 + b2 + b3 + b4 =15.
(1)求數(shù)列 an , bn 的通項(xiàng)公式;
(2)設(shè)由 an , bn 的公共項(xiàng)構(gòu)成的新數(shù)列記為 cn ,求數(shù)列 cn 的前 5 項(xiàng)之和 S5 .
題型三:錯(cuò)位相減法
【典例 3-1】設(shè) Sn 為數(shù)列 an 的前 n項(xiàng)和,且 2Sn = 3an - 4n .
(1) l 為何值時(shí), an + l 是等比數(shù)列;
n
(2) b a + 2 若 n = n ,求數(shù)列 bn 的前 n項(xiàng)和Tn .2
【典例 3-2】(2024·陜西西安·模擬預(yù)測(cè))記 Sn 為等差數(shù)列 an 的前 n項(xiàng)和,已知 S3 =15, S5 = 35 .
(1)求 an 的通項(xiàng)公式;
(2)設(shè)b
a
n =
n
n ,求數(shù)列 b2 n 的前 n項(xiàng)和Tn .
【方法技巧】
錯(cuò)位相減法求數(shù)列{an}的前 n 項(xiàng)和的適用條件
若{an}是公差為 d (d 0) 的等差數(shù)列,{bn}是公比為 q(q 1)的等比數(shù)列,求數(shù)列{an·bn}的前 n 項(xiàng)和 Sn .
【變式 3-1】(2024·青海海南·二模)已知數(shù)列 an 的各項(xiàng)均為正數(shù),其前 n項(xiàng)和為 Sn , Sn 是等比數(shù)列,
a3 = a1a2 ,2S5 = a6 .
(1)求數(shù)列 Sn 的通項(xiàng)公式;
(2)設(shè)bn = an × log3 Sn ,求數(shù)列 bn 的前 n項(xiàng)和Tn .
【變式 3-2】已知在等差數(shù)列 an 中,公差大于 0, a1 = 2,且 a2,a3 + 2, a6成等比數(shù)列,數(shù)列 an
的前 n項(xiàng)和為 Sn .
(1)求數(shù)列 an 的通項(xiàng)公式;
(2)若b = 2n-1n an ,求數(shù)列 bn 的前 n項(xiàng)和Tn .
【變式 3-3】(2024·浙江·三模)已知等比數(shù)列 an 和等差數(shù)列 bn ,滿足 an+1 > an , a1 = b1 =1, a2 = b2,
3a3 = 4b3 .
(1)求數(shù)列 an , bn 的通項(xiàng)公式;
n ì Tn ü(2) a ×b T n P P 2
n+1
記數(shù)列 n n 的前 項(xiàng)和為 n ,數(shù)列 íb b 的前 項(xiàng)和為 n.證明:× n < -1. n n+1 n +1
【變式 3-4】(2024·河北衡水·三模)已知數(shù)列 an 滿足: a1 =1, a2 = 2, an + an+1 = 2an+2 .
(1)請(qǐng)寫出 a3 - a2,a4 - a3,a5 - a4 的值,給出一個(gè)你的猜想,并證明;
(2)設(shè)bn = 3na2n+1,求數(shù)列 bn 的前 n項(xiàng)和 Sn .
題型四:分組求和法
2 *
【典例 4-1】已知數(shù)列 an 的前 n項(xiàng)和為 Sn ,滿足 Sn = an -1 ,n N .3
(1)求數(shù)列 an 的通項(xiàng)公式;
(2)記b a
nπ
n = n ×cos ,求數(shù)列 bn 的前 100 項(xiàng)的和T2 100 .
5
【典例 4-2】在等比數(shù)列{ an }中, a1 + a2 = 5a2 = .4
(1)求{ an }的通項(xiàng)公式;
3
(2)求數(shù)列{ a + 2n -1}的前 n 項(xiàng)和 Sn.
4 n
【方法技巧】
(1)分組轉(zhuǎn)化求和
數(shù)列求和應(yīng)從通項(xiàng)入手,若無(wú)通項(xiàng),則先求通項(xiàng),然后通過對(duì)通項(xiàng)變形,轉(zhuǎn)化為等差數(shù)列或等比數(shù)列
或可求前 n 項(xiàng)和的數(shù)列求和.
(2)分組轉(zhuǎn)化法求和的常見類型
【變式 4-1】在遞增的等比數(shù)列 an 中, a1 ×a2 = 8, a1 + a2 = 6 ,其中 n N* .
(1)求數(shù)列 an 的通項(xiàng)公式;
(2)若bn = 2an + 3,求數(shù)列 bn 的前 n 項(xiàng)和Tn .
【變式 4-2】等比數(shù)列 an 的公比為 2,且 a2 , a3 + 2, a4 成等差數(shù)列.
(1)求數(shù)列 an 的通項(xiàng)公式;
(2)若bn = log2 an + an ,求數(shù)列 bn 的前 n項(xiàng)和Tn .
【變式 4-3】已知等差數(shù)列{an}滿足 an + an-1 = 8n + 2( n 2),數(shù)列{bn}是公比為 3 的等比數(shù)列,
a2 + b2 = 20.
(1)求數(shù)列{an}和{bn}的通項(xiàng)公式;
(2)數(shù)列{an}和{bn}中的項(xiàng)由小到大組成新的數(shù)列{cn},記數(shù)列{cn}的前 n 項(xiàng)和為 Sn ,求 S50.
題型五:裂項(xiàng)相消法之等差型
【典例 5-1】已知公比為q的等比數(shù)列 an 的前 n項(xiàng)和為 Sn ,且滿足 a2 - 2a1 = 8, S *3 = 84, q N .
(1)求數(shù)列 an 的通項(xiàng)公式;
log a
(2) 2 n+1
log2an
若bn = + b n Tlog2an log a
,求數(shù)列 n 的前 項(xiàng)和 n .
2 n+1
【方法技巧】
1 1 1 (1 1( ) = - )
n(n + k) k n n + k
2 1 1 é 1 1 ù( ) = -
n(n +1)(n + 2) 2 ê n(n +1) (n +1)(n + 2)
ú
(3) n(n +1) 1= n(n +1)(n + 2) - (n -1)n(n +1) .
3
(4) n(n +1)(n 1+ 2) = n(n +1)(n + 2)(n + 3) - (n -1)n(n +1)(n + 2)
4
(5 2n +1 1 1) 2 = -n (n +1)2 n2 (n +1)2
【典例 5-2】已知數(shù)列 an , bn n,其中數(shù)列 an 是等差數(shù)列,且滿足bn - an = -1 n2 , a1 +b1 =1,
a2 + b2 = 8,n N
*
.
(1)求數(shù)列 an 和 bn 的通項(xiàng)公式;
c 1(2)若 n = a a ,求數(shù)列 cn 的前 n項(xiàng)和 Sn ;n n+1
5 2 1 *
【變式 5-1】已知數(shù)列 an 的前 n項(xiàng)和為 Sn , Sn = n - n n N .2 2
(1)求 an 的通項(xiàng)公式;
1
(2)若bn = b n Tana
,求數(shù)列 n 的前 項(xiàng)和 n .
n+1
【變式 5-2】(2024·湖北武漢·模擬預(yù)測(cè))在等差數(shù)列 an ( n N*)中,a1 + a2 =11, a3 =10 .
(1)求 an 的通項(xiàng)公式;
(2)若b
1
n = a a a ,數(shù)列的 bn 前 n
1
項(xiàng)和為Tn ,證明Tn < .
n n+1 n+2 168
【變式 5-3】(2024·河北衡水·模擬預(yù)測(cè))記各項(xiàng)均為正數(shù)的數(shù)列 an 的前 n項(xiàng)和為 Sn ,已知 Sn 是
an -1 an + 3與 的等差中項(xiàng).
2 2
(1)求 an 的通項(xiàng)公式;
a 2
(2) b = n+1
an+1
設(shè) n +S S ,數(shù)列 bS S n 的前 n項(xiàng)和為Tn ,證明:Tn - 4n < 2 .n n+1 n n+1
【變式 5-4】設(shè)數(shù)列 an 為等差數(shù)列,前 n項(xiàng)和為 Sn , a3 + a7 =18, S10 =100.
(1)求數(shù)列 an 的通項(xiàng)公式;
2n2
(2)設(shè)bn = 的前 n
n 1
項(xiàng)和為Tn ,證明:Tn < + .a(chǎn)nan+1 2 4
題型六:裂項(xiàng)相消法之根式型
【典例 6-1】已知數(shù)列 an 的前 n 項(xiàng)和為 Sn , a1 =1, S5 = 25,且3Sn+1 - an = 2S + S n N*n n+2 .
(1)求數(shù)列 an 的通項(xiàng)公式;
(2)設(shè)b
1
n = ,求數(shù)列 b 的前 n 項(xiàng)和T .2n -1 + 2n +1 n n
*
【典例 6-2】已知數(shù)列 an 的前 n項(xiàng)和為 Sn ,且 2Sn =1- an n N .
(1)求數(shù)列 an 的通項(xiàng)公式;
1 bnbn+1
(2)設(shè)bn = ,cn =log ,求數(shù)列 cn 的前 n項(xiàng)和Tn .1 an n +1 + n
3
【方法技巧】
1 1(1) = ( n + k - n)
n + k + n k
2 1 1 1 n(n +1) +1 1 1( ) + 2 + 2 = = 1+ -n (n +1) n(n +1) n n +1
1
(3)
3 n2 + 2n +1 + 3 n2 -1 + 3 n2 - 2n +1
3
3 n 1 3 n 1( 3 n2 2n 1 3 n2 1 3 n2 2n 1) n +1 -
3 n
= + - - + + + - + - + =
2
【變式 6-1】已知數(shù)列 an , an > 0, a1 =1, Sn 為其前 n 項(xiàng)和,且滿足 Sn + Sn-1 Sn - Sn-1 =1 n 2 .
(1)求數(shù)列 an 的通項(xiàng)公式;
(2)設(shè)bn = -1
n 1×
a ,求數(shù)列 bn 的前 n 項(xiàng)和Tn .n
2
【變式 6-2】已知數(shù)列 an 的前 n 項(xiàng)和為 Sn = n ,
(1)求數(shù)列 an 的通項(xiàng)公式 an ;
1 1
(2)設(shè)bn = 1+ + ,求數(shù)列 bn 的前 n 項(xiàng)和Tn .Sn Sn+1
題型七:裂項(xiàng)相消法之指數(shù)型
【典例 7-1 2】已知等比數(shù)列{ an }的各項(xiàng)均為正數(shù),2a5,a4,4a6成等差數(shù)列, a4 = 4a3 ,數(shù)列{bn }的
S (n +1)前 n *項(xiàng)和 n = bn (n N ),且b2 1
=1 .
(1)求{ an }和{bn }的通項(xiàng)公式;
c (b(2) = 2n+1
+ 3)an * 1
設(shè) n n N(b -1)(b +1) ,記數(shù)列{ cn }的前 n 項(xiàng)和為 An .求證: An < .2n+1 2n+1 2
【典例 7-2】(2024·新疆·三模)若一個(gè)數(shù)列從第二項(xiàng)起,每一項(xiàng)和前一項(xiàng)的比值組成的新數(shù)列是一個(gè)
等比數(shù)列,則稱這個(gè)數(shù)列是一個(gè)“二階等比數(shù)列”,如:1,3,27,729,…….已知數(shù)列 an 是一個(gè)二階等
比數(shù)列, a1 =1, a2 = 4 , a3 = 64 .
(1)求 an 的通項(xiàng)公式;
n + 2
(2)設(shè)bn = 1 ,求數(shù)列 b 的前 n項(xiàng)和 S .
an
n n
n × log2 an+1
【方法技巧】
3n 1 1 1
(1) = ( - )
(3n -1)(3n+1 -1) 2 3n -1 3n+1 -1
n + 2 2(n +1) - n 2 1 1 1 1
(2) = = - × = -
n(n +1) × 2n n(n +1) × 2n è n n +1÷ 2n n × 2n-1 (n +1) × 2n
(4n -1) ×3n-13 1 é 9 1 ù 1
3n+1 3n-1
( ) = - ×3n-1 = -
n(n + 2) 2 ê (n + 2) n
ú 2 ÷ è n + 2 n
【變式 7-1】(2024·黑龍江雙鴨山·模擬預(yù)測(cè))記 Sn 為數(shù)列 an 的前 n 項(xiàng)和, Sn - n 是首項(xiàng)與公差均
為 1 的等差數(shù)列.
(1)求數(shù)列 an 的通項(xiàng)公式;
(-1)n an +1 (2)設(shè)bn = ,求數(shù)列 bn 的前 2024 項(xiàng)的和TS 2024 .n
【變式 7-2】(2024·全國(guó)·模擬預(yù)測(cè))已知 Sn 是正項(xiàng)等差數(shù)列 an 的前 n項(xiàng)和,滿足 2Sn = anan+1.
(1)求數(shù)列 an 的通項(xiàng)公式.
(2)設(shè)bn = n2 + 4n + 3 ×2an ,求數(shù)列 bn 的前 n項(xiàng)和Tn .
【變式 7-3】(2024·云南昆明·三模)正項(xiàng)數(shù)列 an 的前 n項(xiàng)和為 Sn ,等比數(shù)列 bn 的前 n項(xiàng)和為Tn ,
4Sn = a
2
n + 2an +1
2
, 4Tn = bn + 2bn +1
(1)求數(shù)列 an , bn 的通項(xiàng)公式;
a +1
(2)已知數(shù)列 cn 滿足 cn = b nn × a a ,求數(shù)列 cn 的前 n項(xiàng)和Hn.n n+1
【變式 7-4】(2024·福建泉州·二模)已知數(shù)列 an 和 bn 的各項(xiàng)均為正,且a3 =18b1, bn 是公比 3 的
等比數(shù)列.?dāng)?shù)列 an 的前 n 項(xiàng)和 Sn 滿足 4S 2n = an + 2an .
(1)求數(shù)列 an , bn 的通項(xiàng)公式;
b
(2)設(shè) c n+3n = + a cos nπ bn+3 - 3 b -1 n ,求數(shù)列
cn 的前 n 項(xiàng)和Tn .
n+3
題型八:裂項(xiàng)相消法之三角型
8-1 a a n S S =1 a2【典例 】數(shù)列 n 各項(xiàng)均為正數(shù), n 的前 項(xiàng)和記作 n ,已知 1 , n - an - 2Sn-1 = 0, (n 2).
(1)求 an 的通項(xiàng)公式;
(2)設(shè)bn = tan an × tan an+1 ,求數(shù)列 bn 的前 2023 項(xiàng)和.
【典例 8-2】已知數(shù)列 an 中, a2 =1,設(shè) Sn 為 an 前 n 項(xiàng)和, 2Sn = nan .
(1)求 an 的通項(xiàng)公式;
b sin1(2)若 n = cos a +1 cos a +1 ,求數(shù)列 bn 的前 n 項(xiàng)和Tnn n+1
【方法技巧】
1 1(1) = (tana - tan b )
cosa cos b sin(a - b )
1 1
(2) = tan(n +1)° - tan n°
cos n°cos(n +1)° sin1°
3 tana tan b 1( ) = (tana - tan b ) -1
tan(a - b )
(4) an = tan× tan(n -1); tan1 = tan n (n 1)
tan n - tan(n -1)
- - = ,
1+ tan n × tan(n -1)
tan n tan(n 1) tan n - tan(n -1) 1,a tan n - tan(n -1)則 × - = - n = -1tan1 tan1
【變式 8-1】已知在數(shù)列 an 中, a1 =1, nan+1 - (n +1)an =1.
(1)求數(shù)列 an 的通項(xiàng)公式;
π
(2)若數(shù)列 bn 滿足bn = sin( a2 n+1) + cos(πan ),求數(shù)列 bn 的前 2024 項(xiàng)和T2024 .
【變式 8-2】(2024·高三·江西·開學(xué)考試)同余定理是數(shù)論中的重要內(nèi)容.同余的定義為:設(shè)
a,b Z, m N+ 且m > 1.若m∣(a - b),則稱 a 與 b 關(guān)于模 m 同余,記作 a b(mod m)(“|”為整除符號(hào)).
(1) x2解同余方程: + 2x 0 mod3 x Z ;
(2)設(shè)(1)中方程的所有正根構(gòu)成數(shù)列 an ,其中 a1 < a2 < a3
②若Cn = tan a2n+3 × tan a2n+1 n N+ ,求數(shù)列 Cn 的前 n 項(xiàng)和Tn .
【變式 8-3】已知數(shù)列 an 的前 n 項(xiàng)和為 Sn , a1 =1, a2 = 3, Sn+1 + Sn-1 = 2 Sn +1 (n 2)
(1)求 Sn ;
b 4n cos(n +1)π(2)若 n = a ×a ,求數(shù)列 bn 的前 1012 項(xiàng)和T1012.n n+1
題型九:倒序相加法
【典例 9-1】(2024·高三·浙江·開學(xué)考試)已知函數(shù) f x 滿足 f x = f 1- x , f x 為 f x 的導(dǎo)函數(shù),
g x = f x 1+ , x R a = g n .若 n ÷,則數(shù)列 an 的前 2023 項(xiàng)和為 .3 è 2024
【典例 9-2】德國(guó)大數(shù)學(xué)家高斯年少成名,被譽(yù)為數(shù)學(xué)界的王子.在其年幼時(shí),對(duì)1+ 2 + 3 +L+100的
求和運(yùn)算中,提出了倒序相加法的原理,該原理基于所給數(shù)據(jù)前后對(duì)應(yīng)項(xiàng)的和呈現(xiàn)一定的規(guī)律生成.因此,
4x
此方法也稱為高斯算法.現(xiàn)有函數(shù) f x =
4x
,則
+ 2
f ( 1 ) + f ( 2 ) + f ( 3 ) +L f (2017) f (2018+ + )的值為 .
2019 2019 2019 2019 2019
【方法技巧】
將一個(gè)數(shù)列倒過來排列,當(dāng)它與原數(shù)列相加時(shí),若有規(guī)律可循,并且容易求和,則這樣的數(shù)列求和時(shí)
可用倒序相加法(等差數(shù)列前 n項(xiàng)和公式的推導(dǎo)即用此方法).
1
【變式 9-1】在數(shù)列 an 中, an = 1+ 22011-2n ,則 S = a1 + a2 + … +a2010的值是 .
f 1 【變式 9-2】已知函數(shù) x + ÷為奇函數(shù),且 g x = f x +1 a = g
n
,若 n ,則數(shù)列 a 的前
è 2 è 2023 ÷ n
2022 項(xiàng)和為 .
x 1 2 n +1
【變式 9-3】若函數(shù) f (x) πx 4= sin2 + ,且數(shù)列{an}滿足: an = f ÷ + f
+L+ f
2 4x + 2 è n + 2 è n + 2 ÷ n + 2 ÷
,則數(shù)列
è
{an}的通項(xiàng)公式為 an = ;以 an , a *n+1, an+2 (n N )為三角形三邊的長(zhǎng),作一系列三角形,若這一系列
三角形所有內(nèi)角的最大值為A ,則 tanA = .
題型十:分段數(shù)列求和
【典例 10-1】在數(shù)列 an 中, a1 = 8, a4 = 2 ,且滿足 an+2 - 2a *n+1 + an = 0 n N .
