中文字幕精品无码一区二区,成全视频在线播放观看方法,大伊人青草狠狠久久,亚洲一区影音先锋色资源

人教A版高中數(shù)學(xué)選擇性必修第二冊 5.3.1 函數(shù)的單調(diào)性(課件+學(xué)案)

資源下載
  1. 二一教育資源

人教A版高中數(shù)學(xué)選擇性必修第二冊 5.3.1 函數(shù)的單調(diào)性(課件+學(xué)案)

資源簡介

5.3 導(dǎo)數(shù)在研究函數(shù)中的應(yīng)用
5.3.1 函數(shù)的單調(diào)性
第1課時 函數(shù)的單調(diào)性
[學(xué)習(xí)目標(biāo)] 1.理解導(dǎo)數(shù)與函數(shù)的單調(diào)性的關(guān)系.(數(shù)學(xué)抽象)
2.掌握利用導(dǎo)數(shù)判斷函數(shù)單調(diào)性的方法.(數(shù)學(xué)運算)
3.對于多項式函數(shù),能求不超過三次的多項式函數(shù)的單調(diào)區(qū)間.
(教師用書)
如圖為某市一天內(nèi)的氣溫變化圖:
(1)觀察這個氣溫變化圖,說出氣溫在這一天內(nèi)的變化情況.
(2)怎樣用數(shù)學(xué)語言刻畫在這一天內(nèi)“隨著時間的推移,氣溫逐漸升高或下降”這一特征?
問題:觀察圖形,你能得到什么信息?
[討論交流] 
問題1.函數(shù)的單調(diào)性與導(dǎo)數(shù)有什么關(guān)系?
問題2.函數(shù)值變化快慢與導(dǎo)數(shù)有什么關(guān)系?
[自我感知] 經(jīng)過認(rèn)真的預(yù)習(xí),結(jié)合對本節(jié)課的理解和認(rèn)知,請畫出本節(jié)課的知識邏輯體系.
探究1 利用導(dǎo)數(shù)的正負(fù)判斷單調(diào)性
探究問題1 已知函數(shù):(1)y=2x-1,(2)y=-3x,(3)y=2x,它們的導(dǎo)數(shù)的正負(fù)與它們的單調(diào)性之間有怎樣的關(guān)系?
[提示] (1)y′=2>0,y=2x-1是增函數(shù).
(2)y′=-3<0,y=-3x是減函數(shù).
(3)y′=2x ln 2>0,y=2x是增函數(shù).
探究問題2 如果函數(shù)f (x)在區(qū)間(a,b)內(nèi)有無數(shù)個點滿足f ′(x)>0,能認(rèn)為f (x)在這個區(qū)間內(nèi)單調(diào)遞增嗎?
[提示] 不能,無數(shù)不代表任意,所以有可能在某點處導(dǎo)數(shù)為負(fù).
[新知生成]
函數(shù)的單調(diào)性與其導(dǎo)數(shù)的關(guān)系
定義在區(qū)間(a,b)內(nèi)的函數(shù)y=f (x):
f ′(x)的正負(fù) f (x)的單調(diào)性
f ′(x)>0 單調(diào)遞增
f ′(x)<0 單調(diào)遞減
【教用·微提醒】 (1)f ′(x)>0(f ′(x)<0)是函數(shù)在(a,b)上單調(diào)遞增(遞減)的充分條件.
(2)f ′(x)=0在某個區(qū)間內(nèi)恒成立時,該區(qū)間內(nèi)f (x)為常函數(shù).
【鏈接·教材例題】
例1 利用導(dǎo)數(shù)判斷下列函數(shù)的單調(diào)性:
(1)f (x)=x3+3x;
(2)f (x)=sin x-x,x∈(0,π);
(3)f (x)=.
[解] (1)因為f (x)=x3+3x,所以
f ′(x)=3x2+3=3(x2+1)>0.
所以,函數(shù)f (x)=x3+3x在R上單調(diào)遞增,如圖5.3-4(1)所示.
(2)因為f (x)=sin x-x,x∈(0,π),所以
f ′(x)=cos x-1<0.
所以,函數(shù)f (x)=sin x-x在(0,π)內(nèi)單調(diào)遞減,如圖5.3-4(2)所示.
(3)因為f (x)=1-,x∈(-∞,0)∪(0,+∞),所以f ′(x)=>0.
所以,函數(shù)f (x)=在區(qū)間(-∞,0)和(0,+∞)上單調(diào)遞增,如圖5.3-4(3)所示.
[典例講評] 1.利用導(dǎo)數(shù)判斷下列函數(shù)的單調(diào)性:
(1)f (x)=x3-x2+2x-5;
(2)f (x)=x--ln x.
[解] (1)因為f (x)=x3-x2+2x-5,所以f ′(x)=x2-2x+2=(x-1)2+1>0,所以函數(shù)f (x)=x3-x2+2x-5在R上單調(diào)遞增.
(2)因為f (x)=x--ln x,x∈(0,+∞),
所以f ′(x)=1+==>0,所以f (x)=x--ln x在(0,+∞)上單調(diào)遞增.
 利用導(dǎo)數(shù)判斷函數(shù)單調(diào)性的步驟
(1)確定函數(shù)的定義域.
(2)求導(dǎo)數(shù)f ′(x).
(3)確定f ′(x)在定義域內(nèi)的符號,在此過程中,需要對導(dǎo)函數(shù)進(jìn)行通分、因式分解等變形.
(4)得出結(jié)論.
[學(xué)以致用] 1.下列函數(shù)在(0,+∞)上單調(diào)遞減的是(  )
A.y=xex      B.y=x3-3x2
C.y=ln x-x D.y=x-ex
D [當(dāng)x>0時,函數(shù)y=xex的導(dǎo)函數(shù)y′=ex+xex=ex(1+x)>0,故函數(shù)在(0,+∞)上單調(diào)遞增;函數(shù)y=x3-3x2的導(dǎo)函數(shù)y′=3x2-6x=3x(x-2),故函數(shù)在(0,2)上單調(diào)遞減,在(2,+∞)上單調(diào)遞增;令y=ln x-x的導(dǎo)函數(shù)y′=-1=>0,解得x<1,所以函數(shù)y=ln x-x在(0,1)上單調(diào)遞增,在(1,+∞)上單調(diào)遞減;函數(shù)y=x-ex的導(dǎo)函數(shù)y′=1-ex,在(0,+∞)上y′=1-ex<0,所以y=x-ex在(0,+∞)上單調(diào)遞減.故選D.]
探究2 利用導(dǎo)數(shù)求函數(shù)的單調(diào)區(qū)間
【鏈接·教材例題】
例3 求函數(shù)f (x)=x3-x2-2x+1的單調(diào)區(qū)間.
[解] 函數(shù)f (x)=x3-x2-2x+1的定義域為R.對f (x)求導(dǎo)數(shù),得
f ′(x)=x2-x-2=(x+1)(x-2).
令f ′(x)=0,解得
x=-1,或x=2.
x=-1和x=2把函數(shù)定義域劃分成三個區(qū)間,f ′(x)在各區(qū)間上的正負(fù),以及f (x)的單調(diào)性如表5.3-1所示.
表5.3-1
x (-∞,-1) -1 (-1,2) 2 (2,+∞)
f ′(x) + 0 - 0 +
f (x) 單調(diào) 遞增 f (-1)= 單調(diào) 遞減 f (2)=- 單調(diào) 遞增
所以,f (x)在(-∞,-1)和(2,+∞)上單調(diào)遞增,在(-1,2)內(nèi)單調(diào)遞減,如圖5.3-6所示.
[典例講評] 2.求下列函數(shù)的單調(diào)區(qū)間:
(1)f (x)=x2-ln x;
(2)f (x)=2x3+3x2-36x+1.
[思路導(dǎo)引] 根據(jù)函數(shù)解析式求出函數(shù)的導(dǎo)函數(shù),根據(jù)導(dǎo)函數(shù)的符號確定函數(shù)單調(diào)區(qū)間.
[解] (1)函數(shù)定義域為(0,+∞),且f ′(x)=2x-.
令f ′(x)>0,即2x->0,解得x>;
令f ′(x)<0,即2x-<0,解得0故函數(shù)f (x)的單調(diào)遞增區(qū)間是,單調(diào)遞減區(qū)間是.
(2)f ′(x)=6x2+6x-36=6(x+3)(x-2).
令f ′(x)=0,解得x=-3或x=2,x=-3和x=2把函數(shù)的定義域劃分為三個區(qū)間,f ′(x)在各個區(qū)間上的正負(fù)以及f (x)的單調(diào)性如表,
x (-∞,-3) -3 (-3,2) 2 (2,+∞)
f ′(x) + 0 - 0 +
f (x) 單調(diào) 遞增 f (-3) 單調(diào)遞減 f (2) 單調(diào) 遞增
故f (x)的單調(diào)遞增區(qū)間是(-∞,-3),(2,+∞),單調(diào)遞減區(qū)間為(-3,2).
【教用·備選題】 求函數(shù)f (x)=x3-2x2+x-1的單調(diào)區(qū)間.
[解] 對函數(shù)求導(dǎo)得f ′(x)=3x2-4x+1.
令f ′(x)=3x2-4x+1>0,則
x<或x>1,
因此,函數(shù)f (x)=x3-2x2+x-1在區(qū)間和(1,+∞)上單調(diào)遞增.
令f ′(x)=3x2-4x+1<0,
則<x<1,
因此,函數(shù)f (x)=x3-2x2+x-1在區(qū)間上單調(diào)遞減.
 利用導(dǎo)數(shù)求函數(shù)單調(diào)區(qū)間的一般步驟
(1)確定函數(shù)y=f (x)的定義域.
(2)求出導(dǎo)數(shù)f ′(x)的零點.
(3)用f ′(x)的零點將f (x)的定義域劃分為若干個區(qū)間,列表給出f ′(x)在各區(qū)間上的正負(fù),進(jìn)而求出單調(diào)區(qū)間.
[學(xué)以致用] 2.求下列函數(shù)的單調(diào)區(qū)間:
(1)f (x)=x2·e-x;
(2)f (x)=x+.
[解] (1)函數(shù)的定義域為(-∞,+∞).
∵f ′(x)=(x2)′e-x+x2(e-x)′=2xe-x-x2e-x=e-x(2x-x2),令f ′(x)=0,由于e-x>0,∴x1=0,x2=2,用x1,x2分割定義域,如表所示:
x (-∞,0) 0 (0,2) 2 (2,+∞)
f ′(x) - 0 + 0 -
f (x) 單調(diào)遞減 f (0) 單調(diào)遞增 f (2) 單調(diào)遞減
∴f (x)的單調(diào)遞減區(qū)間為(-∞,0)和(2,+∞),單調(diào)遞增區(qū)間為(0,2).
(2)函數(shù)的定義域為(-∞,0)∪(0,+∞).
∵f ′(x)=1-,令f ′(x)=0,得x1=-1,x2=1,用x1,x2分割定義域,如表所示:
x (-∞, -1) -1 (-1,0) (0,1) 1 (1, +∞)
f ′(x) + 0 - - 0 +
f (x) 單調(diào) 遞增 f (-1) 單調(diào) 遞減 單調(diào) 遞減 f (1) 單調(diào) 遞增
∴函數(shù)f (x)的單調(diào)遞減區(qū)間為(-1,0)和(0,1),單調(diào)遞增區(qū)間為(-∞,-1)和(1,+∞).
探究3 導(dǎo)函數(shù)與原函數(shù)的關(guān)聯(lián)圖象
【鏈接·教材例題】
例2 已知導(dǎo)函數(shù)f ′(x)的下列信息:
當(dāng)1<x<4時,f ′(x)>0;
當(dāng)x<1,或x>4時,f ′(x)<0;
當(dāng)x=1,或x=4時,f ′(x)=0.
試畫出函數(shù)f (x)圖象的大致形狀.
[解] 當(dāng)1<x<4時,f ′(x)>0,可知f (x)在區(qū)間(1,4)內(nèi)單調(diào)遞增;
當(dāng)x<1,或x>4時,f ′(x)<0,可知f (x)在區(qū)間(-∞,1)和(4,+∞)上都單調(diào)遞減;
當(dāng)x=1,或x=4時,f ′(x)=0,這兩點比較特殊,我們稱它們?yōu)椤胺€(wěn)定點”.
綜上,函數(shù)f (x)圖象的大致形狀如圖5.3-5所示.
例4 設(shè)x>0,f (x)=ln x,g(x)=1-,兩個函數(shù)的圖象如圖5.3-8所示.判斷f (x),g(x)的圖象與C1,C2之間的對應(yīng)關(guān)系.
[解] 因為f (x)=ln x,g(x)=1-,所以
f ′(x)=,g′(x)=.
當(dāng)x=1時,f ′(x)=g′(x)=1;
當(dāng)0<x<1時,g′(x)>f ′(x)>1;
當(dāng)x>1時,0<g′(x)<f ′(x)<1.
所以,f (x),g(x)在(0,+∞)上都是增函數(shù).在區(qū)間(0,1)內(nèi),g(x)的圖象比f (x)的圖象要“陡峭”;在區(qū)間(1,+∞)上,g(x)的圖象比f (x)的圖象要“平緩”.
所以,f (x),g(x)的圖象依次是圖5.3-8中的C2,C1.
[典例講評] 3.(1)已知函數(shù)f (x)的導(dǎo)函數(shù)f ′(x)的圖象如圖所示,那么函數(shù)f (x)的圖象最有可能是(  )
A     B     C     D
(2)函數(shù)f (x)的圖象如圖所示,則導(dǎo)函數(shù)f ′(x)的圖象可能為(  )
A         B
C         D
(1)A (2)C [(1)當(dāng)x<-2時,f ′(x)<0,則f (x)單調(diào)遞減;當(dāng)-2<x<0時,f ′(x)>0,則f (x)單調(diào)遞增;當(dāng)x>0時,f ′(x)<0,則f (x)單調(diào)遞減.
則符合上述條件的只有選項A.故選A.
(2)由f (x)的圖象知,當(dāng)x∈(-∞,1)時,f (x)單調(diào)遞減,f ′(x)<0;
當(dāng)x∈(1,4)時,f (x)單調(diào)遞增,f ′(x)>0;
當(dāng)x∈(4,+∞)時,f (x)單調(diào)遞減,f ′(x)<0.
由選項各圖知,選項C符合題意.故選C.]
 (1)導(dǎo)函數(shù)的正負(fù)看原函數(shù)的增減.
①觀察原函數(shù)的圖象,重在找出“上升”“下降”產(chǎn)生變化的點,分析函數(shù)值的變化趨勢.
②觀察導(dǎo)函數(shù)的圖象,重在找出導(dǎo)函數(shù)圖象與x軸的交點,分析導(dǎo)數(shù)的正負(fù).
(2)導(dǎo)函數(shù)的絕對值大小決定原函數(shù)增減快慢.
某一范圍內(nèi)導(dǎo)數(shù)的絕對值較大,那么函數(shù)在這個范圍內(nèi)變化得較快,這時函數(shù)的圖象就比較“陡峭”(向上或向下);反之,函數(shù)的圖象就比較“平緩”.
(3)解決問題時,要分清是原函數(shù)圖象還是導(dǎo)函數(shù)圖象.
[學(xué)以致用] 3.設(shè)函數(shù)y=f (x)在定義域內(nèi)可導(dǎo),y=f (x)的圖象如圖所示,則導(dǎo)函數(shù)y=f ′(x)的圖象可能為(  )
A        B
C        D
D [由題中函數(shù)f (x)的圖象可知,函數(shù)f (x)在(-∞,0)上先增后減,所以其對應(yīng)的導(dǎo)函數(shù)符號先正后負(fù),在y軸左側(cè)導(dǎo)函數(shù)的圖象由左上到右下穿過x軸;當(dāng)x∈(0,+∞)時,f (x)單調(diào)遞減,所以x∈(0,+∞)時,f ′(x)<0,只有D選項符合條件.故選D.]
