資源簡介 第三章 代數(shù)式3.2 代數(shù)式的值第1課時 實際問題中的代數(shù)式求值學習目標:1.求代數(shù)式的值,感受代數(shù)式求值是一個轉(zhuǎn)換過程或某種算法.2.能解釋代數(shù)式的值的實際意義,根據(jù)代數(shù)式求值推斷代數(shù)式所反映的規(guī)律.3.初步認識數(shù)學與人類生活的密切聯(lián)系,體驗數(shù)學活動充滿著探索與創(chuàng)造,感受數(shù)學的嚴謹性以及數(shù)學結(jié)論的確定性.重點:求代數(shù)式的值.難點:根據(jù)代數(shù)式求值推斷列代數(shù)式和求代數(shù)式的值的意義.一、新課導入游戲規(guī)則:三個人一組,老師報一個數(shù),要求第一位同學把此數(shù)加 1 后傳給第二位同學,第二位同學把聽到的數(shù)平方后報給第三位同學,第三位同學把聽到的數(shù)減 3 后報出結(jié)果.看看哪三位同學計算得又快又好?比如:1 → 2 → 4 → 1.要點探究知識點1:代數(shù)式的值思考:當 x = 5 時,( x + 1)2 - 3 = .練習:當 x = -5 時,(x + 1)2 - 3 = .合作探究問題1:為了開展體育活動,學校要購置一批排球,每班配 5 個,學校另外留 20 個. 學校總共需要購置多少個排球?(1)如果班級數(shù)是 15,則學校總共需要購置多少個排球?(2)如果班級數(shù)是 20,則學校總共需要購置多少個排球?知識要點一般地,用數(shù)值代替代數(shù)式中的字母,按照代數(shù)式中的運算關(guān)系計算得出結(jié)果,叫作代數(shù)式的值. 當字母取不同的數(shù)值時,代數(shù)式的值一般也不同.知識點2:代入求值問題2:(1) 當 x = -3 時,求 x2 - 3x + 5 的值;(2) 當 y = 時,求 y2 - 2y + 1 的值.注意:1.負數(shù)、分數(shù)代入求值時注意添括號2.代數(shù)式中省略的乘號,代入求值時要加上.典例精析例1 根據(jù)下列 x,y 的值,分別求代數(shù)式 2x + 3y 的值.(1)x = 15,y = 12;(2)x = 1,y = ;例2 根據(jù)下列 a,b 的值,分別求代數(shù)式 的值.練一練1. (蘭州·期中)已知:|a| = 2,|b| = 5,且 a + b < 0,求 a + b 的值.二、課堂小結(jié)1.(海南·期中)當 y = -4 時,代數(shù)式 -1 + 5y 的值為 ( )A.-19 B.19 C.21 D.-212. (無錫·中考模擬)當 a = 2,b =-3 時,代數(shù)式 (a - b)2 + 2ab 的值為 ( ).A.13 B.27 C. -5 D.-73.(湖南·月考)已知 |a| = 6,|b| = 3,且 ab < 0,求 a + b 的值.參考答案合作探究一、要點探究知識點1:思考:33練習:13問題1:(1)5n + 20 = 5×15 + 20 = 95.(2)5n + 20 = 5×20 + 20 = 120.知識點2:問題2:解:(1)當 x =-3 時,x2 - 3x + 5 = (-3)2 - 3×(-3) + 5 = 23;(2)當 y = 時,例1解:(1)當 x = 15,y = 12 時,2x + 3y = 2×15 + 3×12 = 66;(2)當 x = 1,y = 時,2x + 3y = 2×1 + 3× = .例2 解:(1)當 a = 4,b = 12 時,(2)當 a = -3,b = 2 時,【做一做】 1. 解:因為 | a | = 2,| b | = 5,所以 a = ±2,b = ±5.因為 a + b < 0,所以 a = ±2,b = -5.①當 a = 2,b = -5 時,a + b = 2 + (-5) = -3.②當 a = -2,b = -5 時,a + b = (-2) + (-5) = -7.綜上所述,a + b 的值為 -3 或 -7.二、課堂小結(jié)當堂檢測1.D2.A解:因為 |a| = 6,|b| = 3,所以 a = ±6,b = ±3.因為 ab < 0,所以 a = 6,b = -3 或 a = -6,b = 3.①當 a = 6,b = -3 時,a + b = 6 + (-3) = 3.②當 a = -6,b = 3 時,a + b = (-6) + 3 = -3.綜上所述,a + b 的值為 3 或 -3. 展開更多...... 收起↑ 資源預覽 縮略圖、資源來源于二一教育資源庫