(1)求數(shù)列 an 的通項(xiàng)公式;
(2)設(shè)Tn = a1 + a2 +L+ an ,求Tn .
【典例 10-2】已知數(shù)列 an 的前 n項(xiàng)和 Sn 滿足 Sn = 2an -1,則 a1 -18 + a2 -18 +L a10 -18 = .
【方法技巧】
(1)分奇偶各自新數(shù)列求和
(2)要注意處理好奇偶數(shù)列對(duì)應(yīng)的項(xiàng):
①可構(gòu)建新數(shù)列;②可“跳項(xiàng)”求和
【變式 10-1】(2024·山西·三模)已知等差數(shù)列 an 的公差 d > 0,前 n項(xiàng)和為 Sn ,且 a3a6 = -5,
S8 = -16 .
(1)求數(shù)列 an 的通項(xiàng)公式;
ìa , n = 2k -1
(2)若bn =
n
í n k N
* b 2n T
2 ,n = 2k
,求數(shù)列 n 的前 項(xiàng)和 2n .
【變式 10-2】已知數(shù)列 an 是公差不為 0 的等差數(shù)列,其前 n 項(xiàng)和為 Sn , S3 = 3, a2,a3, a6成等比
數(shù)列.
(1)求 an 的通項(xiàng)公式;
b ì
an + 3, n = 2k,(2)若 n = í , *a ,求數(shù)列 b 2 , n 2k 的前 100 項(xiàng)和T . n = -1, k N n 100
【變式 10-3】(2024·陜西安康·模擬預(yù)測(cè))記 Sn 為數(shù)列 an 的前 n項(xiàng)和,已知
a1 =1, nSn+1 - n +1 Sn = n2 + n .
(1)求 an 的通項(xiàng)公式;
(2)若bn = (-1)
n an + é (-1)
n +1ù 2n ,求數(shù)列 bn 的前 2n項(xiàng)和T2n .
【變式 10-4】(2024·山東·二模)已知 an 是公差不為 0 的等差數(shù)列,其前 4 項(xiàng)和為 16,且 a1,a2 ,a5 成
等比數(shù)列.
(1)求數(shù)列 an 的通項(xiàng)公式;
ì2an , n為奇數(shù)
b (2)設(shè) n = í 1 , n ,求數(shù)列
bn 的前 2n項(xiàng)和T2n .
為偶數(shù)
anan+2
題型十一:并項(xiàng)求和法之 + +( ― ) = + 型
【典例 11-1 n】數(shù)列 an 滿足 an+2 + -1 an = 4n -1,前 12 項(xiàng)的和為 298,則 a1 = .
【典例 11-2】已知數(shù)列 an 的前 n項(xiàng)和為 Sn , a1 =1 .當(dāng) n 2時(shí), an + 2Sn-1 = n,則 S2019 = .
【方法技巧】
四四并項(xiàng)求和.
n n+1
【變式 11-1】(2024·浙江·模擬預(yù)測(cè))已知數(shù)列 an 滿足 a1 + a2 = 0 , a + -1 2 a = 2,則數(shù)列n+2 n
an 的前 2020 項(xiàng)的和為 .
【變式 11-2】已知數(shù)列 an 滿足 an+1 + -1 n an = n,則數(shù)列 an 的前 4n項(xiàng)和為 .
【變式 11-3】數(shù)列{an}滿足 an+2 + (-1)
n an = 3n +1,前 8 項(xiàng)的和為 106,則 a1 =
【變式 11-4】數(shù)列{an}滿足 an+2 + (-1)n+1an = 3n -1,前 16 項(xiàng)和為 540,則 a2 = .
【變式 11-5】已知數(shù)列 an 中, Sn 為前 n項(xiàng)和,且 a1 =1, an + an+1 = 3,則 S2017 =
題型十二:并項(xiàng)求和法之 = ( ― ) ( )型
2n -1 p
【典例 12-1】已知數(shù)列 an 的通項(xiàng)公式為 an = 2n -1 cos
, an 的前 n項(xiàng)和為 Sn ,則3
S2017 = .
{a } a n sin np cos np 【典例 12-2】(2024·云南保山·二模)數(shù)列 n 的通項(xiàng)公式 n = + ÷,其前 n項(xiàng)和為 S3 3 n
,
è
則 S2018 = .
【方法技巧】
兩兩并項(xiàng)求和.
【變式 12-1】(2024·遼寧沈陽(yáng)·模擬預(yù)測(cè))已知數(shù)列 an 滿足 a1 =1, an > 0, Sn 是數(shù)列 an 的前 n項(xiàng)
和,對(duì)任意 n N*,有 2Sn = 2a
2
n + an -1
(1)求數(shù)列 an 的通項(xiàng)公式;
(2) b = (-1)n-1設(shè) n an,求 bn 的前 100 項(xiàng)的和.
【變式 12-2 *】在數(shù)列 an 中,a1 = 5,且 an+1 = 2an -1 n N .
(1)求 an 的通項(xiàng)公式;
(2) n令bn = (-1) × an,求數(shù)列 bn 的前 n項(xiàng)和 Sn .
【變式 12-3】已知等差數(shù)列 an 中的前 n 項(xiàng)和為 Sn ,且 a2 , a5 , a14 成等比數(shù)列, S5 = 25 .
(1)求數(shù)列 an 的通項(xiàng)公式;
(2)若數(shù)列 an 為遞增數(shù)列,記bn = -1
n Sn ,求數(shù)列 bn 的前 40 項(xiàng)的和T40 .
a a ncos np p【變式 12-4】數(shù)列 n 通項(xiàng)為 n = + *2 6 ÷ n N , Sn 為其前 n項(xiàng)的和,則 S2015 = .è
題型十三:先放縮后裂項(xiàng)求和
【典例 13-1】設(shè)數(shù)列 an 前 n項(xiàng)和為 Sn ,且滿足 2 S *n - 2 = n +1 an - 2 , n N ,a1 = 0,數(shù)列 bn
滿足 4bn = an+1an+2 .
(1)求 an 、 bn 的通項(xiàng)公式;
1 3
(2)記 cn = 2 2 ,求證: c1 + c2 + ×××+ cn ì S -1ü
【典例 13-2 n】記 Sn 為數(shù)列 an 的前 n項(xiàng)和,已知 í 是首項(xiàng)為 3,公差為 1 的等差數(shù)列.
n
(1)求 an 的通項(xiàng)公式;
1 1 L 1 an -1 1(2)證明:當(dāng) n 2時(shí), + + + < -S2 S3 Sn an +1 2
.
【方法技巧】
先放縮后裂項(xiàng),放縮的目的是為了“求和”,這也是湊配放縮形式的目標(biāo).
【變式 13-1】(2024·河南·模擬預(yù)測(cè))若數(shù)列 an 滿足 a1 =1, an+1 - an = 2n.
(1)求 an 的通項(xiàng)公式;
1 1 L 1(2)證明: + + + < 2a1 a2 a
.
n
【變式 13-2】(2024·天津河北·二模)已知 an 是等差數(shù)列,其前 n項(xiàng)和為 Sn, bn 是等比數(shù)列,已知
a1 =1,S3 = 6,b1 = a2,a8是a4和b4的等比中項(xiàng).
(1)求 an 和 bn 的通項(xiàng)公式;
ìa ü
(2)求數(shù)列 í n 的前 n項(xiàng)和T ;
b
n
n
c b -1= n n 1 1
n n 1 1
(3)記 n b -1,求證:
- + < c < - + .
n+1 2 2 2n+1
i n+2
i=1 2 4 2
【變式 13-3】如圖,已知點(diǎn)列 An xn , yn 在曲線 y2 = x 上,點(diǎn)列Bn an ,0 在 x 軸上, A1 1,1 ,B1 0,0 ,
△Bn AnBn+1為等腰直角三角形.
(1)求 a1, a2,a3;(直接寫出結(jié)果)
(2)求數(shù)列 an 的通項(xiàng)公式;
* n n +1 n n + 2(3) 設(shè) n N ,證明: < a2 + a3 +L+ an+1 < .2 2
4
【變式 13-4】(2024·山東煙臺(tái)·三模)在數(shù)列 an 中,已知 2an = an+1 + anan+1, a1 = .3
(1)求數(shù)列 an 的通項(xiàng)公式;
(2)若b
4
n = a
2
n - an, Sn 為數(shù)列 bn 的前 n 項(xiàng)和,證明: ≤ S9 n <1 .
1.(2021 年浙江省高考數(shù)學(xué)試題)已知數(shù)列 a 滿足a1 = 1,a
a
= nn+1 n N*n 1+ a .記數(shù)列 an 的前 n 項(xiàng)和為n
Sn ,則( )
3
A. < S100 < 3 B.3 < S100 < 4 C.4 < S
9 9
100 < D. < S2 2 2 100
< 5
2.(2021 年全國(guó)新高考 I 卷數(shù)學(xué)試題)某校學(xué)生在研究民間剪紙藝術(shù)時(shí),發(fā)現(xiàn)剪紙時(shí)經(jīng)常會(huì)沿紙的某條對(duì)
稱軸把紙對(duì)折,規(guī)格為 20dm 12dm的長(zhǎng)方形紙,對(duì)折 1 次共可以得到10dm 12dm , 20dm 6dm兩種規(guī)格
的圖形,它們的面積之和 S1 = 240dm
2
,對(duì)折 2 次共可以得到5dm 12dm,10dm 6dm , 20dm 3dm三種
2
規(guī)格的圖形,它們的面積之和 S2 =180dm ,以此類推,則對(duì)折 4 次共可以得到不同規(guī)格圖形的種數(shù)為 ;
n
如果對(duì)折 n次,那么 S = dm2k .
k =1
3.(2024 年高考全國(guó)甲卷數(shù)學(xué)(文)真題)已知等比數(shù)列 an 的前 n項(xiàng)和為 Sn ,且 2Sn = 3an+1 - 3 .
(1)求 an 的通項(xiàng)公式;
(2)求數(shù)列 Sn 的前 n 項(xiàng)和.
4.(2024 年天津高考數(shù)學(xué)真題)已知數(shù)列 an 是公比大于 0 的等比數(shù)列.其前 n項(xiàng)和為 Sn .若
a1 =1, S2 = a3 -1.
(1)求數(shù)列 an 前 n項(xiàng)和 Sn ;
ìk, n = a
(2)設(shè)b kn = í , k N*, k 2b . n-1 + 2k, ak < n < ak +1
(ⅰ)當(dāng) k 2, n = ak +1時(shí),求證:bn-1 ak ×bn ;
Sn
(ⅱ)求 bi .
i=1
1.已知等差數(shù)列 an 的前 n 項(xiàng)和為 Sn ,且 S4 = 4S2 , a2n = 2an +1(n N*).
(1)求數(shù)列 an 的通項(xiàng)公式;
(2)若bn = 3
n-1
,令 cn = anbn,求數(shù)列 cn 的前 n 項(xiàng)和Tn .
m m
2.有理數(shù)都能表示成 (m, n Z ,且 n 0,m 與 n 互質(zhì))的形式,進(jìn)而有理數(shù)集Q={ | m, n Z 且 n 0,
n n
m m
m 與 n 互質(zhì)}.任何有理數(shù) 都可以化為有限小數(shù)或無(wú)限循環(huán)小數(shù).反之,任一有限小數(shù)也可以化為 的
n n
形式,從而是有理數(shù);那么無(wú)限循環(huán)小數(shù)是否為有理數(shù)?
思考下列問題:
(1)1.2& 是有理數(shù)嗎?請(qǐng)說明理由.
(2)1.2&4& 是有理數(shù)嗎?請(qǐng)說明理由.
3 3a
3.已知數(shù)列 an 的首項(xiàng) a1 = ,且滿足 a n5 n+1
=
2an +1
.
ì 1 ü
(1)求證:數(shù)列 í -1 為等比數(shù)列.
an
1 1 1 1
(2)若 + + +L+ <100a a a a ,求滿足條件的最大整數(shù) n.1 2 3 n
4.求和:
(1)( 2 - 3 5-1) + (4 - 3 5-2 ) +L+ (2n - 3 5-n ) ;
(2)1+ 2x + 3x2 +K+ nxn-1.
5.求下列數(shù)列的一個(gè)通項(xiàng)公式和一個(gè)前 n 項(xiàng)和公式:
1,11,111,1111,11111,….
6.在數(shù)列 an 中,已知 an+1 + an = 3 ×2n , a1 =1.
(1)求證: an - 2n 是等比數(shù)列.
(2)求數(shù)列 an 的前 n 項(xiàng)和 Sn .
7.若數(shù)列 an 的首項(xiàng) a1 =1,且滿足 an+1 = 2an +1,求數(shù)列 an 的通項(xiàng)公式及前 10 項(xiàng)的和.
易錯(cuò)點(diǎn):用錯(cuò)位相減法求和時(shí)項(xiàng)數(shù)處理不恰當(dāng)出錯(cuò)
易錯(cuò)分析:在利用錯(cuò)位相減法去求和時(shí),對(duì)相減后的項(xiàng)處理不恰當(dāng),容易導(dǎo)致漏掉項(xiàng)或者添加項(xiàng)出錯(cuò).
答題模板:錯(cuò)位相減法求前 n 項(xiàng)和
1、模板解決思路
錯(cuò)位相減法求前 n 項(xiàng)和是一種巧妙的方法,特別適用于等比數(shù)列。其核心思路在于,首先將原數(shù)列的
每一項(xiàng)都乘以公比,形成錯(cuò)位后的新數(shù)列。然后,將原數(shù)列與新數(shù)列進(jìn)行相減,從而消去大部分項(xiàng),簡(jiǎn)化
求和過程。最后,通過簡(jiǎn)單的代數(shù)運(yùn)算即可求出前 n 項(xiàng)和。
2、模板解決步驟
第一步:寫出等比數(shù)列的前 n 項(xiàng)和公式,明確首項(xiàng)、公比和項(xiàng)數(shù)。
第二步:將數(shù)列的每一項(xiàng)都乘以公比,形成錯(cuò)位后的新數(shù)列。
第三步:將原數(shù)列與新數(shù)列進(jìn)行相減,消去大部分項(xiàng),得到簡(jiǎn)化的表達(dá)式。
第四步:對(duì)簡(jiǎn)化后的表達(dá)式進(jìn)行代數(shù)運(yùn)算,求出前 n 項(xiàng)和。
【易錯(cuò)題 1】已知數(shù)列 an 的前 n項(xiàng)和為 Sn ,且滿足 a1 = 4,當(dāng) n 2時(shí), Sn = 2 an +1 .
(1)求數(shù)列 an 的通項(xiàng)公式;
(2)若bn = nan,求數(shù)列 bn 的前 n項(xiàng)和Tn .
a a a2 a3 L a【易錯(cuò)題 2】已知數(shù)列 滿足 nn 1 + + + + = 2n n N* .2 3 n
(1)求數(shù)列 an 的通項(xiàng)公式;
(2)已知數(shù)列 b an 滿足bn = n2n 1 .求數(shù)列 b+ n 的前 n 項(xiàng)和Tn ;第 05 講 數(shù)列求和
目錄
01 考情透視·目標(biāo)導(dǎo)航 .........................................................................................................................2
02 知識(shí)導(dǎo)圖·思維引航 .........................................................................................................................3
03 考點(diǎn)突破·題型探究 .........................................................................................................................4
知識(shí)點(diǎn) 1:數(shù)列求和常用方法.............................................................................................................4
解題方法總結(jié)........................................................................................................................................5
題型一:通項(xiàng)分析法............................................................................................................................9
題型二:公式法..................................................................................................................................11
題型三:錯(cuò)位相減法..........................................................................................................................13
題型四:分組求和法..........................................................................................................................17
題型五:裂項(xiàng)相消法之等差型..........................................................................................................20
題型六:裂項(xiàng)相消法之根式型..........................................................................................................25
題型七:裂項(xiàng)相消法之指數(shù)型..........................................................................................................27
題型八:裂項(xiàng)相消法之三角型..........................................................................................................31
題型九:倒序相加法..........................................................................................................................35
題型十:分段數(shù)列求和......................................................................................................................38
題型十一:并項(xiàng)求和法之 + +( ― ) = + 型...............................................................41
題型十二:并項(xiàng)求和法之 = ( ― ) ( )型................................................................................44
題型十三:先放縮后裂項(xiàng)求和..........................................................................................................47
04 真題練習(xí)·命題洞見........................................................................................................................52
05 課本典例·高考素材........................................................................................................................56
06 易錯(cuò)分析·答題模板........................................................................................................................59
易錯(cuò)點(diǎn):用錯(cuò)位相減法求和時(shí)項(xiàng)數(shù)處理不恰當(dāng)出錯(cuò)......................................................................59
答題模板:錯(cuò)位相減法求前 n 項(xiàng)和..................................................................................................59
考點(diǎn)要求 考題統(tǒng)計(jì) 考情分析
高考對(duì)數(shù)列求和的考查相對(duì)穩(wěn)定,考
(1)公式法 查內(nèi)容、頻率、題型、難度均變化不
(2)奇偶討論、并項(xiàng)分類 2023 年甲卷(理)第 17 題,12 分 大.?dāng)?shù)列的求和主要考查等差、等比數(shù)列
(3)倒序相加法 2023 年 II 卷第 18 題,12 分 的前 項(xiàng)和公式及非等差、等比數(shù)列的求和
(4)裂項(xiàng)相消法 2023 年 I 卷第 20 題,12 分 方法,其綜合性較強(qiáng).?dāng)?shù)列求和問題以解
(5)錯(cuò)位相減法 答題的形式為主,偶爾出現(xiàn)在選擇填空題
當(dāng)中,常結(jié)合函數(shù)、不等式綜合考查.
復(fù)習(xí)目標(biāo):
(1)熟練掌握等差、等比數(shù)列的前 n 項(xiàng)和公式.
(2)掌握非等差數(shù)列、非等比數(shù)列求和的幾種常見方法.
知識(shí)點(diǎn) 1:數(shù)列求和常用方法
一.公式法
n(a + a ) n(n -1)
(1)等差數(shù)列 an 的前 n 項(xiàng)和 S 1 nn = = na1 + d ,推導(dǎo)方法:倒序相加法.2 2
ìna1 ,q = 1
(2)等比數(shù)列 an 的前 n 項(xiàng)和 Sn =
ía1(1- q
n ) ,推導(dǎo)方法:乘公比,錯(cuò)位相減法.
,q 1
1- q
(3)一些常見的數(shù)列的前 n 項(xiàng)和:
n n
① k = 1+ 2 + 3 +L + n 1= n(n +1); 2k = 2 + 4 + 6 +L + 2n = n(n +1)
k =1 2 k =1
n
② (2k -1) = 1+ 3 + 5 +L+ (2n -1) = n2 ;
k =1
n
③ k 2 = 12 + 22 1+ 32 +L+ n2 = n(n +1)(2n +1);
k =1 6
n
④ k 3 13 23 33 L n3 [n(n + 1)= + + + + = ]2
k =1 2
二.幾種數(shù)列求和的常用方法
(1)分組轉(zhuǎn)化求和法:一個(gè)數(shù)列的通項(xiàng)公式是由若干個(gè)等差或等比或可求和的數(shù)列組成的,則求和
時(shí)可用分組求和法,分別求和后相加減.