1.f ′(x)是f (x)的導(dǎo)函數(shù),f ′(x)的圖象如圖所示,則f (x)的圖象只可能是(  )
A          B
C          D
A [由f ′(x)圖象可知f ′(0)=0,f ′(2)=0,f (x)在區(qū)間[0,2]上的增長速度先快后慢,A選項符合.故選A.]
2.命題甲:對任意x∈(a,b),有f ′(x)>0;命題乙:f (x)在(a,b)內(nèi)是單調(diào)遞增的,則甲是乙的(  )
A.充分不必要條件
B.必要不充分條件
C.充要條件
D.既不充分也不必要條件
A [例如,f (x)=x3在(-1,1)內(nèi)是單調(diào)遞增的,但f ′(x)=3x2≥0(-1<x<1),故甲是乙的充分不必要條件.故選A.]
3.下列函數(shù)中,在(0,+∞)內(nèi)單調(diào)遞增的是(  )
A.y=sin x B.y=xe2
C.y=x3-x D.y=ln x-x
B [對于B,y=xe2,則y′=e2,
∴y=xe2在R上為增函數(shù),在(0,+∞)內(nèi)單調(diào)遞增.其他選項可同理逐一求導(dǎo)排除.故選B.]
4.函數(shù)y=ln (x2-x-2)的單調(diào)遞減區(qū)間為________.
(-∞,-1) [函數(shù)y=ln (x2-x-2)的定義域為(-∞,-1)∪(2,+∞),令f (x)=x2-x-2,f ′(x)=2x-1<0,得x<,
∴函數(shù)y=ln (x2-x-2)的單調(diào)遞減區(qū)間為(-∞,-1).]
1.知識鏈:(1)函數(shù)的單調(diào)性與其導(dǎo)數(shù)的關(guān)系.
(2)利用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性.
(3)利用導(dǎo)數(shù)求函數(shù)的單調(diào)區(qū)間.
(4)原函數(shù)與導(dǎo)函數(shù)圖象的關(guān)系.
2.方法鏈:方程思想、分類討論.
3.警示牌:忽略定義域的限制而出錯.
回顧本節(jié)知識,自主完成以下問題:
1.利用導(dǎo)數(shù)求函數(shù)單調(diào)性的思路是怎樣的?
[提示] 利用導(dǎo)數(shù)求函數(shù)的單調(diào)性一般通過解不等式的方法完成,其步驟為:①確定函數(shù)f (x)的定義域;②求導(dǎo)函數(shù)f ′(x);③解不等式f ′(x)>0(或f ′(x)<0),并寫出解集;④根據(jù)③的結(jié)果確定函數(shù)f (x)的單調(diào)區(qū)間.
2.原函數(shù)圖象與導(dǎo)函數(shù)圖象之間有何關(guān)系?
[提示] 導(dǎo)函數(shù)f ′(x)圖象在x軸上方時對應(yīng)的自變量的取值區(qū)間為原函數(shù)f (x)圖象上升部分對應(yīng)的區(qū)間(單調(diào)遞增區(qū)間),導(dǎo)函數(shù)f ′(x)圖象在x軸下方時對應(yīng)的自變量的取值區(qū)間為原函數(shù)f (x)圖象下降部分對應(yīng)的區(qū)間(單調(diào)遞減區(qū)間).
課時分層作業(yè)(十八) 函數(shù)的單調(diào)性
一、選擇題
1.函數(shù)y=x3-x2-x的單調(diào)遞增區(qū)間為(  )
A.和(1,+∞)
B.
C.∪(1,+∞)
D.
A [由題意知,y′=3x2-2x-1(x∈R).由y′>0可解得x<-或x>1,∴函數(shù)的單調(diào)遞增區(qū)間為和(1,+∞).故選A.]
2.函數(shù)y=x ln x在(0,5)上的單調(diào)性是(  )
A.單調(diào)遞增
B.單調(diào)遞減
C.在上單調(diào)遞減,在上單調(diào)遞增
D.在上單調(diào)遞增,在上單調(diào)遞減
C [由已知得函數(shù)y=x ln x的定義域為(0,+∞).
y′=ln x+1,令y′>0,得x>;令y′<0,得0<x<.∴函數(shù)y=x ln x在上單調(diào)遞減,在上單調(diào)遞增.]
3.設(shè)函數(shù)f (x)在定義域內(nèi)可導(dǎo),y=f (x)的圖象如圖所示,則導(dǎo)函數(shù)y=f ′(x)的圖象可能為(  )
A         B
C         D
D [觀察函數(shù)f (x)的圖象得:f (x)在(-∞,0)上單調(diào)遞增,在(0,+∞)上先單調(diào)遞增,再單調(diào)遞減,后又單調(diào)遞增,則當(dāng)x∈(-∞,0)時,f ′(x)>0,即當(dāng)x∈(-∞,0)時,函數(shù)y=f ′(x)的圖象在x軸上方,于是排除A,C.當(dāng)x∈(0,+∞)時,f ′(x)的值先大于0,接著變?yōu)樾∮?,之后又變?yōu)榇笥?,即當(dāng)x∈(0,+∞)時,函數(shù)y=f ′(x)的圖象先在x軸上方,接著變化到x軸下方,最后又變到x軸上方,于是排除B,選項D相符.故選D.]
4.(多選)下列函數(shù)在定義域上為增函數(shù)的有(  )
A.f (x)=x- B.f (x)=xex
C.f (x)=x+sin x D.f (x)=ex-e-x-2x
CD [根據(jù)題意,依次分析選項.對于A,f (x)=x-,有f (-1)=f (1)=0,則f (x)在其定義域上不是單調(diào)函數(shù),不符合題意;對于B,f (x)=xex,其導(dǎo)數(shù)f ′(x)=xex+ex=(x+1)ex,在區(qū)間(-∞,-1)上,f ′(x)<0,則f (x)單調(diào)遞減,不符合題意;對于C,f (x)=x+sin x,其導(dǎo)數(shù)f ′(x)=1+cos x≥0,則f (x)在定義域上為增函數(shù),符合題意;對于D,f (x)=ex-e-x-2x,其導(dǎo)數(shù)f ′(x)=ex+e-x-2≥0,則f (x)在定義域上為增函數(shù),符合題意.故選CD.]
5.(多選)函數(shù)f (x)=(x-3)ex在下列區(qū)間上單調(diào)遞增的是(  )
A.(-∞,2) B.(0,3)
C.(3,4) D.(2,+∞)
CD [∵f ′(x)=ex+(x-3)ex=(x-2)ex,
由f ′(x)>0,得(x-2)ex>0,∴x>2.
∴f (x)的單調(diào)遞增區(qū)間為(2,+∞),CD符合.]
二、填空題
6.已知函數(shù)f (x)的導(dǎo)函數(shù)y=f ′(x)的圖象如圖所示,則函數(shù)f (x)的單調(diào)遞增區(qū)間是________.
(-1,2),(4,+∞) [由題圖可知,在區(qū)間(-1,2),(4,+∞)上,f ′(x)>0;在區(qū)間(-∞,-1),(2,4)上,f ′(x)<0.
由導(dǎo)函數(shù)的正負(fù)與函數(shù)單調(diào)性的關(guān)系可得,函數(shù)f (x)的單調(diào)遞增區(qū)間是(-1,2),(4,+∞).]
7.已知m是實數(shù),函數(shù)f (x)=x2(x-m),若f ′(-1)=-1,則函數(shù)f (x)的單調(diào)遞減區(qū)間是________.
 [f ′(x)=2x(x-m)+x2,因為f ′(-1)=-1,所以-2(-1-m)+1=-1,解得m=-2,令f ′(x)=2x(x+2)+x2<0,解得-<x<0,則函數(shù)f (x)的單調(diào)遞減區(qū)間是.]
8.函數(shù)f (x)=x2-5x+2ln (2x)的單調(diào)遞增區(qū)間是________.
,(2,+∞) [f (x)的定義域是(0,+∞),f ′(x)=,由f ′(x)>0,得x>2或0<x<,故f (x)的單調(diào)遞增區(qū)間是,(2,+∞).]
三、解答題
9.已知導(dǎo)函數(shù)f ′(x)的下列信息:
當(dāng)2<x<3時,f ′(x)<0;
當(dāng)x>3或x<2時,f ′(x)>0;
當(dāng)x=3或x=2時,f ′(x)=0;
試畫出函數(shù)f (x)圖象的大致形狀.
[解] 當(dāng)2<x<3時,f ′(x)<0,可知函數(shù)在此區(qū)間上單調(diào)遞減;
當(dāng)x>3或x<2時,f ′(x)>0,可知函數(shù)在這兩個區(qū)間上單調(diào)遞增;
當(dāng)x=3或x=2時,f ′(x)=0,可知在這兩點處的兩側(cè),函數(shù)單調(diào)性發(fā)生改變.
綜上可畫出函數(shù)f (x)圖象的大致形狀,如圖所示(答案不唯一).
10.函數(shù)f (x)=x3+ax2+bx+c,其中a,b,c為實數(shù),當(dāng)a2-3b<0時,f (x)是(  )
A.增函數(shù)
B.減函數(shù)
C.常數(shù)函數(shù)
D.既不是增函數(shù)也不是減函數(shù)
A [求得函數(shù)的導(dǎo)函數(shù)f ′(x)=3x2+2ax+b,導(dǎo)函數(shù)對應(yīng)方程f ′(x)=0的Δ=4(a2-3b)<0,所以f ′(x)>0恒成立,故f (x)是增函數(shù).]
11.(多選)已知函數(shù)f (x)=(x2-4x+1)ex,則函數(shù)f (x)在下列區(qū)間上單調(diào)遞增的是(  )
A.(-1,0) B.(-2,-1)
C.(-1,3) D.(3,4)
BD [f ′(x)=(2x-4)ex+(x2-4x+1)ex=(x2-2x-3)ex,令f ′(x)>0,可得x2-2x-3>0,解得x<-1或x>3,所以f (x)的單調(diào)遞增區(qū)間是(-∞,-1),(3,+∞),
所以f (x)在(-2,-1)與(3,4)上單調(diào)遞增.故選BD.]
12.已知函數(shù)f (x)=2x-ln |x|,則f (x)的大致圖象為(  )
A    B     C     D
A [當(dāng)x<0時,f (x)=2x-ln (-x),f ′(x)=2-·(-1)=2->0,所以f (x)在(-∞,0)上單調(diào)遞增,則B,D錯誤;
當(dāng)x>0時,f (x)=2x-ln x,f ′(x)=2-=,則f (x)在上單調(diào)遞減,在上單調(diào)遞增,所以A正確,故選A.]
13.函數(shù)f (x)=e2x-2(x+2)的單調(diào)遞增區(qū)間為________.
(0,+∞) [f (x)=e2x-2x-4,求導(dǎo)得f ′(x)=2e2x-2,令f ′(x)>0,解得x∈(0,+∞),所以f (x)的單調(diào)遞增區(qū)間為(0,+∞).]
14.已知函數(shù)f (x)=-1.
(1)求函數(shù)在點(1,f (1))處的切線方程;
(2)試判斷函數(shù)f (x)的單調(diào)性.
[解] (1)由題可知,f ′(x)=,所以f ′(1)=1,f (1)=-1.
∴函數(shù)在點(1,f (1))處的切線方程為y-(-1)=x-1,即y=x-2.
(2)因為函數(shù)的定義域為(0,+∞)且f ′(x)=,
令f ′(x)=>0,得0<x<e,令f ′(x)=<0,得x>e,
因此函數(shù)f (x)在區(qū)間(0,e)上單調(diào)遞增,在(e,+∞)上單調(diào)遞減.
15.(多選)若函數(shù)f (x)在定義域D內(nèi)的某個區(qū)間I上是單調(diào)遞增函數(shù),且F(x)=在區(qū)間I上也是單調(diào)遞增函數(shù),則稱y=f (x)是I上的“一致遞增函數(shù)”.已知f (x)=x+,若函數(shù)f (x)是區(qū)間I上的“一致遞增函數(shù)”,則區(qū)間I可能是(  )
A.(-∞,-2) B.(-∞,0)
C.(0,+∞) D.(2,+∞)
AD [f (x)=x+,
則f ′(x)=.
F(x)==1+,則F′(x)=,
當(dāng)x∈(-∞,-2)時,f ′(x)=>>0,函數(shù)f (x)單調(diào)遞增,
F′(x)=>0,函數(shù)F(x)單調(diào)遞增,故A滿足;
f ′=<0,故B不滿足;
F′(1)=-e<0,故C不滿足;
當(dāng)x∈(2,+∞)時,f ′(x)=>0,函數(shù)f (x)單調(diào)遞增,F(xiàn)′(x)=>0,函數(shù)F(x)單調(diào)遞增.故D滿足.故選AD.]
16/16(共65張PPT)
第1課時 函數(shù)的單調(diào)性
第五章 一元函數(shù)的導(dǎo)數(shù)及其應(yīng)用
5.3 導(dǎo)數(shù)在研究函數(shù)中的應(yīng)用
5.3.1 函數(shù)的單調(diào)性
整體感知
[學(xué)習(xí)目標(biāo)] 1.理解導(dǎo)數(shù)與函數(shù)的單調(diào)性的關(guān)系.(數(shù)學(xué)抽象)
2.掌握利用導(dǎo)數(shù)判斷函數(shù)單調(diào)性的方法.(數(shù)學(xué)運算)
3.對于多項式函數(shù),能求不超過三次的多項式函數(shù)的單調(diào)區(qū)間.
(教師用書)
如圖為某市一天內(nèi)的氣溫變化圖:
(1)觀察這個氣溫變化圖,說出氣溫在這一天內(nèi)的變化情況.
(2)怎樣用數(shù)學(xué)語言刻畫在這一天內(nèi)“隨著時間的推移,氣溫逐漸升高或下降”這一特征?
問題:觀察圖形,你能得到什么信息?
[討論交流] 
問題1.函數(shù)的單調(diào)性與導(dǎo)數(shù)有什么關(guān)系?
問題2.函數(shù)值變化快慢與導(dǎo)數(shù)有什么關(guān)系?
[自我感知] 經(jīng)過認(rèn)真的預(yù)習(xí),結(jié)合對本節(jié)課的理解和認(rèn)知,請畫出本節(jié)課的知識邏輯體系.
探究建構(gòu)
探究1 利用導(dǎo)數(shù)的正負(fù)判斷單調(diào)性
探究問題1 已知函數(shù):(1)y=2x-1,(2)y=-3x,(3)y=2x,它們的導(dǎo)數(shù)的正負(fù)與它們的單調(diào)性之間有怎樣的關(guān)系?
[提示] (1)y′=2>0,y=2x-1是增函數(shù).
(2)y′=-3<0,y=-3x是減函數(shù).
(3)y′=2x ln 2>0,y=2x是增函數(shù).
探究問題2 如果函數(shù)f (x)在區(qū)間(a,b)內(nèi)有無數(shù)個點滿足f ′(x)>0,能認(rèn)為f (x)在這個區(qū)間內(nèi)單調(diào)遞增嗎?
[提示] 不能,無數(shù)不代表任意,所以有可能在某點處導(dǎo)數(shù)為負(fù).
[新知生成]
函數(shù)的單調(diào)性與其導(dǎo)數(shù)的關(guān)系
定義在區(qū)間(a,b)內(nèi)的函數(shù)y=f (x):
f ′(x)的正負(fù) f (x)的單調(diào)性
f ′(x)>0 單調(diào)遞__
f ′(x)<0 單調(diào)遞__


【教用·微提醒】 (1)f ′(x)>0(f ′(x)<0)是函數(shù)在(a,b)上單調(diào)遞增(遞減)的充分條件.
(2)f ′(x)=0在某個區(qū)間內(nèi)恒成立時,該區(qū)間內(nèi)f (x)為常函數(shù).
【鏈接·教材例題】
例1 利用導(dǎo)數(shù)判斷下列函數(shù)的單調(diào)性:
(1) f (x)=x3+3x;
(2) f (x)=sin x-x,x∈(0,π);
(3) f (x)=.
[解] (1)因為f (x)=x3+3x,所以f ′(x)=3x2+3=3(x2+1)>0.
所以,函數(shù)f (x)=x3+3x在R上單調(diào)遞增,如圖5.3-4(1)所示.
(2)因為f (x)=sin x-x,x∈(0,π),所以
f ′(x)=cos x-1<0.
所以,函數(shù)f (x)=sin x-x在(0,π)內(nèi)單調(diào)遞減,如圖5.3-4(2)所示.
(3)因為f (x)=1-,x∈(-∞,0)∪(0,+∞),所以f ′(x)=>0.
所以,函數(shù)f (x)=在區(qū)間(-∞,0)和(0,+∞)上單調(diào)遞增,
如圖5.3-4(3)所示.
[典例講評] 1.利用導(dǎo)數(shù)判斷下列函數(shù)的單調(diào)性:
(1) f (x)=x3-x2+2x-5;(2)f (x)=x--ln x.
[解] (1)因為f (x)=x3-x2+2x-5,所以f ′(x)=x2-2x+2=(x-1)2+1>0,所以函數(shù)f (x)=x3-x2+2x-5在R上單調(diào)遞增.
(2)因為f (x)=x--ln x,x∈(0,+∞),
所以f ′(x)=1+==>0,所以f (x)=x--ln x在(0,+∞)上單調(diào)遞增.
反思領(lǐng)悟 利用導(dǎo)數(shù)判斷函數(shù)單調(diào)性的步驟
(1)確定函數(shù)的定義域.
(2)求導(dǎo)數(shù)f ′(x).
(3)確定f ′(x)在定義域內(nèi)的符號,在此過程中,需要對導(dǎo)函數(shù)進(jìn)行通分、因式分解等變形.
(4)得出結(jié)論.
[學(xué)以致用] 1.下列函數(shù)在(0,+∞)上單調(diào)遞減的是(  )
A.y=xex      B.y=x3-3x2
C.y=ln x-x   D.y=x-ex