(2)裂項(xiàng)相消法:把數(shù)列的通項(xiàng)拆成兩項(xiàng)之差,在求和時(shí)中間的一些項(xiàng)可以相互抵消,從而求得前
n 項(xiàng)和.
(3)錯(cuò)位相減法:如果一個(gè)數(shù)列的各項(xiàng)是由一個(gè)等差數(shù)列和一個(gè)等比數(shù)列的對(duì)應(yīng)項(xiàng)之積構(gòu)成的,那
么求這個(gè)數(shù)列的前 n項(xiàng)和即可用錯(cuò)位相減法求解.
(4)倒序相加法:如果一個(gè)數(shù)列 an 與首末兩端等“距離”的兩項(xiàng)的和相等或等于同一個(gè)常數(shù),那么
求這個(gè)數(shù)列的前 n項(xiàng)和即可用倒序相加法求解.
【診斷自測(cè)】已知等差數(shù)列 an 的前 n項(xiàng)和為 Sn , S6 = 9S2,且 a2n = 2an +1.
(1)求數(shù)列 an 的通項(xiàng)公式;
14
(2)設(shè)bn = an + ,數(shù)列 bn 的前 n項(xiàng)和為Mn ,定義 xa × a 為不超過 x 的最大整數(shù),例如 1.6 =1,n n+1
5.4 = 5,求數(shù)列 M n 的前 n項(xiàng)和Tn .
n n +1 2n +1
(說明:12 + 22 + 32 + ×××+ n2 = )
6
【解析】(1)設(shè)等差數(shù)列 an 的公差為d ,
ì6a 6 5+ d = 9 2a 2 1ìS + d
6 = 9S2 1 2 1 2 ÷ ìa1 =1由 í è
a2n = 2a 1
得: í ,解得: í
n + d = 2
,
a1 + 2n -1 d = 2 éa1 + n -1 d ù +1
\an =1+ 2 n -1 = 2n -1.
14 1 1
(2)由(1)得:bn = 2n -1 + = 2n -1 + 7 - 2n -1 2n +1 è 2n -1 2n +1÷,
M 1 1 1 1 1 1 1\ n = é1+ 2 + 3+ ×××+ 2n -1 ù + 7 1- + - + - ×××+ -3 3 5 5 7 2n -1 2n +1÷è
n 1+ 2n -1 7 1 1= + -
÷ = n
2 7+ 7 - ,
2 è 2n +1 2n +1
ì5,n =1
\ M n = í9, n = 2 ;
n
2 + 6, n 3
則當(dāng) n =1時(shí),T1 = M1 = 5;當(dāng) n = 2時(shí),T2 = M1 + M 2 = 5 + 9 =14;
當(dāng) n 3時(shí),Tn = M1 + M 2 + M3 + ×××+ M 2 2 2n-1 + M n = 5 + 9 + 3 + 6 + 4 + 6 + ×××+ n + 6
2 2 2 n n +1 2n +1 2 2 n n +1 2n +1=14 + 6 n - 2 + 3 + 4 + ×××+ n = 6n + 2 + -1 - 2 = 6n - 3 + ;
6 6
ì
5,n =1
綜上所述:Tn = í14, n = 2 .
n n +16n 3 2n +1 - + , n 3
6
解題方法總結(jié)
常見的裂項(xiàng)技巧
積累裂項(xiàng)模型 1:等差型
1 1 1 1( ) = -
n(n +1) n n +1
2 1 1 (1 1( ) = - )
n(n + k) k n n + k
1 1
(3) 2 = (
1 1
- )
4n -1 2 2n -1 2n +1
1 1 é 1 1 ù
(4) = -
n(n +1)(n + 2) 2 ê n(n +1) (n +1)(n + 2)
ú
1 1 1 1 1
(5)
n(n2
= = ( - )
-1) n(n -1)(n +1) 2 (n -1)n n(n +1)
n26 1 é( ) 2 = ê1
1 ù
+
4n -1 4 (2n +1)(2n -1)
ú
7 3n +1 4(n +1) - (n + 3)( ) = = 4( 1 1- ) - ( 1 1- )
(n +1)(n + 2)(n + 3) (n +1)(n + 2)(n + 3) n + 2 n + 3 n +1 n + 2
8 n(n 1) 1( ) + = n(n +1)(n + 2) - (n -1)n(n +1) .
3
1
(9) n(n +1)(n + 2) = n(n +1)(n + 2)(n + 3) - (n -1)n(n +1)(n + 2)
4
10 1 1 é 1 1 ù( ) = -
n(n +1)(n + 2)(n + 3) 3 ê n(n +1)(n + 2) (n +1)(n + 2)(n + 3)
ú
11 2n +1 1 1( ) = -
n2 (n +1)2 n2 (n +1)2
12 n +1 1 é 1 1 ù( )
n2 (n + 2)2
= -
4 ên2 (n + 2)2 ú
積累裂項(xiàng)模型 2:根式型
(1 1) = n +1 - n
n +1 + n
2 1 1( ) = ( n + k - n)
n + k + n k
3 1 1( ) = ( 2n +1 - 2n -1)
2n -1 + 2n +1 2
4 1 1 1 n(n +1) +1 1 1( ) + 2 + 2 = = 1+ -n (n +1) n(n +1) n n +1
1
(5)
3 n2 + 2n +1 + 3 n2 -1 + 3 n2 - 2n +1
3 3
= 3 n +1 - 3 n -1( 3 n2 + 2n +1 + 3 n2 -1 + 3 n2 - 2n 1) n +1 - n+ =
2
6 1 (n +1) n - n n +1 (n +1) n - n n +1 1 1( ) = = = -
(n +1) n + n n +1 2é
(n +1) n ù - (n n +1)
2 n(n +1) n n +1
積累裂項(xiàng)模型 3:指數(shù)型
2n (2n+1 -1) - (2n -1) 1 1
(1) =
(2n+1 -1)(2n -1) (2n+1
= -
-1)(2n -1) 2n -1 2n+1 -1
3n 1 1 1
(2)
(3n -1)(3n+1
= ( - )
-1) 2 3n -1 3n+1 -1
n + 2 2(n +1) - n 2 1 1 1 1
(3)
n(n +1) × 2n
=
n(n +1) × 2n
= - ÷ × = -
è n n +1 2n n × 2n-1 (n +1) × 2n
n-1
4 (4n -1) ×3 1 é 9 1 ù 1
3n+1 3n-1n-1 ( ) = ê - ú ×3 = -n(n + 2) 2 (n + 2) n 2
è n + 2 n
÷
(2n +1) × (-1)n (-1)n (-1)n+1
(5) = -
n(n +1) n n +1
(6) an = n × 3
n-1 ,設(shè) an = (an + b)3
n - [a(n -1) + b] ×3n-1 a 1,易得 = ,b 1= - ,
2 4
1
于是 an = (2n 1)3
n 1- - (2n - 3) ×3n-1
4 4
(-1)n (n2 + 4n + 2)2n (-1)n (n2 + 4n + 2) (-1)
n én2 + n + 2(n +1) + nù
(7) = =
n × 2n × (n +1)2n+1 n × (n +1)2n+1 n × (n +1)2n+1
(-1)n n é 1 1 ù 1 1 é (-1)n (-1)n+1 ù= n+1 + (-1) ê n + n+1 ú = (- )
n + -
2 n × 2 (n +1) × 2 2 2 ê n × 2n (n +1) × 2n+1 ú
積累裂項(xiàng)模型 4:對(duì)數(shù)型
log an+1 = logan+1a a - log aa a nn
積累裂項(xiàng)模型 5:三角型
(1 1 1) = (tana - tan b )
cosa cos b sin(a - b )
(2 1 1) = tan(n +1)° - tan n°
cos n°cos(n +1)° sin1°
(3) tana tan b 1= (tana - tan b ) -1
tan(a - b )
(4) an = tan× tan(n -1); tan1 = tan n - (n 1)
tan n - tan(n -1)
- = ,
1+ tan n × tan(n -1)
tan n tan(n 1) tan n - tan(n -1) 1,a tan n - tan(n -1)則 × - = - n = -1tan1 tan1
積累裂項(xiàng)模型 6:階乘
1 n 1 1( ) = -
(n +1)! n! (n +1)!
2 n + 2 n + 2 1 n +1 1 1( ) = = = = -
n!+ (n +1)!+ (n + 2)! n!(n + 2)2 n!(n + 2) (n + 2)! (n +1)! (n + 2)!
常見放縮公式:
1 1 1 1
(1) 2 < = - n 2 ;n n -1 n n -1 n
1 1 1 1
(2) 2 > = - ;n n n +1 n n +1
1 4 4 1 1
(3) 2 = 2 < = 2
- ;
n 4n 4n2 -1 è 2n -1 2n +1÷
T r 1 n! 1 1 1 1 1(4) r+1 = Cn × r = × r < < = - r 2 ;n r! n - r ! n r! r r -1 r -1 r
n
5 1 1 1 1 1 1 L 1( ) + n ÷
< + + + + + < 3;
è 1 2 2 3 n -1 n
(6 1 2 2) = < = 2 - n -1 + n n 2 ;
n n + n n -1 + n
1 2 2
(7) = > = 2 - n + n +1 ;
n n + n n + n +1
8 1 2 2 2 2( ) = < = = 2 - 2n -1 + 2n +1 ;
n n + n n 1 n 1 2n -1 + 2n +1- + +
2 2
n n n n-1
(9 2 2 2 2 1 1)
n 2
= < = = n-1 - n 2 ;
2 -1 2n -1 n
2 -1 2n -1 2n - 2 2n -1 2n-1 -1 2 -1 2n -1
10 1 1 1 n +1 - n -1 1( ) = < = ×
n3 n × n2 n -1 n n +1 n -1 n n +1 n +1 - n -1
é
ê 1 1
ù 1 1 1 n +1 + n -1
= - ú × = 2 - ×
ê n -1 n n n +1 ú n +1 - n -1
è n -1 n +1
÷
2 n
2 1 1 < - n 2 ;
è n -1 n +1
÷
1 2 2 2
(11) = < =
n3 n2 × n + n × n2 n n -1 + n -1 n n -1 n n + n -1
-2 n -1 - n 2 2
= = - n 2 ;
n -1 n n -1 n
12 1 1 1 2 2 2( ) n = < = = - ;2 -1 1+1 n -1 C0 + C1 + C 2n n n -1 n n +1 n n +1
13 1 2
n-1 1 1
( ) n < = - n 2 .2 -1 2n-1 -1 2n -1 2n-1 -1 2n -1
14 2( ) 2 1 2( ) n + 1 - n = < < = 2( n - n - 1).
n + 1 + n n n + n - 1
題型一:通項(xiàng)分析法
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
【典例 1-1】觀察如下規(guī)律:1, , , , , , , , , , , , , , , ,L ,該組數(shù)據(jù)的前 2025項(xiàng)和
3 3 3 5 5 5 5 5 7 7 7 7 7 7 7
為 .
【答案】45
【解析】設(shè)數(shù)列 an 是等差數(shù)列,且 an = 2n -1,
1 1 1 1
則題中數(shù)列的和可以看成 a1 + aa 2
+ a
a 3
K+ an = na a ,1 2 3 n
又因?yàn)轭}中數(shù)列的項(xiàng)數(shù)等于數(shù)列 an 的前 n項(xiàng)和,
n 1+ 2n -1
所以 = n2 = 2025 n = 45,
2
故題中數(shù)列的前 2025項(xiàng)的和為 45 .
故答案為: 45 .
1-2 S = 3+ 2 + 32 + 3 × 2 + 22 + ×××+ 3n + 3n-1 n-2 2【典例 】求和 n × 2 + 3 × 2 + ×××+ 2n .
é 2 n ù
∵ a = 3n + 3n-1 ×2 + 3n-2 2
2 2 2
【解析】 n × 2 + ×××+ 2
n = 3n ê1+ + ÷ + ××× +3 3 3 ÷ ú ê è è ú
é n+1 ù
ê1
2- 3 ÷ ú= 3n × ê è ú = 3n+12 - 2
n+1
ê ú ,
ê 1- 3 ú
n
∴ S = 32 + 33 + ×××+ 3n+1 - 22 + 23 + ×××+ 2n+1 9(1- 3 )= - (2n+2n - 4) .1- 3
3n+2S 2n+2 1n = - -2 2
【方法技巧】
先分析數(shù)列通項(xiàng)的特點(diǎn),再選擇合適的方法求和是求數(shù)列的前 項(xiàng)和問題應(yīng)該強(qiáng)化的意識(shí).
【變式 1-1】數(shù)列 9,99,999, 的前 n項(xiàng)和為 ( )
A 10. (10n -1) + n B.10n -1 C 10. (10n -1) D 10. (10n -1) - n
9 9 9
【答案】D
【解析】Q數(shù)列通項(xiàng) an = 10
n -1,
\Sn = (10 +10
2 +103 + +10n ) - n
10(1-10n )
= - n
1-10
10
= (10n -1) - n .
9
故選: D .
【變式 1-2】求數(shù)列 1, (1+ 2) , (1+ 2 + 22 ), , (1+ 2 + 22 + + 2n-1) , 的前 n項(xiàng)之和.
2n
【解析】由于 a = 1+ 21 + 22 + + 2n-1 -1n = = 2
n -1,
2 -1
所以前 n項(xiàng)之和T = (21 -1) + (22 -1) + + (2nn -1)
= (21 + 22 + 23 + + 2n ) - (1+1+ +1)
2 (2n -1)
= - n
2 -1
= 2n+1 - n - 2.
【變式 1-3】(2024·上海徐匯·模擬預(yù)測(cè))如圖,在楊輝三角中,斜線 l上方,從 1 開始箭頭所示的數(shù)組
成一個(gè)鋸齒數(shù)列:1,3,3,4,6,5,10,…,記其前 n項(xiàng)和為 Sn ,則 S19 等于 .
【答案】283
【解析】 a1 =1, a3 = 3 =1+ 2, a5 = 6 =1+ 2 + 3,…, a19 =1+ 2 + 3+ +10,
而 a2 = 3, a4 = 4 , a6 = 5,…, a18 =11,
\前 19 項(xiàng)的和 S19 = é 1+ 1+ 2 + 1+ 2 + 3 + + 1+ 2 + +10 ù + 3+ 4 + 5 + +11
3 +11 9= 1+ 3 + 6 + + 55 +
2
= 220 + 63 = 283.
故答案為:283.
題型二:公式法
【典例 2-1】(2024·湖北黃岡·一模)已知等比數(shù)列 an 的前 n項(xiàng)和為 Sn ,且 an+1 = 2 + Sn 對(duì)一切正整數(shù)
n恒成立.
(1)求數(shù)列 an 的通項(xiàng)公式;
(2)求數(shù)列 Sn 的前 n項(xiàng)和Tn .
【解析】(1)當(dāng) n 2時(shí),an = 2+Sn-1與 an+1 = 2 + Sn 兩式相減得 an+1 = 2an (n 2) .
∵數(shù)列是等比數(shù)列,∴公比 q = 2, a2 = 2a1 .
又 a2 = 2 + S1 = 2 + a1,∴ a1 = 2,
∴ a = 2nn
2 ∵ a = 2 + S S = 2n+1( ) 由 n+1 n 得 n - 2,
∴T = 22 + 23 +… + 2n+1n - 2n
22 1- 2n
= - 2n = 2n+2 - 2n - 4
1- 2
【典例 2-2】(2024·高三·四川·學(xué)業(yè)考試)已知等差數(shù)列 an 的前 n項(xiàng)和為 Sn , a1 = 2, S3 =12 .
(1)求數(shù)列 an 的通項(xiàng)公式 an ;
(2) a設(shè)b = 2 nn n N* ,求 bn 的前 n項(xiàng)和Tn .
【解析】(1)設(shè)等差數(shù)列 an 的公差為d ,
因?yàn)?a1 = 2, S3 =12,
所以 a1 + a2 + a3 = 3a2 =12 ,即 a2 = 4 ,
所以 d = a2 - a1 = 2 ,
所以 an = 2 + 2 n -1 = 2n ,即 an = 2n;
(2 2n)由(1)可知,bn = 2 ,
b 22n+2n+1
所以 =
b 2n
= 4 ,
n 2
又b1 = 4,所以 bn 是首項(xiàng)為 4,公比為 4的等比數(shù)列,
4 1- 4n 4n+1所以 bn 的前 n項(xiàng)和T - 4n = = .1- 4 3
【方法技巧】
針對(duì)數(shù)列的結(jié)構(gòu)特征,確定數(shù)列的類型,符合等差或等比數(shù)列時(shí),直接利用等差、等比數(shù)列相應(yīng)公式
求解.
【變式 2-1】已知等差數(shù)列 an 的前四項(xiàng)和為 10,且 a2 ,a3 ,a7 成等比數(shù)列
(1)求通項(xiàng)公式 an
(2) b = 2a設(shè) nn ,求數(shù)列bn 的前n項(xiàng)和 Sn
4 3
【解析】(1)設(shè)等差數(shù)列 an 的公差為d ,則 4a1 + d =10,即 2a1 + 3d = 5,2
又 a2 ,a3 ,a
2 2
7 成等比數(shù)列,所以a3 = a2a7 ,即 (a1 + 2d ) = (a1 + d )(a1 + 6d ),
2
整理得 2d + 3a d 0 d
3
1 = ,得 d = 0 或 = - a1,2
5 5
若 d = 0 ,則 a1 = , an = a1 + (n -1)d = ,2 2
若 d
3
= - a 91,則 2a2 1
- a1 = 5,得 a2 1
= -2, d = 3, an = 3n - 5 .
5
綜上所述: an = 或 an = 3n - 5 .2
5 5
(2)若 an = ,則2 bn = 2
2 = 4 2 , Sn = 4 2n;
n n n
若 an = 3n - 5 b 23n-5
8 S 1 8(1-8 ) 8 -1,則 n = = ,32 n
= × = .
32 1-8 28
【變式 2-2】已知數(shù)列 an 為等差數(shù)列,數(shù)列 bn 為等比數(shù)列,且bn N*,若
a1 = b2 = 2, a1 + a2 + a3 = b1 + b2 + b3 + b4 =15.
(1)求數(shù)列 an , bn 的通項(xiàng)公式;
(2)設(shè)由 an , bn 的公共項(xiàng)構(gòu)成的新數(shù)列記為 cn ,求數(shù)列 cn 的前 5 項(xiàng)之和 S5 .
【解析】(1)設(shè)數(shù)列 an 的公差為d ,數(shù)列 bn 的公比為q,
因?yàn)?a1 = 2, a1 + a2 + a3 =15
ìa1 = 2 ìa1 = 2
則 í
2a
,解得 ,
1 + 3d =13
í
d = 3
所以 an = a1 + (n -1)d = 2 + 3(n -1) = 3n -1,
因?yàn)閎2 = 2,b1 + b2 + b3 + b4 =15,
ìb1q = 2
所以 í 32 3 ,則 2q + 2q
2 -13q + 2 = 0
b b q b q 13 , 1 + 1 + 1 =
所以 (q - 2)(2q2 + 6q -1) = 0,
b N*因?yàn)?n ,所以 q = 2,b1 =1,
b = 2n-1所以 n .