D [當(dāng)x>0時,函數(shù)y=xex的導(dǎo)函數(shù)y′=ex+xex=ex(1+x)>0,故函數(shù)在(0,
+∞)上單調(diào)遞增;函數(shù)y=x3-3x2的導(dǎo)函數(shù)y′=3x2-6x=3x(x-2),故函數(shù)在(0,2)上單調(diào)遞減,在(2,+∞)上單調(diào)遞增;令y=ln x-x的導(dǎo)函數(shù)y′=-1=>0,解得x<1,所以函數(shù)y=ln x-x在(0,1)上單調(diào)遞增,在(1,+∞)上單調(diào)遞減;函數(shù)y=x-ex的導(dǎo)函數(shù)y′=1-ex,在(0,+∞)上y′=1-ex<0,所以y=x-ex在(0,+∞)上單調(diào)遞減.故選D.]
【鏈接·教材例題】
例3 求函數(shù)f (x)=x3-x2-2x+1的單調(diào)區(qū)間.
探究2 利用導(dǎo)數(shù)求函數(shù)的單調(diào)區(qū)間
[解] 函數(shù)f (x)=x3-x2-2x+1的定義域為R.對f (x)求導(dǎo)數(shù),得
f ′(x)=x2-x-2=(x+1)(x-2).
令f ′(x)=0,解得
x=-1,或x=2.
x=-1和x=2把函數(shù)定義域劃分成三個區(qū)間,f ′(x)在各區(qū)間上的正負(fù),以及f (x)的單調(diào)性如表5.3-1所示.
表5.3-1
x (-∞,-1) -1 (-1,2) 2 (2,+∞)
f ′(x) + 0 - 0 +
f (x) 單調(diào) 遞增 f (-1)= 單調(diào) 遞減 f (2)=- 單調(diào)
遞增
所以,f (x)在(-∞,-1)和(2,+∞)上單調(diào)遞增,在(-1,2)內(nèi)單調(diào)遞減,如圖5.3-6所示.
[典例講評] 2.求下列函數(shù)的單調(diào)區(qū)間:
(1)f (x)=x2-ln x;
(2)f (x)=2x3+3x2-36x+1.
[思路導(dǎo)引] 根據(jù)函數(shù)解析式求出函數(shù)的導(dǎo)函數(shù),根據(jù)導(dǎo)函數(shù)的符號確定函數(shù)單調(diào)區(qū)間.
[解] (1)函數(shù)定義域為(0,+∞),且f ′(x)=2x-.
令f ′(x)>0,即2x->0,解得x>;
令f ′(x)<0,即2x-<0,解得0故函數(shù)f (x)的單調(diào)遞增區(qū)間是,單調(diào)遞減區(qū)間是.
(2)f ′(x)=6x2+6x-36=6(x+3)(x-2).
令f ′(x)=0,解得x=-3或x=2,x=-3和x=2把函數(shù)的定義域劃分為三個區(qū)間,f ′(x)在各個區(qū)間上的正負(fù)以及f (x)的單調(diào)性如表,
x (-∞,-3) -3 (-3,2) 2 (2,+∞)
f ′(x) + 0 - 0 +
f (x) 單調(diào)遞增 f (-3) 單調(diào)遞減 f (2) 單調(diào)遞增
故f (x)的單調(diào)遞增區(qū)間是(-∞,-3),(2,+∞),單調(diào)遞減區(qū)間為(-3,2).
【教用·備選題】 求函數(shù)f (x)=x3-2x2+x-1的單調(diào)區(qū)間.
[解] 對函數(shù)求導(dǎo)得f ′(x)=3x2-4x+1.
令f ′(x)=3x2-4x+1>0,則x<或x>1,
因此,函數(shù)f (x)=x3-2x2+x-1在區(qū)間和(1,+∞)上單調(diào)遞增.
令f ′(x)=3x2-4x+1<0,則<x<1,
因此,函數(shù)f (x)=x3-2x2+x-1在區(qū)間上單調(diào)遞減.
反思領(lǐng)悟 利用導(dǎo)數(shù)求函數(shù)單調(diào)區(qū)間的一般步驟
(1)確定函數(shù)y=f (x)的定義域.
(2)求出導(dǎo)數(shù)f ′(x)的零點.
(3)用f ′(x)的零點將f (x)的定義域劃分為若干個區(qū)間,列表給出f ′(x)在各區(qū)間上的正負(fù),進(jìn)而求出單調(diào)區(qū)間.
[學(xué)以致用] 2.求下列函數(shù)的單調(diào)區(qū)間:
(1)f (x)=x2·e-x;(2)f (x)=x+.
[解] (1)函數(shù)的定義域為(-∞,+∞).
∵f ′(x)=(x2)′e-x+x2(e-x)′=2xe-x-x2e-x=e-x(2x-x2),令f ′(x)=0,由于e-x>0,∴x1=0,x2=2,用x1,x2分割定義域,如表所示:
x (-∞,0) 0 (0,2) 2 (2,+∞)
f ′(x) - 0 + 0 -
f (x) 單調(diào)遞減 f (0) 單調(diào)遞增 f (2) 單調(diào)遞減
∴f (x)的單調(diào)遞減區(qū)間為(-∞,0)和(2,+∞),單調(diào)遞增區(qū)間為(0,2).
(2)函數(shù)的定義域為(-∞,0)∪(0,+∞).
∵f ′(x)=1-,令f ′(x)=0,得x1=-1,x2=1,用x1,x2分割定義域,如表所示:
x (-∞,-1) -1 (-1,0) (0,1) 1 (1,+∞)
f ′(x) + 0 - - 0 +
f (x) 單調(diào)遞增 f (-1) 單調(diào)遞減 單調(diào)遞減 f (1) 單調(diào)遞增
∴函數(shù)f (x)的單調(diào)遞減區(qū)間為(-1,0)和(0,1),單調(diào)遞增區(qū)間為(-∞,-1)和(1,+∞).
【鏈接·教材例題】
例2 已知導(dǎo)函數(shù)f ′(x)的下列信息:
當(dāng)1<x<4時,f ′(x)>0;
當(dāng)x<1,或x>4時,f ′(x)<0;
當(dāng)x=1,或x=4時,f ′(x)=0.
試畫出函數(shù)f (x)圖象的大致形狀.
探究3 導(dǎo)函數(shù)與原函數(shù)的關(guān)聯(lián)圖象
[解] 當(dāng)1<x<4時,f ′(x)>0,可知f (x)在區(qū)間(1,4)內(nèi)單調(diào)遞增;
當(dāng)x<1,或x>4時,f ′(x)<0,可知f (x)在區(qū)間(-∞,1)和(4,+∞)上都單調(diào)遞減;
當(dāng)x=1,或x=4時,f ′(x)=0,這兩點比較特殊,
我們稱它們?yōu)椤胺€(wěn)定點”.
綜上,函數(shù)f (x)圖象的大致形狀如圖5.3-5所示.
【鏈接·教材例題】
例4 設(shè)x>0,f (x)=ln x,g(x)=1-,兩個函數(shù)的圖象如圖5.3-8所示.判斷f (x),g(x)的圖象與C1,C2之間的對應(yīng)關(guān)系.
[解] 因為f (x)=ln x,g(x)=1-,所以f ′(x)=,g′(x)=.
當(dāng)x=1時,f ′(x)=g′(x)=1;
當(dāng)0<x<1時,g′(x)>f ′(x)>1;
當(dāng)x>1時,0<g′(x)<f ′(x)<1.
所以,f (x),g(x)在(0,+∞)上都是增函數(shù).在區(qū)間(0,1)內(nèi),g(x)的圖象比f (x)的圖象要“陡峭”;在區(qū)間(1,+∞)上,g(x)的圖象比f (x)的圖象要“平緩”.
所以,f (x),g(x)的圖象依次
是圖5.3-8中的C2,C1.
[典例講評] 3.(1)已知函數(shù)f (x)的導(dǎo)函數(shù)f ′(x)的圖象如圖所示,那么函數(shù)f (x)的圖象最有可能是(  )
A     B    C     D
(2)函數(shù)f (x)的圖象如圖所示,則導(dǎo)函數(shù)f ′(x)的圖象可能為(  )
A         B      C       D