(2)設(shè)數(shù)列 an 的第m項(xiàng)與數(shù)列 bn 的第n項(xiàng)相等,
a = b 3m -1 = 2n-1則 m n ,m, n N* ,
2n-1m +1所以 = ,m, n N* ,
3
因?yàn)閙, n N* ,
2
所以當(dāng) n = 1時(shí),m = N*,當(dāng) n = 2
5 *
時(shí),m =1,則 c1 = 2 ,當(dāng)n = 3時(shí),m = N ,3 3
17
當(dāng) n = 4時(shí),m = 3,則 c2 = 8,當(dāng) n = 5時(shí),m = N*,3
65
當(dāng) n = 6時(shí),m =11,則 c3 = 32,當(dāng) n = 7時(shí),m = N*3
257
當(dāng) n = 8時(shí),m = 43,則 c4 =128,當(dāng)n = 9 時(shí),m = N
*
3
當(dāng) n =10 時(shí),m =171,則 c5 = 512,
故 cn 的前 5 項(xiàng)之和 S5 = 2 + 8 + 32 +128 + 512 = 682.
題型三:錯(cuò)位相減法
【典例 3-1】設(shè) Sn 為數(shù)列 an 的前 n項(xiàng)和,且 2Sn = 3an - 4n .
(1) l 為何值時(shí), an + l 是等比數(shù)列;
n an + 2(2)若b n = ,求數(shù)列 bn 的前 n項(xiàng)和Tn .2
【解析】(1)當(dāng) n =1時(shí), 2a1 = 3a1 - 4,即 a1 = 4,所以 a1 + 2 = 6,
當(dāng) n 2時(shí), 2Sn = 3an - 4n ①, 2Sn-1 = 3an-1 - 4 n -1 ②,
① - ②得: 2an = 3an - 3an-1 - 4,即 an = 3an-1 + 4,所以 an + 2 = 3 an-1 + 2 ,
所以,當(dāng)l = 2時(shí), an + l 是等比數(shù)列,首項(xiàng)為 6,公比為 3.
2 1 a + 2 = 6 3n-1 2 3n
n an + 2 ( )由第( )問得, nn = ,所以bn = = n 3 ,2
所以Tn =1 3 + 2 3
2 + 3 33 +L+ n 3n ,
3Tn =1 3
2 + 2 33 +L+ n -1 3n + n 3n+1,
n
n+1 2 n 3 3 -1 1 n+1 3
故 2Tn = n 3 - 3+ 3 +L+ 3 = n 3n+1 - = n - ÷ 3 +
3-1 è 2 2
T (2n -1)3
n+1 + 3
所以 n = .4
【典例 3-2】(2024·陜西西安·模擬預(yù)測(cè))記 Sn 為等差數(shù)列 an 的前 n項(xiàng)和,已知 S3 =15, S5 = 35 .
(1)求 an 的通項(xiàng)公式;
a
(2)設(shè)bn = n2n ,求數(shù)列 bn 的前 n項(xiàng)和Tn .
【解析】(1)設(shè) an 的公差為d ,則 S3 = 3a1 + 3d = 15, S5 = 5a1 +10d = 35,
解得 a1 = 3, d = 2 .
故 an = 3+ n -1 2 = 2n +1.
2n +1
(2)由(1)可得bn = 2n
,
T 1 1 1 1所以 n = 3 + 5 2 + 7 3 + ×××+ 2n +1 n ,①2 2 2 2
1 1 1 1
則 Tn = 3 2 + 5 + 7 + ×××+ 2n +1
1
,②
2 2 23 24 2n+1
① -
1 1
②,得 Tn = 3 + 2
1 1 1 1
2 + 3 + ×××+
- 2n +1
2 2 è 2 2 2n ÷ 2n+1
1 1
1-
3
= + 2 è 2
n-1 ÷
1 - 2n +1
1 5 2n + 5
n+1 = - n+1 ,2 1- 2 2 2
2
2n + 5
所以Tn = 5 - 2n
.
【方法技巧】
錯(cuò)位相減法求數(shù)列{an}的前 n 項(xiàng)和的適用條件
若{an}是公差為 d (d 0) 的等差數(shù)列,{bn}是公比為 q(q 1)的等比數(shù)列,求數(shù)列{an·bn}的前 n 項(xiàng)和 Sn .
【變式 3-1】(2024·青海海南·二模)已知數(shù)列 an 的各項(xiàng)均為正數(shù),其前 n項(xiàng)和為 Sn , Sn 是等比數(shù)列,
a3 = a1a2 ,2S5 = a6 .
(1)求數(shù)列 Sn 的通項(xiàng)公式;
(2)設(shè)bn = an × log3 Sn ,求數(shù)列 bn 的前 n項(xiàng)和Tn .
【解析】(1)
由 Sn 是等比數(shù)列,設(shè)公比為q,則由2S5 = a6 得 2S5 = S6 - S5 ,所以 S6 = 3S5,
所以 q = 3,所以 S2 = 3S1, S3 = 3S2 = 9S1 ,故由 a3 = a1a2 得 S3 - S2 = S1 S2 - S1 ,
6S = S 2S S = 3 S = 3 3n-1 = 3n所以 1 1 1,所以 1 ,所以 n ;
(2 n)由(1)可得 Sn = 3 ,當(dāng) n =1時(shí), a1 = S1 = 3 .
當(dāng) n 2 n時(shí), an = Sn - Sn-1 = 3 - 3
n-1 = 2 ×3n-1 .經(jīng)檢驗(yàn) a1 = 3不適合 an = 2 ×3
n-1
,
3, n =1 3, n =1
所以 a
ì ì
n = í2 3n-1, n 2,所以
bn = an × log3 S =× n í2n ×3n-1 , n
,
2
則數(shù)列 bn 的前 n項(xiàng)和Tn = 3+ 4 ×3 + 6 ×32 + 8 ×33 +L+ 2 n -1 ×3n-2 + 2n ×3n-1,
3Tn = 9 + 4 ×3
2 + 6 ×33 + 8 ×34 +L+ 2 n -1 ×3n-1 + 2n ×3n ,
n
兩式相減可得-2T = 2 3 + 32 + 33 +L+ 3n-1n - 2n ×3n = 2 3- 3 - 2n ×3n = -3 + 1- 2n ×3n ,1- 3
3 1 n
所以Tn = + n - ÷ ×3 .2 è 2
【變式 3-2】已知在等差數(shù)列 an 中,公差大于 0, a1 = 2,且 a2,a3 + 2, a6成等比數(shù)列,數(shù)列 an
的前 n項(xiàng)和為 Sn .
(1)求數(shù)列 an 的通項(xiàng)公式;
(2)若bn = 2
n-1an ,求數(shù)列 bn 的前 n項(xiàng)和Tn .
【解析】(1)設(shè)等差數(shù)列 an 的公差為d .
因?yàn)?a2,a3 + 2, a
2
6成等比數(shù)列,得 a3 + 2 = a2a6 ,又因?yàn)?a1 = 2,
則 (4 + 2d )2 = (2 + d )(2 + 5d ),解得 d = -2 (舍去)或 d = 6,
則數(shù)列 an 的通項(xiàng)公式為 an = 2 + 6(n -1) = 6n - 4 .
2 1 b = 2n-1a = 2n-1( )由( )得 n n (6n - 4) = (3n - 2) ×2n,
1
所以Tn =1 2 + 4 2
2 + 7 23 +L+ (3n - 2) ×2n ,①
則 2Tn =1 2
2 + 4 23 + 7 24 +L+ (3n - 5) × 2n + (3n - 2) × 2n+1 ,②
n-1
①-②得 -Tn = 2 + 3 22 + 23 +L+ 2n - 3n - 2 ×2n+1 4 1- 2 = 2 + 3 - (3n - 2) × 2n+1
1- 2
= (5 - 3n)2n+1 -10 = (10 - 6n)2n -10 ,
所以Tn = (6n -10)2
n +10 .
【變式 3-3】(2024·浙江·三模)已知等比數(shù)列 an 和等差數(shù)列 bn ,滿足 an+1 > an , a1 = b1 =1, a2 = b2,
3a3 = 4b3 .
(1)求數(shù)列 an , bn 的通項(xiàng)公式;
ì T ü n+1
(2)記數(shù)列 an ×b 的前 n項(xiàng)和為T ,數(shù)列 í nn n 的前 n項(xiàng)和為P 2b b n.證明:Pn < -1. n × n+1 n +1
【解析】(1)等比數(shù)列 an 滿足 an+1 > an , a1 =1,所以 an 單調(diào)遞增,
ì
1+ d = q
設(shè) an 的公比為 q q >1 ,等差數(shù)列 bn 的公差為d ,依題意可得 í 2
3q = 4 1+ 2d
,
ìq 2=
ìq = 2 3
解得 íd 1或 í 1 (舍去), = d = -
3
a = 2n-1所以 n ,bn = n.
n-1
(2)由(1)可得 an ×bn = n 2 ,
T =1 20 + 2 21所以 n + 3 2
2 + ×××+ n 2n-1
2Tn =1 2
1 + 2 22 + ×××+ n -1 2n-1 + n 2n
n
所以Tn = - 20 + 21 1- 2+ 22 + ×××+ 2n-1 + n 2n = - + n 2n = n -1 2n +1,1- 2
Tn n -1 2n +1 n -1 2n 1
故 = = + ,
bn ×bn+1 n n +1 n n +1 n n +1
n -1 2n 2n+1 2n 1 1 1
又 = - ,
= -
n n +1 n +1 n n n +1 n n +1,
T 2n+1n 2
n 1 1
即 = - + - ,
bn ×bn+1 n +1 n n n +1
22 21 1 1 23P 2
2 1 1 2n+1 2n 1 1
所以 n = - + - + - + - +L+ - + -2 1 1 2 3 2 2 3 n +1 n n n +1
22 21 23 22 2n+1L 2
n 1 1 1 1 1 1
= - + - + + - +
2 1 3 2 n +1 n ÷
- + - +L+ - ÷
è è1 2 2 3 n n +1
2n+1 n+1 n+1
= - 2 1 1 2 1 1 2+ - = - - < -1.
n +1 n +1 n +1 n +1 n +1
【變式 3-4】(2024·河北衡水·三模)已知數(shù)列 an 滿足: a1 =1, a2 = 2, an + an+1 = 2an+2 .
(1)請(qǐng)寫出 a3 - a2,a4 - a3,a5 - a4 的值,給出一個(gè)你的猜想,并證明;
(2)設(shè)bn = 3na2n+1,求數(shù)列 bn 的前 n項(xiàng)和 Sn .
【解析】(1)因?yàn)?a1 =1, a2 = 2, an + a
1 3 1
n+1 = 2an+2 ,可得 a3 = a2 + a1 = ,a3 - a2 = - ,2 2 2
a 1 74 = a3 + a2 = , a a
1 a 1 a a 13 a a 1- = , = + = , - = - ,
2 4 4 3 4 5 2 4 3 8 5 4 8
1
因此猜想 an+1 - an 是以 1 為首項(xiàng),- 為公比的等比數(shù)列; 2
下面證明:
1 1 a - a 1
因?yàn)?an+2 - an+1 = an + an+1 - an+1 = - a - a n+2 n+1n = -2 2 +1 n ,即 an+1 - an 2
,
1
又因?yàn)?a2 - a1 =1,故 an+1 - an 是以 1 為首項(xiàng),- 為公比的等比數(shù)列,2
n-1
所以數(shù)列 an+1 - an 的通項(xiàng)公式為 a
1
- a = - n+1 n ÷ .
è 2
2 n-2
2 1 n 2 a - a =1, a 1- a = - ,a - a = 1- ,L,a 1- a = - ( )由( )知,當(dāng) 時(shí), 2 1 3 2 ,2 4 3 è 2 ÷ n n-1 ÷ è 2
1 n-1
2 n-2 1- - ÷ n-1
累加得 a 1 1 1 è 2 2 2 1 ,n -1 =1+ - ÷ + - ÷ +L+ - ÷ = 1 = - - ÷è 2 è 2 è 2 1+ 3 3 è 2
2
a 5 2 1
n-1
所以 n = -
-
÷ ,3 3 è 2
n-1
當(dāng) n =1 a =1 5 2 1時(shí), 1 滿足題意,所以 an = -
-
*
÷ 對(duì)"n N 成立; 3 3 è 2
b 2n
1 2 n
故 n = 5n - n ,可得 Sn = 5(1+ 2 + 3+L+ n) - 2 1 +4 è 4 42
+L+
4n ÷
1 2 n(n +1)其中 + + 3 +L+ n = ,
2
1 2 n 1 1 2 n
設(shè)Tn = 1 + 2 +L+ n ,則 T = + +L+ ,4 4 4 4 n 42 43 4n+1
3 T 1 1 1 n 4 1 1 n 4 3n + 4兩式相減得 n = 1 + 2 +L+ n - n+1 = - n+1 ÷ - n+1 ,即Tn = - , 4 4 4 4 4 3 è 4 4 4 9 9 4n
綜上可得,數(shù)列 b n S 5n(n +1) 6n + 8 8n 的前 項(xiàng)和 n = + n - .2 9 4 9
題型四:分組求和法
2
【典例 4-1 *】已知數(shù)列 an 的前 n項(xiàng)和為 Sn ,滿足 Sn = an -1 ,n N .3
(1)求數(shù)列 an 的通項(xiàng)公式;
nπ
(2)記bn = an ×cos ,求數(shù)列 bn 的前 100 項(xiàng)的和T100 .2
a
【解析】(1)當(dāng) n 2時(shí), an = S
2 2 n
n - Sn = -2-1 = an -1 - an-1 -1 ,整理得 ,又 a S
2
1 = 1 = a1 -1a ,得3 3 n-1 3
a1 = -2
則數(shù)列 an 是以-2 為首項(xiàng),-2 為公比的等比數(shù)列.
則 an = (-2)
n , n N*
(2)當(dāng) n = 4k, k N* 時(shí),b4k = ( 2)
4k cos 4kπ- × = 24k
2
4k -1 π
當(dāng) n = 4k -1,k N*時(shí),b4k -1 = (-2)
4k -1 ×cos = 0 ,
2
4k - 2 π
當(dāng) n = 4k - 2, k N*時(shí),b4k -2 = (-2)
4k -2 ×cos = -24k -2,
2
4k - 3 π
當(dāng) n = 4k - 3,k N* 時(shí),b4k -3 = (-2)
4k -3 ×cos = 0,
2
則T100 = b1 + b2 + b3 + +b100
= - 22 + 26 + +298 + 24 + 28 + +2100
22 - 298 24 24 - 2100 24
= - +
1- 24 1- 24
2102 - 4
=
5
【典例 4-2】在等比數(shù)列{ an }中, a1 + a2 = 5a
5
2 = .4
(1)求{ an }的通項(xiàng)公式;
3
(2)求數(shù)列{ an + 2n -1}的前 n 項(xiàng)和 Sn.4
1 q a 1【解析】(1)由題設(shè) a1 =1, a2 = ,則{an}的公比 =
2 = ,
4 a1 4
a 1所以 n = 4n-1
.
3 3
(2)由(1)知: an + 2n -1 = n + 2n -1,4 4
1
1 1 (1
1
- n )
所以 Sn = 3 ( + 2 + ...
1
+ ) + 2 (1+ 2 + ...+ n) - n = 3 4 4 2 n(n +1)+ - n =1 1- + n2 .
4 4 4n n1 1- 2 4
4
【方法技巧】
(1)分組轉(zhuǎn)化求和
數(shù)列求和應(yīng)從通項(xiàng)入手,若無(wú)通項(xiàng),則先求通項(xiàng),然后通過對(duì)通項(xiàng)變形,轉(zhuǎn)化為等差數(shù)列或等比數(shù)列
或可求前 n 項(xiàng)和的數(shù)列求和.
(2)分組轉(zhuǎn)化法求和的常見類型
【變式 4-1】在遞增的等比數(shù)列 an 中, a1 ×a2 = 8, a1 + a2 = 6 ,其中 n N* .
(1)求數(shù)列 an 的通項(xiàng)公式;
(2)若bn = 2an + 3,求數(shù)列 bn 的前 n 項(xiàng)和Tn .
【解析】(1)由 a1 ×a2 = 8,a1 + a2 = 6,等比數(shù)列 an 是遞增數(shù)列,得 a1 = 2, a2 = 4,
因此數(shù)列 an q
a
= 2的公比 = 2a ,則 an = a1q
n-1 = 2n ,
1
所以數(shù)列 a 的通項(xiàng)公式是 a = 2nn n .
(2 n+1)由(1)得,bn = 2an + 3 = 2 + 3,
4(1- 2nT )n = b1 + b2 +L+ bn = + 3n = 2
n+2 + 3n - 4 .
1- 2
【變式 4-2】等比數(shù)列 an 的公比為 2,且 a2 , a3 + 2, a4 成等差數(shù)列.
(1)求數(shù)列 an 的通項(xiàng)公式;
(2)若bn = log2 an + an ,求數(shù)列 bn 的前 n項(xiàng)和Tn .
【解析】(1)已知等比數(shù)列 an 的公比為 2,且 a2 , a3 + 2, a4 成等差數(shù)列,
\2(a3 + 2) = a2 + a4 , \2 4a1 + 2 = 2a1 + 8a1 , 解得 a1 = 2,
\a = 2 2n-1 = 2n , n N*n ;
(2 b = log 2n + 2n n) n 2 = n + 2 ,
\T = (1+ 2 +L+ n) + 2 + 22n +L+ 2n .
n(n +1)
= + 2n+1 - 2 ;
2
n n +1
綜上,T = + 2n+1n - 22
【變式 4-3】已知等差數(shù)列{an}滿足 an + an-1 = 8n + 2( n 2),數(shù)列{bn}是公比為 3 的等比數(shù)列,
a2 + b2 = 20.
(1)求數(shù)列{an}和{bn}的通項(xiàng)公式;
(2)數(shù)列{an}和{bn}中的項(xiàng)由小到大組成新的數(shù)列{cn},記數(shù)列{cn}的前 n 項(xiàng)和為 Sn ,求 S50.
【解析】(1) an + an-1 = 8n + 2,①, an-1 + an-2 = 8n - 6( n 3),②,
① - ② 得: an - an-2 = 8,
∵{an}為等差數(shù)列,∴ 2d = 8, d = 4,
an + an-1 = 8n + 2,即 an + an - d = 8n + 2,
∴ an = 4n + 3,
因?yàn)閿?shù)列{bn}是公比為 3 的等比數(shù)列, a2 + b2 = 20,
即11+ 3b1 = 20,解得:b1 = 3,
所以bn = 3
n
;
(2)由(1)可知, an = 4n + 3,bn = 3
n
,
且數(shù)列{an}和{bn}中的項(xiàng)由小到大組成新的數(shù)列{cn},
4 5
其中b4 = 3 = 81,b5 = 3 = 243,此時(shí) a46 = 4 46 + 3 =187,
所以數(shù)列{cn}中數(shù)列{an}有 46項(xiàng),數(shù)列{bn}有 4項(xiàng),
S 1 2 3 450 = c1 + c2 +L+ c50 = (3 + 3 + 3 + 3 ) + (7 +11+L+187),
=120 + 4462 = 4582.
題型五:裂項(xiàng)相消法之等差型
【典例 5-1 *】已知公比為q的等比數(shù)列 an 的前 n項(xiàng)和為 Sn ,且滿足 a2 - 2a1 = 8, S3 = 84, q N .