(1)A (2)C [(1)當(dāng)x<-2時,f ′(x)<0,則f (x)單調(diào)遞減;當(dāng)-2<x<0時,f ′(x)>0,則f (x)單調(diào)遞增;當(dāng)x>0時,f ′(x)<0,則f (x)單調(diào)遞減.
則符合上述條件的只有選項A.故選A.
(2)由f (x)的圖象知,當(dāng)x∈(-∞,1)時,f (x)單調(diào)遞減,f ′(x)<0;
當(dāng)x∈(1,4)時,f (x)單調(diào)遞增,f ′(x)>0;
當(dāng)x∈(4,+∞)時,f (x)單調(diào)遞減,f ′(x)<0.
由選項各圖知,選項C符合題意.故選C.]
反思領(lǐng)悟 (1)導(dǎo)函數(shù)的正負(fù)看原函數(shù)的增減.
①觀察原函數(shù)的圖象,重在找出“上升”“下降”產(chǎn)生變化的點,分析函數(shù)值的變化趨勢.
②觀察導(dǎo)函數(shù)的圖象,重在找出導(dǎo)函數(shù)圖象與x軸的交點,分析導(dǎo)數(shù)的正負(fù).
(2)導(dǎo)函數(shù)的絕對值大小決定原函數(shù)增減快慢.
某一范圍內(nèi)導(dǎo)數(shù)的絕對值較大,那么函數(shù)在這個范圍內(nèi)變化得較快,這時函數(shù)的圖象就比較“陡峭”(向上或向下);反之,函數(shù)的圖象就比較“平緩”.
(3)解決問題時,要分清是原函數(shù)圖象還是導(dǎo)函數(shù)圖象.
[學(xué)以致用] 3.設(shè)函數(shù)y=f (x)在定義域內(nèi)可導(dǎo),y=f (x)的圖象如圖所示,則導(dǎo)函數(shù)y=f ′(x)的圖象可能為(  )
A        B      C        D

D [由題中函數(shù)f (x)的圖象可知,函數(shù)f (x)在(-∞,0)上先增后減,所以其對應(yīng)的導(dǎo)函數(shù)符號先正后負(fù),在y軸左側(cè)導(dǎo)函數(shù)的圖象由左上到右下穿過x軸;當(dāng)x∈(0,+∞)時,f (x)單調(diào)遞減,所以x∈(0,+∞)時,f ′(x)<0,只有D選項符合條件.故選D.]
2
4
3
題號
1
應(yīng)用遷移
1.f ′(x)是f (x)的導(dǎo)函數(shù),f ′(x)的圖象如圖所示,則f (x)的圖象只可能是(  )
A        B      C         D

A [由f ′(x)圖象可知f ′(0)=0,f ′(2)=0,f (x)在區(qū)間[0,2]上的增長速度先快后慢,A選項符合.故選A.]
2
3
題號
1
4
2.命題甲:對任意x∈(a,b),有f ′(x)>0;命題乙:f (x)在(a,b)內(nèi)是單調(diào)遞增的,則甲是乙的(  )
A.充分不必要條件 B.必要不充分條件
C.充要條件 D.既不充分也不必要條件

A [例如,f (x)=x3在(-1,1)內(nèi)是單調(diào)遞增的,但f ′(x)=3x2≥0(-1<x<1),故甲是乙的充分不必要條件.故選A.]
2
3
題號
4
1
3.下列函數(shù)中,在(0,+∞)內(nèi)單調(diào)遞增的是(  )
A.y=sin x   B.y=xe2
C.y=x3-x   D.y=ln x-x
B [對于B,y=xe2,則y′=e2,
∴y=xe2在R上為增函數(shù),在(0,+∞)內(nèi)單調(diào)遞增.其他選項可同理逐一求導(dǎo)排除.故選B.]

2
4
3
題號
1
4.函數(shù)y=ln (x2-x-2)的單調(diào)遞減區(qū)間為_____________.
(-∞,-1) [函數(shù)y=ln (x2-x-2)的定義域為(-∞,-1)∪(2,+∞),令f (x)=x2-x-2,f ′(x)=2x-1<0,得x<,
∴函數(shù)y=ln (x2-x-2)的單調(diào)遞減區(qū)間為(-∞,-1).]
(-∞,-1)
1.知識鏈:(1)函數(shù)的單調(diào)性與其導(dǎo)數(shù)的關(guān)系.
(2)利用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性.
(3)利用導(dǎo)數(shù)求函數(shù)的單調(diào)區(qū)間.
(4)原函數(shù)與導(dǎo)函數(shù)圖象的關(guān)系.
2.方法鏈:方程思想、分類討論.
3.警示牌:忽略定義域的限制而出錯.
回顧本節(jié)知識,自主完成以下問題:
1.利用導(dǎo)數(shù)求函數(shù)單調(diào)性的思路是怎樣的?
[提示] 利用導(dǎo)數(shù)求函數(shù)的單調(diào)性一般通過解不等式的方法完成,其步驟為:①確定函數(shù)f (x)的定義域;②求導(dǎo)函數(shù)f ′(x);③解不等式f ′(x)>0(或f ′(x)<0),并寫出解集;④根據(jù)③的結(jié)果確定函數(shù)f (x)的單調(diào)區(qū)間.
2.原函數(shù)圖象與導(dǎo)函數(shù)圖象之間有何關(guān)系?
[提示] 導(dǎo)函數(shù)f ′(x)圖象在x軸上方時對應(yīng)的自變量的取值區(qū)間為原函數(shù)f (x)圖象上升部分對應(yīng)的區(qū)間(單調(diào)遞增區(qū)間),導(dǎo)函數(shù)f ′(x)圖象在x軸下方時對應(yīng)的自變量的取值區(qū)間為原函數(shù)f (x)圖象下降部分對應(yīng)的區(qū)間(單調(diào)遞減區(qū)間).
一、選擇題
1.函數(shù)y=x3-x2-x的單調(diào)遞增區(qū)間為(  )
A.和(1,+∞) B.
C.∪(1,+∞) D.
課時分層作業(yè)(十八) 函數(shù)的單調(diào)性
題號
1
3
5
2
4
6
8
7
9
10
11
12
13

14
15
A [由題意知,y′=3x2-2x-1(x∈R).由y′>0可解得x<-或x>1,∴函數(shù)的單調(diào)遞增區(qū)間為和(1,+∞).故選A.]
題號
2
1
3
4
5
6
8
7
9
10
11
12
13
2.函數(shù)y=x ln x在(0,5)上的單調(diào)性是(  )
A.單調(diào)遞增
B.單調(diào)遞減
C.在上單調(diào)遞減,在上單調(diào)遞增
D.在上單調(diào)遞增,在上單調(diào)遞減

14
15
C [由已知得函數(shù)y=x ln x的定義域為(0,+∞).
y′=ln x+1,令y′>0,得x>;令y′<0,得0<x<.∴函數(shù)y=x ln x在上單調(diào)遞減,在上單調(diào)遞增.]
A        B      C         D
題號
3
2
4
5
6
8
7
9
10
11
12
13
1
3.設(shè)函數(shù)f (x)在定義域內(nèi)可導(dǎo),y=f (x)的圖象如圖所示,則導(dǎo)函數(shù)y=f ′(x)的圖象可能為(  )

14
15
題號
3
2
4
5
6
8
7
9
10
11
12
13
1
14
15
D [觀察函數(shù)f (x)的圖象得:f (x)在(-∞,0)上單調(diào)遞增,在(0,
+∞)上先單調(diào)遞增,再單調(diào)遞減,后又單調(diào)遞增,則當(dāng)x∈(-∞,0)時,f ′(x)>0,即當(dāng)x∈(-∞,0)時,函數(shù)y=f ′(x)的圖象在x軸上方,于是排除A,C.當(dāng)x∈(0,+∞)時,f ′(x)的值先大于0,接著變?yōu)樾∮?,之后又變?yōu)榇笥?,即當(dāng)x∈(0,+∞)時,函數(shù)y=f ′(x)的圖象先在x軸上方,接著變化到x軸下方,最后又變到x軸上方,于是排除B,選項D相符.故選D.]
題號
4
2
3
5
6
8
7
9
10
11
12
13
1
4.(多選)下列函數(shù)在定義域上為增函數(shù)的有(  )
A.f (x)=x-   B.f (x)=xex
C.f (x)=x+sin x   D.f (x)=ex-e-x-2x

14
15

題號
4
2
3
5
6
8
7
9
10
11
12
13
1
14
15
CD [根據(jù)題意,依次分析選項.對于A,f (x)=x-,有f (-1)=
f (1)=0,則f (x)在其定義域上不是單調(diào)函數(shù),不符合題意;對于B,f (x)=xex,其導(dǎo)數(shù)f ′(x)=xex+ex=(x+1)ex,在區(qū)間(-∞,-1)上,
f ′(x)<0,則f (x)單調(diào)遞減,不符合題意;對于C,f (x)=x+sin x,其導(dǎo)數(shù)f ′(x)=1+cos x≥0,則f (x)在定義域上為增函數(shù),符合題意;對于D,f (x)=ex-e-x-2x,其導(dǎo)數(shù)f ′(x)=ex+e-x-2≥0,則f (x)在定義域上為增函數(shù),符合題意.故選CD.]
題號
2
4
5
3
6
8
7
9
10
11
12
13
1
5.(多選)函數(shù)f (x)=(x-3)ex在下列區(qū)間上單調(diào)遞增的是(  )
A.(-∞,2)   B.(0,3)
C.(3,4)   D.(2,+∞)

14
15
CD [∵f ′(x)=ex+(x-3)ex=(x-2)ex,
由f ′(x)>0,得(x-2)ex>0,∴x>2.
∴f (x)的單調(diào)遞增區(qū)間為(2,+∞),CD符合.]