(1)求數(shù)列 an 的通項(xiàng)公式;
b log2an+1 log a(2) 2 n若 n = +log a log a ,求數(shù)列 bn 的前 n項(xiàng)和Tn .2 n 2 n+1
【解析】(1)由 a2 - 2a1 = 8,有 a1q - 2a1 = 8,①
2
又由 S3 = 84,有 a1 + a1q + a1q = 84,②
q - 2 8
① ②得 =1+ q + q2 84 ,
11
整理為 2q2 -19q + 44 = 0 ,解得 q = 4或 q = ,
2
由 q N* ,可得 q = 4, a1 = 4,
可得數(shù)列 an n的通項(xiàng)公式為 an = 4 ;
n
(2)由 log2an = log2 4 = log 2
2n
2 = 2n, log2an+1 = 2n + 2,
b 2n + 2 2n 2 1 1有 n = + = + - ,2n 2n + 2 n n +1
所以Tn = 2n + 1
1
- +
1 1
-
1 1
+L+
2 ÷ 2 3 ÷
- ÷
è è è n n +1
2
= 2n 1+ 1- 2n n 2n + 3n ÷ = + = .
è n +1 n +1 n +1
【方法技巧】
1 1 1 (1 1( ) = - )
n(n + k) k n n + k
2 1 1 é 1 1 ù( ) =
n(n +1)(n + 2) 2 ê
-
n(n +1) (n +1)(n + 2)
ú
1
(3) n(n +1) = n(n +1)(n + 2) - (n -1)n(n +1) .
3
(4) n(n +1)(n 1+ 2) = n(n +1)(n + 2)(n + 3) - (n -1)n(n +1)(n + 2)
4
5 2n +1 1 1( ) 2 = -n (n +1)2 n2 (n +1)2
【典例 5-2】已知數(shù)列 an , bn ,其中數(shù)列 an n是等差數(shù)列,且滿足bn - an = -1 n2 , a1 +b1 =1,
a2 + b2 = 8,n N
*
.
(1)求數(shù)列 an 和 bn 的通項(xiàng)公式;
1
(2)若 cn = ,求數(shù)列 cn 的前 n項(xiàng)和 Sa n ;nan+1
【解析】(1)因?yàn)閎 nn - an = -1 n2 ,所以b1 - a1 = -1,b2 - a2 = 4,
因?yàn)?a1 + b1 =1, a2 + b2 = 8,所以 a1 =1,b1 = 0 , a2 = 2,b2 = 6,
又?jǐn)?shù)列 an 是等差數(shù)列,所以 an 的公差 d = a2 - a1 =1,
故數(shù)列 an 的通項(xiàng)公式 an =1+ n -1 = n ,
b n 2 n所以 2n = an + -1 n = n + -1 n ,
即 bn n的通項(xiàng)公式bn = n + -1 n2.
1 1 1
(2)由(1)知 cn = = -n n +1 n n +1,
S 1 1 1 1 1 1 1 n則 n = - + - +L+ - =1- = .1 2 2 3 n n +1 n +1 n +1
5 1
【變式 5-1 2 *】已知數(shù)列 an 的前 n項(xiàng)和為 Sn , Sn = n - n n N .2 2
(1)求 an 的通項(xiàng)公式;
(2)若b
1
n = a a ,求數(shù)列 bn 的前 n項(xiàng)和Tn .n n+1
5 2 1
【解析】(1)Qn N*,有 Sn = n - n,2 2
\當(dāng) n 2
5 1
時(shí),有 Sn-1 = (n -1)
2 - n -1 ,
2 2
5 1 5
兩式相減得 an = Sn - Sn-1 = n
2 - n - éê (n -1)
2 1- n -1 ùú = 5n - 3,2 2 2 2
S 5 n2 1當(dāng) n =1時(shí),由 n = - n,得 a2 2 1
= 2,
檢驗(yàn):當(dāng) n =1時(shí)也滿足 an = 5n- 3,
*
所以 an = 5n - 3n N
b 1 1 1 1 1 (2)由(1)知, n = = = -anan+1 5n - 3 5n + 2 5 è 5n - 3 5n + 2 ÷
,
所以Tn = b1 + b2 +L+ bn
1 1 1 1= - + 1 1 1 1 1 ÷ -
÷ +L+
-
5 è 2 7 5 è 7 12 5 è 5n - 3 5n + 2 ÷
1 1 1 n n= - = =
5 è 2 5n + 2 ÷ 2 5n + 2 10n + 4 ,
n
所以Tn = .10n + 4
【變式 5-2】(2024·湖北武漢·模擬預(yù)測(cè))在等差數(shù)列 a ( n N*n )中,a1 + a2 =11, a3 =10 .
(1)求 an 的通項(xiàng)公式;
1
(2)若bn = a a a ,數(shù)列的 bn 前 n
1
項(xiàng)和為Tn ,證明Tn < .
n n+1 n+2 168
【解析】(1)設(shè)等差數(shù)列 an 的公差為d ,
ìa1 + a2 =11 ì2a1 + d =11 ìa1 = 4
由 ía 10 ,即 í 3 = a
,解得 í
1 + 2d =10 d 3
,
=
所以 an = a1 + n -1 d = 4 + 3 n -1 = 3n +1,
所以數(shù)列 an 的通項(xiàng)公式為 an = 3n +1;
1 1
(2)∵ an = 3n +1,∴ bn = =a a ,n n+1an+2 3n +1 3n + 4 3n + 7
1 1
(方法一)bn = =anan+1an+2 3n +1 3n + 4 3n + 7
1 1 1 1 1= × - × ,
6 è 3n +1 3n + 4 3n + 4 3n + 7 ÷
T 1 é
n 1 1 n 1 1 ù
∴ n = 18 ê - -3k +1 3k + 4 ÷ - ÷ k =1 è k =1 è 3k + 4 3k + 7 ú
1 é 1 1 1 1 ù
化簡(jiǎn)得:Tn = ê - - - ,18 è 4 3n + 4
÷
è 7 3n + 7 ÷ ú
∴T
1 1 1
n = - <168 6 3n + 4 3n + 7 168 .
1 1 1 é 1 ù
(方法二)bn = = =anan+1a
ê ú
n+2 3n +1 3n + 4 3n + 7 3n + 4 ê 3n +1 3n + 7 ú
1 1 1 1 1 1 1 1 1=
6 3n + 4
- = × - × ,
è 3n +1 3n + 7 ÷ 6 è 3n +1 3n + 4 3n + 4 3n + 7 ÷
T 1 é 1 1 1 1 1 1 1 1 ù∴ n = -6 ê 4 7 7 10 ÷
+ - + ××× + × - ×
è è 7 10 10 13
÷
è 3n +1 3n + 4 3n + 4 3n + 7 ÷ ú
1 1 1 1 1 1 1 1 1= - × ÷ = -
× < .
6 è 28 3n + 4 3n + 7 168 6 è 3n + 4 3n + 7 ÷ 168
【變式 5-3】(2024·河北衡水·模擬預(yù)測(cè))記各項(xiàng)均為正數(shù)的數(shù)列 an 的前 n項(xiàng)和為 Sn ,已知 Sn 是
an -1 a + 3與 n 的等差中項(xiàng).
2 2
(1)求 an 的通項(xiàng)公式;
2
(2)設(shè)b
an+1 a= + n+1n bS S ,數(shù)列 n S S 的前 n項(xiàng)和為Tn ,證明:Tn - 4n < 2 .n n+1 n n+1
a -1 a + 3
【解析】(1)由題意,得 2 Sn = n + n ,2 2
2
即 2 Sn = an +1,即 4Sn = an +1 ①,
所以4S 2n-1 = an-1 +1 n 2 ②,
①-② 2 2,得 4an = an + 2an - an-1 - 2an-1,
即 an + an-1 an - an-1 - 2 = 0 .
又 an > 0,所以 an - an-1 = 2 n 2 .
由 S
an -1 a是 與 n
+ 3
n 的等差中項(xiàng),得當(dāng) n =1時(shí),2 2
2 a a1 -1 a1 + 31 = + ,解得 a1 =1,2 2
所以 an 是以 1 為首項(xiàng),2 為公差的等差數(shù)列,
故 an = 2n -1.
(2)由(1 S 2)得 n = n ,則
b 2n +1 (2n +1)
2 1 1 4 1 1n = 2 2 + = - + + -n (n +1) n n +1 n2 (n +1)2 n n ,+1
n
T b 1 1 1 1 é 1 1 ù 1 1 1 1 1所以 n = n = - 2 ÷ + 2 - 2 ÷ +L+ ê 2 - 2 ú + 4n + 1- + ÷ - ÷ +L+ -
i=1 è 2
÷
è 2 3 n (n +1) è 2 è 2 3 è n n +1
=1 1- + 4n 1+1-
(n +1)2 n +1
= 4n 1 1+ 2 - 2 -(n +1) n ,+1
所以Tn - 4n = 4n + 2
1 1 1 1
- 2 - - 4n = 2 - 2 - < 2(n 1) n 1 (n 1) n ,+ + + +1
所以Tn - 4n < 2 .
【變式 5-4】設(shè)數(shù)列 an 為等差數(shù)列,前 n項(xiàng)和為 Sn , a3 + a7 =18, S10 =100.
(1)求數(shù)列 an 的通項(xiàng)公式;
b 2n
2
= n n 1(2)設(shè) n 的前 項(xiàng)和為Ta a n ,證明:
Tn < + .
n n+1 2 4
【解析】(1) a3 + a7 = 2a5 =18 a5 = 9,
10
S a1 + a10 10 a由 = = 5 + a6 10 =100 a5 + a6 = 20 ,2 2
所以 d = a6 - a5 = 2, a1 = a5 - 4d =1,
所以 an = a1 + (n -1)d = 2n -1.
2n2 1 4n2b -1+1 1 1 (2) n = = × = 1+(2n -1)(2n +1) 2 (2n -1)(2n +1) 2 è (2n -1)(2n +1)
÷
1 1 1 1 1 1 1= + × = + × -
2 2 (2n -1)(2n +1) 2 4 è 2n -1 2n +1÷
T n 1 é= + 1 1 1 1 1 1 1 ù所以 n 2 4 ê
1- ÷ + - ÷ + - ÷ + ××× + -
è 3 è 3 5 è 5 7
÷
è 2n -1 2n +1 ú
n 1 1 1 n 1 1 n 1= + - = + - < +
2 4 è 2n +1÷ 2 4 8n + 4 2 4
題型六:裂項(xiàng)相消法之根式型
【典例 6-1 *】已知數(shù)列 an 的前 n 項(xiàng)和為 Sn , a1 =1, S5 = 25,且3Sn+1 - an = 2Sn + Sn+2 n N .
(1)求數(shù)列 an 的通項(xiàng)公式;
b 1(2)設(shè) n = ,求數(shù)列 bn 的前 n 項(xiàng)和T .2n -1 + 2n +1 n
【解析】(1)由3Sn+1 - an = 2Sn + Sn+2 得:
-an = 2Sn - 3Sn+1 + Sn+2 = 2Sn - 2Sn+1 + Sn+2 - Sn+1 = -2an+1 + an+2
即 2an+1 = an + an+2 ,
所以數(shù)列 an 為等差數(shù)列,
由 S5 = 5a3 = 25得 a3 = 5,
設(shè)公差為 d, a3 = 5 = a1 + 2d =1+ 2d ,得 d = 2,
所以 an =1+ n -1 2 = 2n -1,
故數(shù)列 an 的通項(xiàng)公式為 an = 2n -1.
1 1
(2)bn = = 2n +1 - 2n -1 ,2n -1 + 2n +1 2
T 1所以 n = 3 -1+ 5 - 3 + 7 - 5 +L+ 2n +1 - 2n -1 1= 2n +1 -1 .2 2
【典例 6-2】已知數(shù)列 a *n 的前 n項(xiàng)和為 Sn ,且 2Sn =1- an n N .
(1)求數(shù)列 an 的通項(xiàng)公式;
b 1
bnbn+1
(2)設(shè) n = ,cn =log a n +1 + n ,求數(shù)列 cn 的前 n項(xiàng)和Tn .1 n
3
1
【解析】(1)當(dāng) n =1時(shí),由 2Sn =1- an ,得: a1= .3
由 2Sn =1- an ,
2Sn-1 =1- an-1 n 2 ,
1
由上面兩式相減,得: an = an-1 n 2 3
1 1 1 *
所以數(shù)列 an 是以首項(xiàng)為 ,公比為 的等比數(shù)列,得: a =3 3 n 3n n N
b 1 = 1 1n = = ,
(2) log1 an 1
n
n
3 log1 3 ÷3 è
c n +1 - n 1 1n = = - ,
n n +1 n n +1
T =c c Lc 1 1 1 1 1 1 n 1 + 2 + n = - ÷ + - ÷ + - ÷ +L
1 1 1
+ - ÷ =1-
è 2 è 2 3 è 3 4 è n n +1 n +1
【方法技巧】
1 1 1( ) = ( n + k - n)
n + k + n k
2 1 1 1 n(n +1) +1 1 1( ) + + = = 1+ -
n2 (n +1)2 n(n +1) n n +1
1
(3)
3 n2 + 2n +1 + 3 n2 -1 + 3 n2 - 2n +1
3 3
= 3 n +1 - 3 n 1( 3 n2 n +1 - n- + 2n +1 + 3 n2 -1 + 3 n2 - 2n +1) =
2
【變式 6-1】已知數(shù)列 an , an > 0, a1 =1, Sn 為其前 n 項(xiàng)和,且滿足 Sn + Sn-1 Sn - Sn-1 =1 n 2 .
(1)求數(shù)列 an 的通項(xiàng)公式;
n 1
(2)設(shè)bn = -1 × a ,求數(shù)列 bn 的前 n 項(xiàng)和Tn .n
2 2
【解析】(1)由題可知 Sn - Sn-1 =1 n 2 數(shù)列是 S 2n 等差數(shù)列,
S 2 = S 2所以 n 1 + n -1 = n ,
Sn = n an = Sn - Sn-1 = n - n -1 n 2 ,
又因?yàn)?a1 = 1 - 0 = 1,所以 an = n - n -1;
2 b -1
n -1 n
( ) n = = = -1
n n + n -1 .a(chǎn) n n - n -1
所以Tn = - 1 - 0 + 2 + 1 - 3 - 2 + 4 + 3LL+ -1
n n + n -1 = -1 n n ;
【變式 6-2】已知數(shù)列 an 的前 n 項(xiàng)和為 Sn = n2,
(1)求數(shù)列 an 的通項(xiàng)公式 an ;
b 1 1 1(2)設(shè) n = + + ,求數(shù)列 bn 的前 n 項(xiàng)和Tn .Sn Sn+1
【解析】(1)由當(dāng) n 2時(shí),bn = Sn - Sn-1 = 2n -1,
當(dāng) n =1時(shí),b1 = S1 =1滿足上式,所以bn = 2n -1,
b 1 1 1 1 1 1(2) n = + + = +S 2
+ 2
n Sn+1 n n +1
2
én n +1 +1ù n n +1 +1 1 1 1= 2 = =1+ =1+ - ,
én n +1 ù n n +1 n n +1 n n +1
1 1 1 1 1 1 1 n2 + 2n
故Tn = b1 + b2 + ×××+ bn = 1+ - ÷ + 1+ - ÷ + ××× + 1+ - ÷ = n +1- = .
è 1 2 è 2 3 è n n +1 n +1 n +1
題型七:裂項(xiàng)相消法之指數(shù)型
【典例 7-1】已知等比數(shù)列{ an }的各項(xiàng)均為正數(shù),2a5,a4,4a6成等差數(shù)列, a4 = 4a
2
3 ,數(shù)列{bn }的
前 n 項(xiàng)和 S
(n +1)
n = bn (n N
*),且b1 =1 .2
(1)求{ an }和{bn }的通項(xiàng)公式;
(b
(2) c = 2n+1
+ 3)an
設(shè) n n N * 1(b -1)(b +1) ,記數(shù)列{ cn }的前 n 項(xiàng)和為 An .求證: An < .2n+1 2n+1 2
【解析】(1)設(shè)等比數(shù)列{an}的公比為q > 0 ,Q 2a5 ,a4,4a6成等差數(shù)列,
\2a 14 = 2a5 + 4a6,即 a4 = a4 × q + 2a4 × q2,化為: 2q2 + q -1 = 0 ,解得 q = .2
Qa = 4a2 q 4a 1 4 a (1 24 3 ,\ = 3 ,即 = 1 ) ,解得 a
1
=
2 2 1 ,2
\a 1= ( )nn .2
Q {b } n S (n +1)數(shù)列 n 的前 項(xiàng)和 n = bn (n N *) ,且b1 =12 ,
… b b\n 2 (n +1) n時(shí),bn = Sn - Sn-1 = bn - b ,化為: n = n-12 2 n-1 ,n n -1
Q b1 1 \ b= , 數(shù)列{ n }是每項(xiàng)都為 1 的常數(shù)列,
1 n
\ bn =1,化為b = n.
n n
(2n + 4) × (1)n
(2)證明: c 2 1 1n = = - ,2n × (2n + 2) n × 2n (n +1) × 2n+1
{c } n A 1 1 1 1 1 1 1 1 1數(shù)列 n 的前 項(xiàng)和為 n = - + - + + - = - <1 2 2 22 2 22 3 23 n × 2n (n +1) × 2n+1 2 (n +1) × 2n+1 2 ,
\ A 1n < 2 .
【典例 7-2】(2024·新疆·三模)若一個(gè)數(shù)列從第二項(xiàng)起,每一項(xiàng)和前一項(xiàng)的比值組成的新數(shù)列是一個(gè)
等比數(shù)列,則稱這個(gè)數(shù)列是一個(gè)“二階等比數(shù)列”,如:1,3,27,729,…….已知數(shù)列 an 是一個(gè)二階等
比數(shù)列, a1 =1, a2 = 4 , a3 = 64 .
(1)求 an 的通項(xiàng)公式;
n + 2
(2)設(shè)bn = 1 ,求數(shù)列 b 的前 n項(xiàng)和 S .
a nn × log a
n n
2 n+1
a a a
【解析】(1 n+1)設(shè) = c 2 3a n ,由題意得數(shù)列 cn 是等比數(shù)列, c1 = = 4, c2 = =16a a ,n 1 2
a
c = 4n n+1 n則 n ,即 = 4a ,n
an an-1 a× × n-2 a a× × × × × × × × 3 × 2 = 4n-1 4n-2 4n-3由累乘法得: ××× 42 4a ,n-1 an-2 an-3 a2 a1
an = 41+2+3+×××+(n-2)+(n-1) n(n-1)于是 ,故 a = 4 2 = 2n(n-1)a .1 n
b n + 2 n + 2 n + 22 1 n = 1 = =( )由( )得 1 n-1 a n log a 2n(n-1) n log 2n(n+1) n(n +1) ×2n 2 n+1 2
2n (n + 2) 2 1 1 = n-1 n = n-1 - ,n ×2 × (n +1) ×2 è n ×2 (n +1) ×2
n ÷
令 d
1
n = n ×2n-1
,則bn = 2 dn - dn+1 ,
∴ Sn = b1 + b2 + ×××+ bn = 2 d1 - d2 + d2 - d3 + ×××+ dn - dn+1 = 2 d1 - dn+1
2 1 1 1= - = 2 -
è (n +1)2
n ÷
n +1 2n-1
.