題號
2
4
5
3
6
8
7
9
10
11
12
13
1
二、填空題
6.已知函數(shù)f (x)的導(dǎo)函數(shù)y=f ′(x)的圖象如圖所示,則函數(shù)f (x)的單調(diào)遞增區(qū)間是_________________________.
14
15
(-1,2),(4,+∞)
題號
2
4
5
3
6
8
7
9
10
11
12
13
1
14
15
(-1,2),(4,+∞) [由題圖可知,在區(qū)間(-1,2),(4,+∞)上,f ′(x)>0;在區(qū)間(-∞,-1),(2,4)上,f ′(x)<0.
由導(dǎo)函數(shù)的正負(fù)與函數(shù)單調(diào)性的關(guān)系可得,函數(shù)f (x)的單調(diào)遞增區(qū)間是(-1,2),(4,+∞).]
題號
2
4
5
3
7
6
8
9
10
11
12
13
1
7.已知m是實數(shù),函數(shù)f (x)=x2(x-m),若f ′(-1)=-1,則函數(shù)f (x)的單調(diào)遞減區(qū)間是____________.
14
15
 [f ′(x)=2x(x-m)+x2,因為f ′(-1)=-1,所以-2(-1-m)+1=-1,解得m=-2,令f ′(x)=2x(x+2)+x2<0,解得-<x<0,則函數(shù)f (x)的單調(diào)遞減區(qū)間是.]
題號
2
4
5
3
8
6
7
9
10
11
12
13
1
8.函數(shù)f (x)=x2-5x+2ln (2x)的單調(diào)遞增區(qū)間是_______________.
14
15
,(2,+∞) [f (x)的定義域是(0,+∞),f ′(x)=,由f ′(x)>0,得x>2或0<x<,故f (x)的單調(diào)遞增區(qū)間是,(2,+∞).]
,(2,+∞)
題號
9
2
4
5
3
8
6
7
10
11
12
13
1
三、解答題
9.已知導(dǎo)函數(shù)f ′(x)的下列信息:
當(dāng)2<x<3時,f ′(x)<0;
當(dāng)x>3或x<2時,f ′(x)>0;
當(dāng)x=3或x=2時,f ′(x)=0;
試畫出函數(shù)f (x)圖象的大致形狀.
14
15
題號
9
2
4
5
3
8
6
7
10
11
12
13
1
[解] 當(dāng)2<x<3時,f ′(x)<0,可知函數(shù)在此區(qū)間上單調(diào)遞減;
當(dāng)x>3或x<2時,f ′(x)>0,可知函數(shù)在這兩個區(qū)間上單調(diào)遞增;
當(dāng)x=3或x=2時,f ′(x)=0,可知在這兩點處的兩側(cè),函數(shù)單調(diào)性發(fā)生改變.
綜上可畫出函數(shù)f (x)圖象的大致形狀,如圖所示(答案不唯一).
14
15
題號
9
2
4
5
3
8
6
7
10
11
12
13
1
10.函數(shù)f (x)=x3+ax2+bx+c,其中a,b,c為實數(shù),當(dāng)a2-3b<0時,f (x)是(  )
A.增函數(shù) B.減函數(shù)
C.常數(shù)函數(shù) D.既不是增函數(shù)也不是減函數(shù)

14
15
A [求得函數(shù)的導(dǎo)函數(shù)f ′(x)=3x2+2ax+b,導(dǎo)函數(shù)對應(yīng)方程f ′(x)=0的Δ=4(a2-3b)<0,所以f ′(x)>0恒成立,故f (x)是增函數(shù).]
題號
9
2
4
5
3
8
6
7
10
11
12
13
1
11.(多選)已知函數(shù)f (x)=(x2-4x+1)ex,則函數(shù)f (x)在下列區(qū)間上單調(diào)遞增的是(  )
A.(-1,0)   B.(-2,-1)
C.(-1,3)   D.(3,4)

14
15
BD [f ′(x)=(2x-4)ex+(x2-4x+1)ex=(x2-2x-3)ex,令f ′(x)>0,可得x2-2x-3>0,解得x<-1或x>3,所以f (x)的單調(diào)遞增區(qū)間是(-∞,-1),(3,+∞),所以f (x)在(-2,-1)與(3,4)上單調(diào)遞增.故選BD.]

12.已知函數(shù)f (x)=2x-ln |x|,則f (x)的大致圖象為(  )
A     B      C     D
題號
9
2
4
5
3
8
6
7
10
11
12
13
1

14
15
題號
9
2
4
5
3
8
6
7
10
11
12
13
1
A [當(dāng)x<0時,f (x)=2x-ln (-x),f ′(x)=2-·(-1)=2->0,所以f (x)在(-∞,0)上單調(diào)遞增,則B,D錯誤;
當(dāng)x>0時,f (x)=2x-ln x,f ′(x)=2-=,則f (x)在上單調(diào)遞減,在上單調(diào)遞增,所以A正確,故選A.]
14
15
題號
9
2
4
5
3
8
6
7
10
11
12
13
1
13.函數(shù)f (x)=e2x-2(x+2)的單調(diào)遞增區(qū)間為___________.
14
15
(0,+∞) [f (x)=e2x-2x-4,求導(dǎo)得f ′(x)=2e2x-2,令f ′(x)>0,解得x∈(0,+∞),所以f (x)的單調(diào)遞增區(qū)間為(0,+∞).]
(0,+∞)
題號
9
2
4
5
3
8
6
7
10
11
12
13
1
14.已知函數(shù)f (x)=-1.
(1)求函數(shù)在點(1,f (1))處的切線方程;
(2)試判斷函數(shù)f (x)的單調(diào)性.
14
15
題號
9
2
4
5
3
8
6
7
10
11
12
13
1
[解] (1)由題可知,f ′(x)=,所以f ′(1)=1,f (1)=-1.
∴函數(shù)在點(1,f (1))處的切線方程為y-(-1)=x-1,即y=x-2.
(2)因為函數(shù)的定義域為(0,+∞)且f ′(x)=,
令f ′(x)=>0,得0<x<e,令f ′(x)=<0,得x>e,
因此函數(shù)f (x)在區(qū)間(0,e)上單調(diào)遞增,在(e,+∞)上單調(diào)遞減
14
15
題號
9
2
4
5
3
8
6
7
10
11
12
13
1
15.(多選)若函數(shù)f (x)在定義域D內(nèi)的某個區(qū)間I上是單調(diào)遞增函數(shù),且F(x)=在區(qū)間I上也是單調(diào)遞增函數(shù),則稱y=f (x)是I上的“一致遞增函數(shù)”.已知f (x)=x+,若函數(shù)f (x)是區(qū)間I上的“一致遞增函數(shù)”,則區(qū)間I可能是(  )
A.(-∞,-2)   B.(-∞,0)
C.(0,+∞)   D.(2,+∞)
14
15


題號
9
2
4
5
3
8
6
7
10
11
12
13
1
AD [f (x)=x+,
則f ′(x)=.
F(x)==1+,則F′(x)=,
當(dāng)x∈(-∞,-2)時,f ′(x)=>>0,函數(shù)f (x)單調(diào)遞增,
F′(x)=>0,函數(shù)F(x)單調(diào)遞增,故A滿足;
14
15
題號
9
2
4
5
3
8
6
7
10
11
12
13
1
f ′=<0,故B不滿足;
F′(1)=-e<0,故C不滿足;
當(dāng)x∈(2,+∞)時,f ′(x)=>0,函數(shù)f (x)單調(diào)遞增,F(xiàn)′(x)=>0,函數(shù)F(x)單調(diào)遞增.故D滿足.故選AD.]
14
15
THANKS5.3 導(dǎo)數(shù)在研究函數(shù)中的應(yīng)用
5.3.1 函數(shù)的單調(diào)性
第1課時 函數(shù)的單調(diào)性
[學(xué)習(xí)目標(biāo)] 1.理解導(dǎo)數(shù)與函數(shù)的單調(diào)性的關(guān)系.(數(shù)學(xué)抽象)
2.掌握利用導(dǎo)數(shù)判斷函數(shù)單調(diào)性的方法.(數(shù)學(xué)運算)
3.對于多項式函數(shù),能求不超過三次的多項式函數(shù)的單調(diào)區(qū)間.
[討論交流] 
問題1.函數(shù)的單調(diào)性與導(dǎo)數(shù)有什么關(guān)系?
問題2.函數(shù)值變化快慢與導(dǎo)數(shù)有什么關(guān)系?
[自我感知] 經(jīng)過認(rèn)真的預(yù)習(xí),結(jié)合對本節(jié)課的理解和認(rèn)知,請畫出本節(jié)課的知識邏輯體系.
探究1 利用導(dǎo)數(shù)的正負(fù)判斷單調(diào)性
探究問題1 已知函數(shù):(1)y=2x-1,(2)y=-3x,(3)y=2x,它們的導(dǎo)數(shù)的正負(fù)與它們的單調(diào)性之間有怎樣的關(guān)系?
                                  
                                  
                                  
探究問題2 如果函數(shù)f (x)在區(qū)間(a,b)內(nèi)有無數(shù)個點滿足f ′(x)>0,能認(rèn)為f (x)在這個區(qū)間內(nèi)單調(diào)遞增嗎?
                                  