【方法技巧】
3n 1 ( 1 1 (1) = -
(3n -1)(3n+1 -1) 2 3n -1 3n+1
)
-1
n + 2 2(n +1) - n 2 1 1 1 1
(2) = = - × = -
n(n +1) × 2n n(n +1) × 2n è n n +1÷ 2n n × 2n-1 (n +1) × 2n
3 (4n -1) ×3
n-1 1 é 9 1 ù 1 3n+1 3n-1
( ) = - n-1
n(n + 2) 2 ê (n + 2) n ú
×3 = - ÷
2 è n + 2 n
【變式 7-1】(2024·黑龍江雙鴨山·模擬預(yù)測(cè))記 Sn 為數(shù)列 an 的前 n 項(xiàng)和, Sn - n 是首項(xiàng)與公差均
為 1 的等差數(shù)列.
(1)求數(shù)列 an 的通項(xiàng)公式;
(-1)n
b an +1 (2)設(shè) n = ,求數(shù)列 bn 的前 2024 項(xiàng)的和TS 2024 .n
【解析】(1)由 Sn - n 是首項(xiàng)與公差均為 1 的等差數(shù)列得 Sn - n =1+ (n -1) 1 = n,
則 S = n2n + n
2
,當(dāng) n 2時(shí), Sn-1 = (n -1) + (n -1),
兩式相減得, an = 2n,
當(dāng) n =1時(shí), a1 = S1 = 2,也滿足上式,故數(shù)列 an 的通項(xiàng)公式為 an = 2n.
(-1)n a +1 n
(2)由(1)得,b n
(-1) (2n +1) 1 1
n = = = (-1)
n
S n(n +1)
+ ÷,
n è n n +1
所以數(shù)列 bn 的前 2024 項(xiàng)的和為:
T 1 1 1= - 1+ + + - 1 1 1 1 2024 ÷ ÷ + ÷ +L+ +
è 2 è 2 3 è 3 4 è 2024 2025 ÷
1 2024
= -1+ = - .
2025 2025
【變式 7-2】(2024·全國(guó)·模擬預(yù)測(cè))已知 Sn 是正項(xiàng)等差數(shù)列 an 的前 n項(xiàng)和,滿足 2Sn = anan+1.
(1)求數(shù)列 an 的通項(xiàng)公式.
(2)設(shè)b 2 ann = n + 4n + 3 ×2 ,求數(shù)列 bn 的前 n項(xiàng)和Tn .
【解析】(1)設(shè)等差數(shù)列 an 的公差為d .
因?yàn)?2Sn = anan+1.所以令 n =1,得 2a1 = a1a2 .
因?yàn)閍1 > 0,所以 a2 = 2.
令 n = 2,得 2S2 = a2a3 ,即 2 a1 + a2 = 2a3 ,
所以 a3 - a1 = 2d = a2 = 2,所以公差 d =1,則 a1 = a2 - d =1.
所以數(shù)列 an 是首項(xiàng)為 1,公差為 1 的等差數(shù)列,所以 an =1+ n -1 1 = n.
b = n2 + 4n + 3 × 2n = é n +1 22 1 +1ù × 2n+1 - n2( )由( )可得 n +1 × 2
n
,
所以Tn = b1 + b + b é
2 2 2 1 ù é 2 3 2 2 ù
2 3 + ×××+ bn = 2 +1 × 2 - 1 +1 × 2 + 3 +1 × 2 - 2 +1 × 2
+ é 42 +1 × 24 - 32 +1 × 23 ù + ××× + é n +1 2 +1ù × 2n+1 - n2 +1 × 2n
= é n +1
2 +1ù ×2
n+1 - 12 +1 ×21 = n2 + 2n + 2 × 2n+1 - 4.
【變式 7-3】(2024·云南昆明·三模)正項(xiàng)數(shù)列 an 的前 n項(xiàng)和為 Sn ,等比數(shù)列 bn 的前 n項(xiàng)和為Tn ,
4S 2n = an + 2an +1, 4Tn = b
2
n + 2bn +1
(1)求數(shù)列 an , bn 的通項(xiàng)公式;
a +1
(2) n已知數(shù)列 cn 滿足 cn = bn × ,求數(shù)列 cn 的前 na a 項(xiàng)和Hn.n n+1
【解析】(1)當(dāng) n =1時(shí), 4S1 = a
2
1 + 2a1 +1,即 4a1 = a
2
1 + 2a1 +1, a1 -1
2 = 0 ,
所以 a1 =1,同理b1 =1.
當(dāng) n 2時(shí), an = Sn - S
1 2 2 1
n-1 = an - an-1 + an - an-1 ,化簡(jiǎn)得:4 2
1 an + an-1 an - an-1 - 2 = 0,因?yàn)?an > 0,所以 an - an-1 = 2,4
即 an - an-1 = 2,故 d = 2,又 a1 =1,所以 an = 2n -1.
同理,bn + bn-1 = 0或bn - bn-1 = 2,
因?yàn)?b n-1n 是等比數(shù)列,所以bn + bn-1 = 0,即 q = -1 ,所以bn = -1 .
n-1
2 1 c 1 n-1 an +1 1 n-1 2n -1 1 1= - × = - × = + ( )由( )知 n ,ana ÷n+1 2n -1 2n +1 2 è 2n -1 2n +1
所以當(dāng) n為奇數(shù)時(shí),Hn = c1 + c2 + ×××+ cn
1 é 1 1 1 1 1 1 1 1 ù= ê + ÷ - + ÷ + ××× + + + + ,2 è 3 è 3 5 è 2n - 3 2n -1
÷
è 2n -1 2n +1÷ ú
1
= 1 1+
2 2n +1÷
,
è
1 1
同理當(dāng) n為偶數(shù)時(shí),Hn = 1-2 2n .è +1÷
ì1
1
1
- , n為偶數(shù)
2 2n +1÷
所以H =
è
n í .
1 1
1+ ÷ ,n為奇數(shù) 2 è 2n +1
【變式 7-4】(2024·福建泉州·二模)已知數(shù)列 an 和 bn 的各項(xiàng)均為正,且a3 =18b1, bn 是公比 3 的
2
等比數(shù)列.?dāng)?shù)列 an 的前 n 項(xiàng)和 Sn 滿足 4Sn = an + 2an .
(1)求數(shù)列 an , bn 的通項(xiàng)公式;
(2)設(shè) c
b
= n+3n + a cos nπ b - 3 b -1 n ,求數(shù)列 cn 的前 n 項(xiàng)和Tn .n+3 n+3
2
【解析】(1)由題設(shè),當(dāng) n =1時(shí) 4S1 = a1 + 2a1,\a1 = 2或a1 = 0(舍),
由 4S = a2 2n n + 2an ,知 4Sn-1 = an-1 + 2an-1,
兩式相減得 an + an-1 an - an-1 - 2 = 0,
\an + an-1 = 0(舍)或 an - an-1 - 2 = 0,即 an - an-1 = 2,
∴數(shù)列 an 是首項(xiàng)為 2,公差為 2 的等差數(shù)列,\an = 2n .
1 n-2
又 a3 =18b1 = 6, \b1 = , \bn = 3 .3
b n+1
2 c = n+3
3
( ) n + an cos nπ = + -1
n 2n
bn+3 - 3 bn+3 -1 3n+1 - 3 3n+1 -1
3n 1 1 1
= + (-1)n 2n = - + (-1)n 2n
3n -1 3n+1 -1 2 è 3n -1 3n+1 -1÷
T 1 é 1 1 1 1 1 1 ù= n則 n 2 ê
- +
è 3-1 32 -1÷ è 32
- 3 ÷ + + n - n+1 ÷ú +2 é(-1+ 2) + (-3 + 4) + .+ (-1) nù -1 3 -1 è 3 -1 3 -1
1 1 1
當(dāng) n 為偶數(shù)時(shí),Tn = - + n;2 è 2 3n+1 -1÷
T 1 1 1 n 1 1 n 3當(dāng) n 為奇數(shù)時(shí), n = - - + = - - -2 è 2 3n+1 -1÷ 2 3n+1 -1 4 .
ì 1 1 1
-
n+1 ÷ + n,當(dāng)n為偶數(shù)
2 è 2 3 -1
所以Tn = í
1
.
- - n 3- ,當(dāng)n為奇數(shù)
2 3n+1 -1 4
題型八:裂項(xiàng)相消法之三角型
【典例 8-1】數(shù)列 an 各項(xiàng)均為正數(shù), an 的前 n 項(xiàng)和記作 Sn ,已知 S1 =1, a2n - an - 2Sn-1 = 0, (n 2).
(1)求 an 的通項(xiàng)公式;
(2)設(shè)bn = tan an × tan an+1 ,求數(shù)列 bn 的前 2023 項(xiàng)和.
ìa2
1 n 2 í n+1
- an+1 = 2Sn 2 2
【解析】( )當(dāng) 時(shí),有 2 相減得 an+1 - an + an - an+1 = 2an ,即 an+1 - an -1 an + an+1 = 0,
an - an = 2Sn-1
an 各項(xiàng)均為正數(shù),
所以 an+1 = an +1 n 2 ,
2
又當(dāng) n = 2時(shí), a2 - a2 - 2S1 = a
2
2 - a2 - 2 = 0,
解得 a2 = 2或 a2 = -1(舍),
所以對(duì)任意正整數(shù) n,均有 an+1 = an +1,
故 an 是以首項(xiàng)為 1,公差以 1 的等差數(shù)列,
所以 a *n = n n N .
(2)由于 tan1 = tan (n +1) n tan(n +1) - tan n- = 1+ tan(n +1) tan n ,
tan(n 1) tan n tan(n +1) - tan n故 + = -1,
tan1
由(1)得bn = tan(an ) tan(an+1) = tan n × tan(n +1),
記 bn 前 n 項(xiàng)和為Tn ,則Tn = b1 + b2 + b3 + ... + bn
1
= tan(n +1) - tan n + tan n - tan(n -1) + ...+ tan 2 - tan1 - n
tan1
1
= tan(n +1) - tan1 - n
tan1
tan(n +1)
= - n -1,
tan1
tan 2024
所以T2023 = - 2024 .tan1
【典例 8-2】已知數(shù)列 an 中, a2 =1,設(shè) Sn 為 an 前 n 項(xiàng)和, 2Sn = nan .
(1)求 an 的通項(xiàng)公式;
sin1
(2)若bn = cos an +1 cos a +1
,求數(shù)列 bn 的前 n 項(xiàng)和Tn
n+1
【解析】(1)數(shù)列 an 中, a2 =1, Sn 為 an 前 n 項(xiàng)和,
當(dāng) n =1時(shí), 2S1 = a1 2a1 = a1,\a1 = 0 ,
當(dāng) n 2時(shí), 2Sn = nan ①,
2Sn+1 = n +1 an+1 ②,
由②-①得: 2Sn+1 - 2Sn = n +1 an+1 - nan , 2 Sn+1 - Sn = n +1 an+1 - nan ,
即 nan = n -1 an+1,
a
n 2 n+1
n a n -1 a 3 a 2
當(dāng) 時(shí), = n 4 3a n -1,遞推可得:
= L = =
n an-1 n - 2
, , a ,3 2 a 1
,
2
an+1 an
由累乘法可得: × L
a4 a3 n n -1× = L 3 2
an an-1 a a
,
3 2 n -1 n - 2 2 1
an+1 = n ,又因?yàn)?a2 =1a ,所以
an+1 = n ,即 an = n -1,經(jīng)檢驗(yàn),當(dāng) n =1時(shí)a1 = 0符合上式,
2
所以 an = n -1;
(2)由(1)可知 an = n -1, an+1 = n ,所以:
b sin1n = cos an +1 cos an+1 +1
sin1
=
cos n cos n +1
sin é
=
n +1 - n ù
cos n cos n +1
sin n +1 cos n - cos n +1 sin n
=
cos n cos n +1
sin n +1 cos n cos n +1 sin n
= -
cos n cos n +1 cos ncos n +1
= tan n +1 - tan n,
所以Tn = b1 + b2 + b3 +Lbn
= tan 2 - tan1 + tan 3- tan 2 +L+ é tan n - tan n -1 ù + étan n +1 - tan n ù
= tan n +1 - tan1;
所以數(shù)列 bn 的前 n 項(xiàng)和Tn = tan n +1 - tan1 .
【方法技巧】
1 1(1) = (tana - tan b )
cosa cos b sin(a - b )
2 1 1( ) = tan(n +1)° - tan n°
cos n°cos(n +1)° sin1°
(3) tana tan b 1= (tana - tan b ) -1
tan(a - b )
(4) an = tan× tan(n -1); tan1 = tan n (n 1)
tan n - tan(n -1)
- - = ,
1+ tan n × tan(n -1)
則 tan n × tan(n -1) tan n - tan(n -1) tan n - tan(n -1)= -1,a = -1
tan1 n tan1
【變式 8-1】已知在數(shù)列 an 中, a1 =1, nan+1 - (n +1)an =1.
(1)求數(shù)列 an 的通項(xiàng)公式;
b b sin(π(2)若數(shù)列 n 滿足 n = a2 n+1) + cos(πan ),求數(shù)列 bn 的前 2024 項(xiàng)和T2024 .
a
1 na n+1
an 1 1 1
【解析】( )因?yàn)?n+1 - (n +1)an =1,可得 - = = -n ,+1 n n(n +1) n n +1
n 2 a2 a1
a3 a2 L an an-1 1 1 1 1 1 1所以,當(dāng) 時(shí), - + - + + - = - + - +L+ - =1
1
- ,
2 1 3 2 n n -1 1 2 2 3 n -1 n n
a
即 n
1
-1 =1- ,又因?yàn)?a1 =1,則 an = 2n -1;n n
當(dāng) n =1時(shí), a1 =1成立,所以 an = 2n -1.
b sin(π(2)由(1)知, n = an+1) + cos(πan ) = sin[
π
× (2n +1)]+ cos[π(2n -1)] = cos nπ - cos 2nπ,
2 2
所以T2n = b1 + b2 +L+ b2n = cos π + cos 2π +L+ cos(2n -1)π + cos 2nπ
- écos 2π + cos 4π +L+ cos 4n - 2 π + cos 4nπù ,
因?yàn)?cos[(2n -1)π]+ cos 2nπ = -cos 2nπ + cos 2nπ = 0,cos 2nπ =1,
于是 (cos π + cos 2π) +L+ [cos(2n -1)π + cos 2nπ] = 0,
cos 2π + cos 4π +L+ cos[(4n - 2)π]+ cos 4nπ = 2n,
所以T2n = -2n,所以數(shù)列 bn 的前 2024項(xiàng)的和為-2024 .
【變式 8-2】(2024·高三·江西·開學(xué)考試)同余定理是數(shù)論中的重要內(nèi)容.同余的定義為:設(shè)
a,b Z, m N+ 且m > 1.若m∣(a - b),則稱 a 與 b 關(guān)于模 m 同余,記作 a b(mod m)(“|”為整除符號(hào)).
(1) 2解同余方程: x + 2x 0 mod3 x Z ;
(2)設(shè)(1)中方程的所有正根構(gòu)成數(shù)列 an ,其中 a1 < a2 < a3
②若Cn = tan a2n+3 × tan a2n+1 n N+ ,求數(shù)列 Cn 的前 n 項(xiàng)和Tn .
【解析】(1)由題意 x x + 2 0(mod3),所以 x = 3k或 x + 2 = 3k ( k Z ),
即 x = 3k或 x = 3k - 2( k Z ).
ì3n -1
n為奇數(shù)
(2 2)由(1)可得 an 為 1,3,4,6,7,9,10,··· ,所以 an = í n . 3 n為偶數(shù) 2
ì2 n為奇數(shù)
①因?yàn)閎n = an+1 - an ( n N+ ),所以bn = í .
1 n為偶數(shù)
則 S4048 = b1 + b2 + b3 +L+ b4048 = 3 2024 = 6072.
② cn = tan a2n+3 × tan a2n+1 = tan 3n + 4 × tan 3n +1 ( n N+ ).
tan 3n + 4 - tan 3n +1因?yàn)?tan 3n + 4 × tan 3n 1 + = -1,
tan 3
tan 7 - tan 4 tan10 - tan 7 tan 3n + 4 - tan 3n +1
所以Tn = c1 + c2 +Lcn = -1÷ + -1 +L+ -1
è tan 3 è tan 3 ÷
è tan 3
÷
tan 3n + 4 - tan 4
= - n.
tan 3
【變式 8-3】已知數(shù)列 an 的前 n 項(xiàng)和為 Sn , a1 =1, a2 = 3, Sn+1 + Sn-1 = 2 Sn +1 (n 2)
(1)求 Sn ;
b 4n cos(n +1)π(2)若 n = a ×a ,求數(shù)列 bn 的前 1012 項(xiàng)和T1012.n n+1
【解析】(1)當(dāng) n 2時(shí),因?yàn)?Sn+1 + Sn-1 = 2 Sn +1 ,所以 Sn+1 - Sn = Sn - Sn-1 + 2,
即 an+1 - an = 2 .又 a2 - a1 = 2 ,所以 an 是首項(xiàng)為 1,公差為 2 的等差數(shù)列,
S na n(n -1)d n 1 2n(n -1)= + = + = n2所以 n 1 .2 2
(2)由(1)知, an =1+ 2(n -1) = 2n -1,
b 4n cos(n +1)π 4nn = = cos(n +1)π =
1 1
+
÷cos(n +1)πa a ,n × n+1 (2n -1) × (2n +1) è 2n -1 2n +1
而 cos ì
1, n為奇數(shù),
n +1 π = í 所以T1012 = b1 + b2 + b3 + b4 +L+ b-1, n , 1010
+ b1011 + b1012
為偶數(shù)
1 1 1 1 1 1 1 1 1 1 1 1= 1 1 + ÷ - + ÷ + +3 3 5 5 7 ÷
- + +L- + + + -7 9 ÷ 2019 2021÷ 2021 2023 ÷
+ ÷
è è è è è è è 2023 2025
1 1 2024= - = .
2025 2025
題型九:倒序相加法
【典例 9-1】(2024·高三·浙江·開學(xué)考試)已知函數(shù) f x 滿足 f x = f 1- x , f x 為 f x 的導(dǎo)函數(shù),
g x = f x 1+ , x R .若 a n= g ,則數(shù)列 a 的前 2023 項(xiàng)和為 .
3 n è 2024 ÷ n
2023
【答案】
3
【解析】由題意知 f x = f 1- x ,所以 f x = - f 1- x ,即 f x + f 1- x = 0,
又因?yàn)?g x = f x 1+ ,所以 g x + g 1- x = f x + f 1 x 2 2- + = ,
3 3 3
a + a + a +L+ a 1= g + g 2 3 所以 1 2 3 2023 + g +L
2023
+ g ①,
è 2024 ÷ ÷ ÷ ÷ è 2024 è 2024 è 2024
a1 + a2 + a3 +L a
2023 2022 2021 1
+ 2023 = g
+ g 2024 ÷ ÷
+ g ÷ +L+ g2024 2024 2024 ÷
②,
è è è è
2023 2
將①②兩式相加可得: a a a L a 3 20231 + 2 + 3 + +
.
2023 = =2 3
2023
故答案為: .
3
【典例 9-2】德國(guó)大數(shù)學(xué)家高斯年少成名,被譽(yù)為數(shù)學(xué)界的王子.在其年幼時(shí),對(duì)1+ 2 + 3 +L+100的
求和運(yùn)算中,提出了倒序相加法的原理,該原理基于所給數(shù)據(jù)前后對(duì)應(yīng)項(xiàng)的和呈現(xiàn)一定的規(guī)律生成.因此,
4x
此方法也稱為高斯算法.現(xiàn)有函數(shù) f x = ,則
4x + 2
f ( 1 ) 2+ f ( ) 3+ f ( ) +L 2017 2018+ f ( ) + f ( )的值為 .
2019 2019 2019 2019 2019
【答案】1009
4x x 1-x x xf x f (x) f (1 x) 4 4 4 4 4 2【解析】由函數(shù) = x ,得 + - = x + 1-x = x + x = x + x =1,4 + 2 4 + 2 4 + 2 4 + 2 4 + 2 4 4 + 2 2 + 4
令 S = f (
1 ) f ( 2+ ) + f ( 3 ) +L+ f (2017) f (2018+ ),
2019 2019 2019 2019 2019
S f (2018) f (2017則 = + ) + f (
2016) +L+ f ( 2 ) 1+ f ( ),
2019 2019 2019 2019 2019
兩式相加得 2S =1 2018,解得 S =1009,
所以所求值為 1009.
故答案為:1009
【方法技巧】
將一個(gè)數(shù)列倒過來排列,當(dāng)它與原數(shù)列相加時(shí),若有規(guī)律可循,并且容易求和,則這樣的數(shù)列求和時(shí)
可用倒序相加法(等差數(shù)列前 n項(xiàng)和公式的推導(dǎo)即用此方法).
1
【變式 9-1】在數(shù)列 an 中, an = 1+ 22011 2n ,則 S = a1 + a2 + … +a- 2010的值是 .
【答案】1005
1 1 1 22011-2n
【解析】由 an = 2011-2n 得 a2011-n = 2011 2 2011 n =1+ 2 1+ 2 - - 1+ 2-2011+2n
=
1+ 22011-2n
,
1 22011-2n
所以 an + a2011-n = 1+ 22011-2n
+
1+ 22011-2n
=1,
所以 S = a1 + a2 +L+ a2010 , S = a2010 + a2009 +L+ a2 + a1相加可得 2S = a1 + a2010 2010 S =1005 ,
故答案為:1005
f x 1+ n【變式 9-2】已知函數(shù) ÷為奇函數(shù),且 g x = f x +1,若 an = g
2 2023 ÷
,則數(shù)列 an 的前
è è
2022 項(xiàng)和為 .
【答案】2022
1 1 1
【解析】由于函數(shù) f x + 2 ÷
為奇函數(shù),則 f -x + ÷ = - f x + ÷,
è è 2 è 2
即 f
1
- x
÷ + f
1
+ x
÷ = 0,所以 f x + f 1- x = 0,
è 2 è 2
所以 g x + g 1- x = é f x +1 ù + é f 1- x +1ù = 2,
2 a é+ a +L+ a = 2 g 1 + g 2 L 2022 ù所以 1 2 2022 ê ÷ ÷ + + g
è 2023
÷
è 2023 è 2023 ú
ég 1 g 2022 ù ég 2 g 2021 ù é 2022= + + + 1 ùê è 2023 ÷ 2023 ÷ú ê ÷ ÷ è è 2023 è 2023 ú
+L+ êg ÷ + g ÷ú = 2 2022,
è 2023 è 2023
因此數(shù)列 an 的前 2022 項(xiàng)和為 a1 + a2 +L+ a2022 = 2022,
故答案為:2022
9-3 f (x) sin2 πx 4
x
{a } a f 1 f 2= + n +1 【變式 】若函數(shù) = + +L+ f
2 4x
,且數(shù)列
+ 2 n
滿足: n ÷ ÷ ÷ ,則數(shù)列
è n + 2 è n + 2 è n + 2
{an}的通項(xiàng)公式為 an = ;以 an , an+1, an+2 (n N*)為三角形三邊的長(zhǎng),作一系列三角形,若這一系列
三角形所有內(nèi)角的最大值為A ,則 tanA = .
【答案】 n +1 - 15
x
【解析】由 f (x) sin2
πx 4
= + x ,可得2 4 + 2
x π 1- x 1-x x
f (x) f (1 x) sin2 πx 4 sin2 4 πx 4 πx 2+ - = + x + + = sin
2 + + cos2 + = 2 ,
2 4 + 2 2 41-x + 2 2 4x + 2 2 2 + 4x
a 1 n +1 又因?yàn)?n = f +L+ f
è n + 2 ÷ è n + 2 ÷
,
所以根據(jù)倒序相加法計(jì)算,
可得 2a
é 1 n +1 ù é 2 n ù é n +1= 1 ùn ê f ÷ + f ÷ú + ê f ÷ + f +L + f + f = 2 + 2 +L+ 2 = n +1 2
è n + 2 è n + 2 è n + 2 è n + 2
÷ú ê n + 2 ÷ n + 2 ÷ú , è è
所以 an = n +1;
因?yàn)槿切我?an , an+1, an+2 (n N*)為三邊長(zhǎng),又 an+2 > an+1 > an ,所以以 an+2 為長(zhǎng)度的邊所對(duì)的角 An 是三
個(gè)內(nèi)角中最大的,
所以 An 的最大值就是這一系列三角形所有內(nèi)角的最大值,
a2
2 2 2
+ a2 - a2
根據(jù)余弦定理 cosA = n n+1 n+2
n +1 + n + 2 - n + 3 n - 2 n + 2 n - 2 1 3
n = = = = -2anan+1 2 n +1 n + 2 2 n +1 n + 2 2 n
,
+1 2 2 n +1
故 cosAn 是遞增數(shù)列,所以當(dāng) n =1時(shí), cosAn 取最小值, An 取最大值,
所以這一系列三角形所有內(nèi)角的最大值為 A1,
1 3 1 2
因?yàn)?cosA1 = - = - tanA
sin A
= 1 1- cos A1
2 2 1+1 4 ,所以 1 cos A = = - 15 .1 cosA1
故答案為: n +1;- 15 .
題型十:分段數(shù)列求和
*
【典例 10-1】在數(shù)列 an 中, a1 = 8, a4 = 2 ,且滿足 an+2 - 2an+1 + an = 0 n N .
(1)求數(shù)列 an 的通項(xiàng)公式;
(2)設(shè)Tn = a1 + a2 +L+ an ,求Tn .
【解析】(1)∵ an+2 - 2an+1 + an = 0,∴ an+2 - an+1 = an+1 - an ,
∴數(shù)列 an 是等差數(shù)列,設(shè)其公差為 d.
∵ a1 = 8, a4 = 2 ,∴ d
a - a
= 4 1 = -2,
4 -1
∴ an = a1 + n -1 d =10 - 2n, n N*
(2)設(shè)數(shù)列 an
n n -1
的前 n 項(xiàng)和為 Sn ,則由(1)可得, Sn = 8n
+ -2 = 9n - n2 , n N*
2
由(1)知 an =10 - 2n,令 an = 0,得 n = 5,
∴當(dāng)n > 5時(shí), an < 0,
則Tn = a1 + a2 +L+ an = a1 + a2 +La5 - a6 + a7 +L+ an
= S5 - Sn - S5 = 2S5 - Sn = 2 9 5 - 25 - 9n - n2 = n2 - 9n + 40;
當(dāng) n 5時(shí), an 0,則Tn = a1 + a2 +L+ an = a1 + a2 +L+ an = 9n - n
2
,
ì9n - n2 , n 5,n N*
∴Tn = í 2
n - 9n + 40, n 6,n N
*
【典例 10-2】已知數(shù)列 an 的前 n項(xiàng)和 Sn 滿足 Sn = 2an -1,則 a1 -18 + a2 -18 +L a10 -18 = .
【答案】961
【解析】因?yàn)?Sn = 2an -1,故當(dāng) n =1時(shí), a1 = S1 = 2a1 -1 a1 =1,
因?yàn)?an = Sn - Sn-1 = 2an - 2an-1,即 an = 2an-1,
a
故等比數(shù)列 a q = nn 的公比為 = 2a ,所以 a
n-1
n = 2 ;
n-1
n-1
由 an = 2 18 n 6 ,\ a1 -18 + a2 -18 +L+ a10 -18 = (18 - a1) +L(18 - a5 ) + (a6 -18) +L(a10 -18)
= 5 18 - (a1 + a2 +L+ a5 ) + (a + a +La 5 6 9 0 1 46 7 10 ) - 5 18 = (2 + 2 +L2 ) - (2 + 2 +L2 ) = 961
故答案為:961.
【方法技巧】
(1)分奇偶各自新數(shù)列求和
(2)要注意處理好奇偶數(shù)列對(duì)應(yīng)的項(xiàng):
①可構(gòu)建新數(shù)列;②可“跳項(xiàng)”求和
【變式 10-1】(2024·山西·三模)已知等差數(shù)列 an 的公差 d > 0,前 n項(xiàng)和為 Sn ,且 a3a6 = -5,
S8 = -16 .
(1)求數(shù)列 an 的通項(xiàng)公式;
ìa , n = 2k -1
(2)若bn =
n
í2n ,n 2k k N
* ,求數(shù)列 b
= n
的前 2n項(xiàng)和T2n .
【解析】(1)因?yàn)?a3a6 = -5, S8 = -16,
ì a1 + 2d a1 + 5d = -5 ìa1 = -9 ìa1 = 5
所以 í 8 8 -1 ,解得 í
8a + d = -16 d = 2
或 í
d = -2
,
1 2
ìa1 = -9
因?yàn)?d > 0,所以 í ,則 an = a1 + n -1 d = 2n -11
d = 2
;
ìa
2 1 b = n
, n = 2k -1 ì2n -11, n = 2k -1 *
( )由( )可得 n í n = í n k N
2 ,n = 2k 2 ,n 2k
,
=
所以T2n = é -9 - 5 -1+ 3 + 7 +L+ 4n -13 ù + 22 + 24 + 26 +L + 22n
n é-9 + 4n -13 ù 2
2
1- 22n = +
2 1- 22
n+1
= 2n2 11n 4 - 4- + .
3
【變式 10-2】已知數(shù)列 an 是公差不為 0 的等差數(shù)列,其前 n 項(xiàng)和為 Sn , S3 = 3, a2,a3, a6成等比
數(shù)列.
(1)求 an 的通項(xiàng)公式;
a + 3, n = 2k,
(2)若b
ì
n =
n
í a , k N* ,求數(shù)列 bn 2 , n 2k 1, 的前 100 項(xiàng)和T100 . n = -
【解析】(1)設(shè)數(shù)列 an 的首項(xiàng)為 a1,公差為d ,
ìa1 + a2 + a3 = 3, ìa1 + d =1,
根據(jù)題意得 í 2
a3 = a2a6 ,
即 í 2
a1 + 2d = a1 + d a1 + 5d ,
ìa1 = -1, ìa1 =1,
解得 íd 2, 或 =
í
d = 0
.
ìa = -1,
又因 d 0 1,所以 í .
d = 2
所以 an 的通項(xiàng)公式為 an = 2n - 3.
ì2n,n = 2k,
(2)由(1)得bn = í k N
2
2n-3 ,n .= 2k +1,
即數(shù)列 bn 的偶數(shù)項(xiàng)是以 4 為首項(xiàng),4 為公差的等差數(shù)列,
1
奇數(shù)項(xiàng)是以 2 為首項(xiàng),16 為公比的等比數(shù)列.
數(shù)列 bn 的前 100 項(xiàng)中偶數(shù)項(xiàng)有 50 項(xiàng),奇數(shù)項(xiàng)有 50 項(xiàng),
數(shù)列 bn 的前 100 項(xiàng)和Tn = b1 + b2 + b3 + ×××× × × +b99 + b100.
1 1-1650 200
b1 + b3 + b5 + ×××× × × +b
2 -1
97 + b 2
,
99 = =1-16 30
b b 50 492 + 4 + b6 + ×××× × × +b98 + b100 = 50 4 + 4 = 5100 .2
2200T 5100 -1所以 100 = + .30
【變式 10-3】(2024·陜西安康·模擬預(yù)測(cè))記 Sn 為數(shù)列 an 的前 n項(xiàng)和,已知
a1 =1, nS
2
n+1 - n +1 Sn = n + n .
(1)求 an 的通項(xiàng)公式;
(2)若bn = (-1)
n an + é (-1)
n +1ù 2n ,求數(shù)列 bn 的前 2n項(xiàng)和T2n .
nS - n +1 S = n2 + n nS - n +1 S = n n +1 Sn+1 S【解析】(1)由 n+1 n ,可得 nn+1 n ,所以 - = 1n 1 n ,+
a =1 S1 a= 1 =1 ì
Sn ü
又由 1 ,所以 ,所以數(shù)列 í 是以 1 為首項(xiàng),1 為公差的等差數(shù)列,1 1 n
S 2
所以 n =1+ n -1 1 = n,則 S
n n
= n ,
當(dāng) n 2 2 2時(shí), S 2n-1 = (n -1) ,所以 Sn - Sn-1 = an = n - (n -1) = 2n -1,
又當(dāng) n =1時(shí), a1 =1滿足上式,
所以 an 的通項(xiàng)公式為 an = 2n -1.
(2)由(1)可知當(dāng) n為奇數(shù)時(shí),bn = -an =1- 2n;
n n+1
當(dāng) n為偶數(shù)時(shí),bn = an + 2 2 = 2n -1+ 2 ,
所以T2n = b1 + b2 + b3 + b4 +L+ b2n
= b1 + b3 + b5 +L+ b2n-1 + b2 + b4 + b6 +L+ b2n
= 2n + 23 + 25 + 27 + 29 +L+ 22n+1 = 2n + 8 1+ 22 + 24 + 26 +L+ 22n-2
n
= 2n + 8 1- 4 2 = 2n + 4n+1 8- .
1- 4 3 3
【變式 10-4】(2024·山東·二模)已知 an 是公差不為 0 的等差數(shù)列,其前 4 項(xiàng)和為 16,且 a1,a2 ,a5 成
等比數(shù)列.
(1)求數(shù)列 an 的通項(xiàng)公式;
ì2an , n為奇數(shù)
(2)設(shè)bn = í 1 ,求數(shù)列 bn , n 的前 2n項(xiàng)和T2n . 為偶數(shù)
anan+2
ìa1 + a2 + a + a =16 ì4a1 + 6d =163 4
【解析】(1)設(shè) an 的公差為 d d 0 ,由題意知 ía 2 ,即 í 2 , 2 = a1a5 a1 + d = a1 a1 + 4d
ì2a1 + 3d = 8
即有 í ,因?yàn)?d 0,可得 a1 =1, d = 2
d = 2a
,
1
所以 an = 2n -1;
(2)設(shè)數(shù)列 bn 的前 2n項(xiàng)中的奇數(shù)項(xiàng)之和為A ,偶數(shù)項(xiàng)之和為 B ,
2 1-16n
則 A = 2a1 + 2a3 +L+ 2a2 n-1 = 21 + 25 +L+ 24n-3 =
1-16
2 - 24n+1 24n+1 - 2
= = ,
1-16 15
B 1 1 1= + +L+
a2a4 a4a6 a2na2n+2
1 1 1 1 1 1 1
= - + - +L+ -2d è a
÷
2 a4 a4 a6 a2n a2n+2
1 1 1
=
2d
-
a a ֏ 2 2n+2
1 1 1
= -
1 1
÷ = - ,4 è 3 4n + 3 12 16n +12
24n+1 - 2 1 1 24n+1 1 1
所以T2n = A + B = + - = - - .15 12 16n +12 15 20 16n +12
題型十一:并項(xiàng)求和法之 + +( ― ) = + 型
【典例 11-1】數(shù)列 an 滿足 an+2 + -1
n an = 4n -1,前 12 項(xiàng)的和為 298,則 a1 = .
【答案】4
【解析】當(dāng) n為偶數(shù)時(shí), an+2 + an = 4n -1,
所以 a4 + a2 = 7, a8 + a6 = 23, a12 + a10 = 39,
所以 a2 + a4 + a6 + a8 + a10 + a12 = 69 ;
當(dāng) n為奇數(shù)時(shí), an+2 - an = 4n -1,即 an+2 = an + 4n -1
所以 a3 = a1 + 3, a5 = a3 +11 = a1 +14, a7 = a5 +19 = a1 + 33, a9 = a7 + 27 = a1 + 60,
a11 = a9 + 35 = a1 + 95,
所以 S12 = a2 + a4 + a6 + a8 + a10 + a12 + a1 + a3 + a5 + a7 + a9 + a11
= 69 + 6a1 + 205 = 298,所以 a1 = 4 .
故答案為: 4 .
【典例 11-2】已知數(shù)列 an 的前 n項(xiàng)和為 Sn , a1 =1 .當(dāng) n 2時(shí), an + 2Sn-1 = n,則 S2019 = .
【答案】1 010
【解析】由 an + 2Sn-1 = n, n 2,得 an+1 + 2Sn = n +1,
兩式作差可得 an+1 - an + 2an =1, n 2,
即 an+1 + an =1( n 2),
2018
所以 S2019 = a1 + a2 + a3 + a4 + a5 +L+ a2018 + a2019 =1+ =1010 .2
故答案為:1010.
【方法技巧】
四四并項(xiàng)求和.
n n+1
【變式 11-1】(2024·浙江·模擬預(yù)測(cè))已知數(shù)列 an 滿足 a1 + a2 = 0 , a + -1 2 a = 2,則數(shù)列n+2 n
an 的前 2020 項(xiàng)的和為 .
【答案】2020
n n+1
【解析】在 a + -1 2 a = 2中,分別令 n =1,2,得 a3 - a1 = 2, a4 - a2 = 2 ,兩式相加,得n+2 n
a3 + a4 = a1 + a2 + 4 = 4.
n n+1
在 a + -1 2 a = 2中,分別令 n = 3,4,得 a5 + a3 = 2, a6 + a4 = 2 ,兩式相加,得 a3 + a4 + a5 + a6 = 4,所以n+2 n
a5 + a6 = 0 .
……
依此類推,可得 a4k -3 + a4k -2 = 0 , a4k -1 + a4k = 4, k N*,
所以數(shù)列 an 的前 2020 項(xiàng),有 505 組 a1 + a2 + a3 + a4 = 4,故和為505 4 = 2020.
故答案為:2020.
【變式 11-2】已知數(shù)列 an n滿足 an+1 + -1 an = n,則數(shù)列 an 的前 4n項(xiàng)和為 .
【答案】 4n2 + 2n
n+1
【解析】當(dāng) n為奇數(shù)時(shí), an+1 = -1 an + n = an + n
an+2 = -1
n+2 an+1 + n +1 = -an+1 + n +1 = - an + n + n +1 = -an +1
a n+3n+3 = -1 an+2 + n + 2 = an+2 + n + 2 = -an +1 + n + 2 = -an + n + 3
\an + an+1 + an+2 + an+3 = 2n + 4
令bn = a4n-3 + a4n-2 + a4n-1 + a4n = 2 4n - 3 + 4 = 8n - 2,此數(shù)列前 4n項(xiàng)的和
S4n = a1 + a2 + a3 + a4 + a5 + a6 + a7 + a8 +L+ a4n-3 + a4n-2 + a4n-1 + a4n
= b1 + b2 + b3 +L+ bn
n 6 + 8n - 2= 6 +14 + 22 +L+ 8n 2 - = = 4n2 + 2n
2
故答案為: 4n2 + 2n
【變式 11-3】數(shù)列{an}滿足 an+2 + (-1)
n an = 3n +1,前 8 項(xiàng)的和為 106,則 a1 =
【答案】8
n
【解析】 an+2 + (-1) an = 3n +1,
當(dāng) n為奇數(shù)時(shí), an+2 = an + 3n +1;
當(dāng) n為偶數(shù)時(shí), an+2 + an = 3n +1 .
設(shè)數(shù)列{an}的前 n項(xiàng)和為 Sn , S8 = a1 + a2 + +L+ a8 = a1 + a3 + a5 + a7 + (a2 + a4 ) + (a6 + a8 )
= a1 +(a1 + 4) +(a1 +14) +(a1 + 30) + (a2 + a4 ) + (a6 + a8 )
= 4a1 + 48 + 7 +19 = 4a1 + 74 =106,解得 a1 = 8 .
故答案為:8 .
【變式 11-4】數(shù)列{an}滿足 a n+1n+2 + (-1) an = 3n -1,前 16 項(xiàng)和為 540,則 a2 = .
【答案】-2
【解析】因?yàn)閿?shù)列{an}滿足 a n+1n+2 + (-1) an = 3n -1,
當(dāng) n為奇數(shù)時(shí),an+2 + an = 3n -1,
所以 a3 + a1 = 2, a7 + a5 = 14 , a11 + a9 = 26 , a15 + a13 = 38,
則 a1 + a3 + a5 + a7 + a9 + a11 + a13 + a15 = 80,
當(dāng) n為偶數(shù)時(shí), an+2 - an = 3n -1,
所以 a4 - a2 = 5, a6 - a4 =11, a8 - a6 = 17, a10 - a8 = 23, a12 - a10 = 29 , a14 - a12 = 35, a16 - a14 = 41,
故 a4 = 5 + a2 , a6 = 16 + a2 , a8 = 33 + a2 , a10 = 56 + a2 , a12 = 85 + a2 , a14 = 120 + a2, a16 = 161+ a2 ,
因?yàn)榍?16 項(xiàng)和為 540,
所以 a2 + a4 + a6 + a8 + a10 + a12 + a14 + a16 = 540 - 80 = 460,
所以8a2 + 476 = 460,解得 a2 = -2.
故答案為:-2.
【變式 11-5】已知數(shù)列 an 中, Sn 為前 n項(xiàng)和,且 a1 =1, an + an+1 = 3,則 S2017 =
【答案】3025
【解析】因?yàn)?an + an+1 = 3,所以 an+1 + an+2 = 3,
所以 a = a , n N*n+2 n ,即數(shù)列 an 為周期數(shù)列,周期為 2,
因?yàn)?a1 =1,所以 a2 = 2,
所以 S2017 =1008 a1 + a2 + a1 =1008 3 +1 = 3025
故答案為:3025
題型十二:并項(xiàng)求和法之 = ( ― ) ( )型
12-1 a a 2n 1 cos 2n -1 p【典例 】已知數(shù)列 n 的通項(xiàng)公式為 n = - , an 的前 n項(xiàng)和為 S3 n ,則
S2017 = .
4033
【答案】
2
【解析】當(dāng) n = 3k 2 k N * 6k - 5 6k - 5- 時(shí),則 a3k -2 = 6k - 5 cos p3 ÷ = ,è 2
當(dāng) n = 3k -1 k N * 時(shí),則 a3k -1 = 6k - 3 cos é 2k -1 p ù = -6k + 3,
當(dāng) n = 3k k N * 時(shí), a3k = 6k -1 cos 6k -1p 6k -1 ÷ = .
è 3 2
a a 6k - 5 6k -1\ 3k -2 + 3k -1 + a3k = - 6k + 3 + = 0,2 2
Q2017 3 672 1 6 673- 5 4033= + ,因此, S2017 = 672 0 + a2017 = a3 673-2 = = .2 2
4033
故答案為 .
2
np np
【典例 12-2】(2024·云南保山·二模)數(shù)列{an}的通項(xiàng)公式 an = n sin + cos3 3 ÷
,其前 n項(xiàng)和為 Sn ,
è
則 S2018 = .
2015 + 2019 3
【答案】
2
【解析】 a1 + a2 + a3 + a4 + a5 + a6 = 3 - 3 3 ,
a7 + a8 + a9 + a10 + a11 + a12 = 3 - 3 3 ,
L ,
a6m+1 + a6m+2 + a6m+3 + a6m+4 + a6m+5 + a6m+6 = 3- 3 3 , m N
∴ S 2015 + 2019 32018 = 2
2015 + 2019 3
故答案為
2
【方法技巧】
兩兩并項(xiàng)求和.
【變式 12-1】(2024·遼寧沈陽(yáng)·模擬預(yù)測(cè))已知數(shù)列 an 滿足 a1 =1, an > 0, Sn 是數(shù)列 an 的前 n項(xiàng)
2
和,對(duì)任意 n N*,有 2Sn = 2an + an -1
(1)求數(shù)列 an 的通項(xiàng)公式;
(2)設(shè)bn = (-1)
n-1an,求 bn 的前 100 項(xiàng)的和.
【解析】(1)由 2Sn = 2a
2
n + an -1
2
, 2Sn-1 = 2an-1 + an-1 -1 n 2 ,
兩式相減得 2an = 2a
2
n - 2a
2
n-1 + an - an-1,即 an + an-1 2an - 2an-1 -1 = 0,
因?yàn)?an > 0,所以 2an - 2a
1
n-1 -1 = 0,即 an - an-1 = (n 2),2
1
故 an 是首項(xiàng)為1,公差為 2 的等差數(shù)列,
1
所以 an = (n +1)2 ;
(2)由(1)知bn = (-1)
n-1 a ( 1)n-1 1n = - (n +1),2
b b 1所以 2n-1 + 2n = - ,2
記 c
1
n = b2n-1 + b2n ,則 cn = - ,2
\b1 + b2 + ......+ b = c
1
100 1 + c2 + ......+ c50 = - 2 ÷
50 = -25
è
【變式 12-2】在數(shù)列 an 中,a1 = 5,且 an+1 = 2an -1 n N* .
(1)求 an 的通項(xiàng)公式;
(2)令b nn = (-1) × an,求數(shù)列 bn 的前 n項(xiàng)和 Sn .
【解析】(1) an+1 -1 = 2an - 2 = 2 an -1 , a1 -1 = 4
\ an -1 是公比為 2 的等比數(shù)列.
\an -1 = 4 × 2
n-1 = 2n+1,
\a n+1n = 2 +1,n N
* .
n n+1 n n+1 n *
(2)bn = (-1) × 2 +1 = (-1) × 2 + (-1) , n N ,
所以bn + b = -1
n × 2n+1 +1 + -1 n+1 × 2n+2 +1 = -2 · -2 n = -2 n+1n+1 .
當(dāng) n 為偶數(shù),\Sn = b1 + b2 + b3 + b4 +L+ b 2 4n-1 + bn = 2 + 2 +L+ 2n
n
4 × 1- 42 ÷ 4 4 2n+2n - 4
= è
= × 2 - = .
3 3 3
1- 4
當(dāng) n 為奇數(shù)
n+2
\S = S + b 4= × 2n-1 4- - 2n+1 4 7 2 + 7n n-1 n -1 = - × 2n - = -3 3 3 3 3
ì2n+2 - 4
,n為偶數(shù)
S = 3綜上: n í n+2 .
2 + 7
- ,n為奇數(shù) 3
【變式 12-3】已知等差數(shù)列 an 中的前 n 項(xiàng)和為 Sn ,且 a2 , a5 , a14 成等比數(shù)列, S5 = 25 .
(1)求數(shù)列 an 的通項(xiàng)公式;
(2) n若數(shù)列 an 為遞增數(shù)列,記bn = -1 Sn ,求數(shù)列 bn 的前 40 項(xiàng)的和T40 .
ìa 25 = a ì2 ×a14 a1 + 4d
2 = a1 + d × a1 +13d 【解析】(1)設(shè)公差為d ,則 í ,即
S5 = 5a1 +10d = 25
í
S5 = 5a1 +10d = 25
ìa1 = 5 ìa1 =1
解得 í 或 í a = 5d 0 d 2 ,所以 n 或
an = 2n -1;
= =
n(1+ 2n -1)
(2 2 n n 2)因?yàn)閿?shù)列 an 為遞增數(shù)列,\an = 2n -1, Sn = = n ,bn = (-1) S2 n = (-1) × n ,
T = -12 2所以 30 + 2 - 3
2 + 42 +L- 392 + 402
= 2 -1 × 1+ 2 + 4 - 3 × 3+ 4 +L+ 40 - 39 × 39 + 40
40 (1+ 40)
=1+ 2 + 3 + 4 +L+ 39 + 40 = = 820;
2
所以T40 = 820 .
a a ncos np p 【變式 12-4 *】數(shù)列 n 通項(xiàng)為 n = + ÷ n N , Sn 為其前 n項(xiàng)的和,則 S2 6 2015 = .è
【答案】504 - 504 3
【解析】當(dāng) n = 4k 時(shí), a p p 3n = ncos
2kp +
÷ = ncos = n;
è 6 6 2
1
同理可得:當(dāng) n = 4k -1時(shí), an = n;2
當(dāng) n = 4k - 2 3時(shí), an = - n ;2
當(dāng) n = 4k
1
- 3時(shí), an = - n .2
∴ a1 + a2 + a3 + a4 =1+ 3 ,
a4k -3 + a
3 1
4k -2 + a4k -1 + a4k = 4k + 4k -1
3 1
- 4k - 2 - 4k - 3 = 3 +1,
2 2 2 2
∴ S2015 = S503 4+3 = 503 1+ 3 + a2013 + a2014 + a2015
S 1 3 12015 = S503 4+3 = 503 1+ 3 + 2013 - ÷ + 2014 2 è - 2 ÷÷ + 2015 è 2
S2015 = S503 4+3 = 503 1+ 3 +1-1007 3
= 504 - 504 3 .
故答案為:504 - 504 3 .
題型十三:先放縮后裂項(xiàng)求和
【典例 13-1】設(shè)數(shù)列 an 前 n項(xiàng)和為 Sn ,且滿足 2 Sn - 2 = n +1 an - 2 , n N*,a1 = 0,數(shù)列 bn
滿足 4bn = an+1an+2 .
(1)求 an 、 bn 的通項(xiàng)公式;
c 1= c c c 3(2)記 n b2 - S 2 ,求證: 1
+ 2 + ×××+ n < .
n n 2
【解析】(1)對(duì)任意的 n N*, 2 Sn - 2 = n +1 an - 2 ,
當(dāng) n 2時(shí),由 2 Sn - 2 = n +1 an - 2 可得 2 Sn-1 - 2 = n an-1 - 2 ,
上述兩個(gè)等式作差得 2an = n +1 an - nan-1 - 2 ,所以, n -1 an = nan-1 + 2,
an a= n-1 2 a+ = n-1 2 2+ - an + 2 a所以, ,所以, = n-1
+ 2
n n -1 n n -1 n -1 n -1 n ,n n -1
t an + 2令 n = ,則 tn = tn-1 n 2 ,故數(shù)列 t t
an + 2
n 為常數(shù)列,且 n = = a1 + 2 = 2 ,n n
所以, an = 2 n -1 ,
a1 = 0也滿足 an = 2 n -1 ,故對(duì)任意的 n N*, an = 2 n -1 .
故 4bn = an+1an+2 = 2n × 2 n +1 ,所以,bn = n n +1 .
(2)因?yàn)?2 Sn - 2 = n +1 an - 2 = 2 n +1 n - 2 ,解得 Sn = n2 - n,
所以, c
1 1 1
n = = =
b2n - S
2 n2n n +1 2 - n2 n -1 2 2 n3 ,
c 1 3當(dāng) n =1時(shí), 1 = < 成立;2 2
1 1 1 1
當(dāng) n 2時(shí), cn = = < =2 n3 n2 ×n + n ×n2 n n -1 + n -1 n n -1 n n + n -1
n - n -1 1 1
= = -
n n -1 n -1 n ,
c c c 1 1 1 1 1 1 3 1 3此時(shí) 1 + 2 + ×××+ n < +1- + - +L+ - = - <2 ,2 2 3 n -1 n 2 n 2
綜上所述,對(duì)任意的 n N* , c1 + c
3
2 + ×××+ cn < .2
ì Sn -1ü
【典例 13-2】記 Sn 為數(shù)列 an 的前 n項(xiàng)和,已知 í 是首項(xiàng)為 3,公差為 1 的等差數(shù)列.
n
(1)求 an 的通項(xiàng)公式;
1 1 1 a -1 1
(2)證明:當(dāng) n 2時(shí), + +L+ < n -S .2 S3 Sn an +1 2
ì Sn -1ü S -1
【解析】(1)∵ í 是首項(xiàng)為 3,公差為 1 的等差數(shù)列,∴ n = 3 + (n -1) ,
n n
∴ Sn = n2 + 2n +1 = (n +1)2 .∴當(dāng) n 2時(shí), S 2n-1 = n , an = Sn - Sn-1 = 2n +1 .
又 S1 = a1 = 4不滿足 an = 2n +1,
ì4,n =1
∴{an}的通項(xiàng)公式 an = í2n 1 n 2 n N* . + , 且
1 1 1 1 1
(2)當(dāng) n 2時(shí), = < = -S (n +1)2 n(n +1) n n +1 ,n
an -1 1 2n 1 n 1- = - = -
a +1 2 2n + 2 2 n +1 2 ,n
1 1 L 1 1 1 1 1 L 1 1 1 1 n 1∴ + + + < - + - + + - = - = -S2 S3 Sn 2 3 3 4 n n +1 2 n +1 n +1 2
,
1 1 L 1 a -1 1∴ + + + < n -S2 S3 Sn an +1 2
.
【方法技巧】
先放縮后裂項(xiàng),放縮的目的是為了“求和”,這也是湊配放縮形式的目標(biāo).
【變式 13-1】(2024·河南·模擬預(yù)測(cè))若數(shù)列 an 滿足 a1 =1, an+1 - an = 2n.
(1)求 an 的通項(xiàng)公式;
1 1
(2)證明: + +L
1
+ < 2
a .1 a2 an
【解析】(1)因?yàn)?an+1 - an = 2n, a1 =1,
所以an = an - an-1 + an-1 - an-2 +L+ a2 - a1 + a1 = 2(n -1) + 2(n - 2) +L+ 2 +1
2n - 2 + 2
= × (n -1) +1 = n2 - n +1,
2
故 an = n
2 - n +1;
1
(2)證明:當(dāng) n=1 時(shí), =1 < 2a ;1
1 1 1 1 1
當(dāng) n 2時(shí), = 2 < = -an n - n +1 n(n -1) n -1 n
,
1 1
+ +L 1+ =1 1 1+ + +L 1 1 1 1 1 1 1 1+ < + - + - +L+ - 2 1則 ÷ = - < 2a1 a2 an a
,
2 a3 an è1 2 2 3 n -1 n n
1 1 1
故 + +L+ < 2a a a ;1 2 n
a = n2綜上, n - n +1 .
【變式 13-2】(2024·天津河北·二模)已知 an 是等差數(shù)列,其前 n項(xiàng)和為 Sn, bn 是等比數(shù)列,已知
a1 =1,S3 = 6,b1 = a2,a8是a4和b4的等比中項(xiàng).
(1)求 an 和 bn 的通項(xiàng)公式;
ìa
(2) í n
ü
求數(shù)列 的前 n項(xiàng)和Tb n
;
n
c bn -1= n 1 1
n
c n 1 1(3)記 n - + < < - +b -1,求證: n+1 i n+2 .n+1 2 2 2 i=1 2 4 2
3 2
【解析】(1)由題意 a1 =1,S3 = 3a1 + d = 3a1 + 3d = 6,2
\d =1,an =1+ n -1 = n,
2
又b1 = a2 = 2,a8是a4和b4的等比中項(xiàng),得 a8 = a4b4 ,
3 3
又 a4 = 4,a8 = 8,64 = 4b4,b4 = b1q = 2q =16,解得 q = 2,
\bn = 2 × 2
n-1 = 2n ;
an n
(2) =b 2n ,n
T 1 1 2 1 1 1設(shè) n = + 2 + 3 3 +L+ n × n ,2 2 2 2
1
則 Tn =1
1 1 1 1
2 22
+ 2
23
+ 3
23
+L+ n × n+1 ,2
1 T 1 1 1 L 1將以上兩式相減得 n = + 2 + 3 + + n - n
1
×
2 2 2 2 2 2n+1
1 1 1
n
-
2 è 2 ÷ ÷
÷
1 n
= è - n × =1- 1 1 n+1 ÷ - n
1
× ,
1- 2 è 2 2
n+1
2
T 2 n + 2\ n = - 2n ;
c bn -1 2
n -1
(3) n = = n+1 ,bn+1 -1 2 -1
n n
Qc 2 -1 2 -1 1 1n = n+1 > = - ,2 -1 2n+1 2 2n+1
n
c 1 1 1 1 1 1\ i > - 2 ÷ + - +L+ - è 2 2 è 2 23 ÷ è 2 2n+1 ÷i=1
1 n
1
1
- ÷
n 4
2 ÷è ÷
= - è
n 1 1 ,
2 1 1
= - + n+1
- 2 2 2
2
n
Qc 2 -1 1= 1 1 1n 2n+1
= 1- < -
-1 2 è 2n+1 -1÷ 2 2n+2
,
n
c 1 1 1 1 1 1\ i < - ÷ + - ÷ +L+ - ÷
i=1 è 2 23 è 2 24 è 2 2n+2
1 1 1
n
- ÷
n 8
è 2 ÷ ÷ n 1 1
= - è .
2 1 1
= - +
- 2 4 2
n+2
2
結(jié)論得證.
【變式 13-3】如圖,已知點(diǎn)列 An xn , y 2n 在曲線 y = x 上,點(diǎn)列Bn an ,0 在 x 軸上, A1 1,1 ,B1 0,0 ,
△Bn AnBn+1為等腰直角三角形.
(1)求 a1, a2,a3;(直接寫出結(jié)果)
(2)求數(shù)列 an 的通項(xiàng)公式;
* n n +1(3) n n + 2 設(shè) n N ,證明: < a2 + a2 3 +L+ an+1 < .2
【解析】(1)由△Bn AnBn+1為等腰直角三角形,所以直線B1A1 的直線斜率為 1,
故直線B1A1 的方程為 y = x ,與拋物線方程聯(lián)立可得 x2 = x ,可解得 x = 0或 x =1,
從而可得a1 = 0,可得 A1的橫坐標(biāo)為 1,因?yàn)?a1 + a2 = 2 1,解得 a2 = 2,
ìa + a = 2x ì 1 2 1
ì 1 1
3 2 2 a3 + = yn + yn + a3 + = y3 + a - a = 2y 4 4 4 2由 í 3 2 2 ,所以 í 1 1 ,可得 í , 2
展開更多......
收起↑