                                  
                                  
[新知生成]
函數(shù)的單調(diào)性與其導(dǎo)數(shù)的關(guān)系
定義在區(qū)間(a,b)內(nèi)的函數(shù)y=f (x):
f ′(x)的正負(fù) f (x)的單調(diào)性
f ′(x)>0 單調(diào)遞________
f ′(x)<0 單調(diào)遞________
[典例講評] 1.利用導(dǎo)數(shù)判斷下列函數(shù)的單調(diào)性:
(1)f (x)=x3-x2+2x-5;
(2)f (x)=x--ln x.
[嘗試解答]                              
                                  
                                  
                                  
                                  
                                  
 利用導(dǎo)數(shù)判斷函數(shù)單調(diào)性的步驟
(1)確定函數(shù)的定義域.
(2)求導(dǎo)數(shù)f ′(x).
(3)確定f ′(x)在定義域內(nèi)的符號,在此過程中,需要對導(dǎo)函數(shù)進(jìn)行通分、因式分解等變形.
(4)得出結(jié)論.
[學(xué)以致用] 1.下列函數(shù)在(0,+∞)上單調(diào)遞減的是(  )
A.y=xex      B.y=x3-3x2
C.y=ln x-x D.y=x-ex
探究2 利用導(dǎo)數(shù)求函數(shù)的單調(diào)區(qū)間
[典例講評] 2.求下列函數(shù)的單調(diào)區(qū)間:
(1)f (x)=x2-ln x;
(2)f (x)=2x3+3x2-36x+1.
[思路導(dǎo)引] 根據(jù)函數(shù)解析式求出函數(shù)的導(dǎo)函數(shù),根據(jù)導(dǎo)函數(shù)的符號確定函數(shù)單調(diào)區(qū)間.
[嘗試解答]                              
                                  
                                  
                                  
                                  
                                  
 利用導(dǎo)數(shù)求函數(shù)單調(diào)區(qū)間的一般步驟
(1)確定函數(shù)y=f (x)的定義域.
(2)求出導(dǎo)數(shù)f ′(x)的零點.
(3)用f ′(x)的零點將f (x)的定義域劃分為若干個區(qū)間,列表給出f ′(x)在各區(qū)間上的正負(fù),進(jìn)而求出單調(diào)區(qū)間.
[學(xué)以致用] 2.求下列函數(shù)的單調(diào)區(qū)間:
(1)f (x)=x2·e-x;
(2)f (x)=x+.
                                  
                                  
                                  
                                  
                                  
探究3 導(dǎo)函數(shù)與原函數(shù)的關(guān)聯(lián)圖象
[典例講評] 3.(1)已知函數(shù)f (x)的導(dǎo)函數(shù)f ′(x)的圖象如圖所示,那么函數(shù)f (x)的圖象最有可能是(  )
A     B     C     D
(2)函數(shù)f (x)的圖象如圖所示,則導(dǎo)函數(shù)f ′(x)的圖象可能為(  )
A         B
C         D
[嘗試解答]                              
                                  
                                  
                                  
                                  
 (1)導(dǎo)函數(shù)的正負(fù)看原函數(shù)的增減.
①觀察原函數(shù)的圖象,重在找出“上升”“下降”產(chǎn)生變化的點,分析函數(shù)值的變化趨勢.
②觀察導(dǎo)函數(shù)的圖象,重在找出導(dǎo)函數(shù)圖象與x軸的交點,分析導(dǎo)數(shù)的正負(fù).
(2)導(dǎo)函數(shù)的絕對值大小決定原函數(shù)增減快慢.
某一范圍內(nèi)導(dǎo)數(shù)的絕對值較大,那么函數(shù)在這個范圍內(nèi)變化得較快,這時函數(shù)的圖象就比較“陡峭”(向上或向下);反之,函數(shù)的圖象就比較“平緩”.
(3)解決問題時,要分清是原函數(shù)圖象還是導(dǎo)函數(shù)圖象.
[學(xué)以致用] 3.設(shè)函數(shù)y=f (x)在定義域內(nèi)可導(dǎo),y=f (x)的圖象如圖所示,則導(dǎo)函數(shù)y=f ′(x)的圖象可能為(  )
A        B
C        D
1.f ′(x)是f (x)的導(dǎo)函數(shù),f ′(x)的圖象如圖所示,則f (x)的圖象只可能是(  )
A          B
C          D
2.命題甲:對任意x∈(a,b),有f ′(x)>0;命題乙:f (x)在(a,b)內(nèi)是單調(diào)遞增的,則甲是乙的(  )
A.充分不必要條件
B.必要不充分條件
C.充要條件
D.既不充分也不必要條件
3.下列函數(shù)中,在(0,+∞)內(nèi)單調(diào)遞增的是(  )
A.y=sin x B.y=xe2
C.y=x3-x D.y=ln x-x
4.函數(shù)y=ln (x2-x-2)的單調(diào)遞減區(qū)間為________.
1.知識鏈:(1)函數(shù)的單調(diào)性與其導(dǎo)數(shù)的關(guān)系.
(2)利用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性.
(3)利用導(dǎo)數(shù)求函數(shù)的單調(diào)區(qū)間.
(4)原函數(shù)與導(dǎo)函數(shù)圖象的關(guān)系.
2.方法鏈:方程思想、分類討論.
3.警示牌:忽略定義域的限制而出錯.
6/6(共59張PPT)
第2課時 函數(shù)單調(diào)性的應(yīng)用
第五章 一元函數(shù)的導(dǎo)數(shù)及其應(yīng)用
5.3 導(dǎo)數(shù)在研究函數(shù)中的應(yīng)用
5.3.1 函數(shù)的單調(diào)性
整體感知
[學(xué)習(xí)目標(biāo)] 1.進(jìn)一步理解函數(shù)的導(dǎo)數(shù)和其單調(diào)性的關(guān)系.(數(shù)學(xué)運算)
2.能求簡單的含參的函數(shù)的單調(diào)區(qū)間以及根據(jù)函數(shù)的單調(diào)性求參數(shù)的取值范圍.(數(shù)學(xué)運算)
(教師用書)
請大家解這樣一個關(guān)于x的一元一次不等式:ax-2>0,根據(jù)不等式的性質(zhì)可知,我們無法直接進(jìn)行求解,它依賴于a的符號,于是我們分類討論進(jìn)行求解如下:當(dāng)a>0時,得x>;當(dāng)a=0時,x無解;當(dāng)a<0時,得x<,參數(shù)的存在不僅對解不等式有影響,對于一些函數(shù)的單調(diào)性也有影響,如何解答含參函數(shù)的單調(diào)性問題,今天我們就來探究一下.
[討論交流] 
問題1.若函數(shù)f (x)為可導(dǎo)函數(shù),且在區(qū)間(a,b)上單調(diào)遞增(或遞減),則f ′(x)滿足什么條件?
問題2.對于函數(shù)y=f (x),f ′(x)≥0是f (x)為增函數(shù)的充要條件嗎?
[自我感知] 經(jīng)過認(rèn)真的預(yù)習(xí),結(jié)合對本節(jié)課的理解和認(rèn)知,請畫出本節(jié)課的知識邏輯體系.
探究建構(gòu)
探究1 討論含參函數(shù)的單調(diào)性
[典例講評] 1.已知函數(shù)f (x)=ln x-ax2+(1-a)x+a(a∈R),判斷函數(shù)f (x)的單調(diào)性.
[解] 函數(shù)f (x)的定義域為(0,+∞),
f ′(x)=-ax+1-a==.
當(dāng)a≤0時,f ′(x)>0,函數(shù)f (x)在(0,+∞)上單調(diào)遞增.
當(dāng)a>0時,令f ′(x)>0,解得0<x<,則f (x)在上單調(diào)遞增;
令f ′(x)<0,解得x>,則f (x)在上單調(diào)遞減.
綜上,當(dāng)a≤0時,函數(shù)f (x)在(0,+∞)上單調(diào)遞增;當(dāng)a>0時,函數(shù)f (x)在上單調(diào)遞增,在上單調(diào)遞減.
反思領(lǐng)悟 (1)研究含參數(shù)的函數(shù)的單調(diào)性,要依據(jù)參數(shù)對不等式解集的影響進(jìn)行分類討論.
(2)劃分函數(shù)的單調(diào)區(qū)間時,要在函數(shù)的定義域內(nèi)討論,還要確定導(dǎo)數(shù)為0的點和函數(shù)的間斷點.
【教用·備選題】 已知函數(shù)f (x)=x3+ax2-3a2x+1(a≤0).試求函數(shù)f (x)的單調(diào)區(qū)間.
[解] f ′(x)=x2+2ax-3a2=(x+3a)(x-a),且x∈(-∞,+∞).
當(dāng)a=0時,f ′(x)=x2≥0,此時f (x)在(-∞,+∞)上單調(diào)遞增.
當(dāng)a<0,x∈(-∞,a)時,f ′(x)>0,此時f (x)單調(diào)遞增;
x∈(a,-3a)時,f ′(x)<0,此時f (x)單調(diào)遞減;
x∈(-3a,+∞)時,f ′(x)>0,此時f (x)單調(diào)遞增.
綜上,當(dāng)a=0時,函數(shù)f (x)的單調(diào)遞增區(qū)間為(-∞,+∞),無單調(diào)遞減區(qū)間;
當(dāng)a<0時,函數(shù)f (x)的單調(diào)遞增區(qū)間為(-∞,a),(-3a,+∞);
函數(shù)f (x)的單調(diào)遞減區(qū)間為(a,-3a).
[學(xué)以致用] 1.求函數(shù)f (x)=+a ln x(a∈R)的單調(diào)遞減區(qū)間.
[解] 易得函數(shù)f (x)的定義域是(0,+∞),
f ′(x)=-=.
①當(dāng)a≤0時,f ′(x)<0在(0,+∞)上恒成立,
故f (x)在(0,+∞)上單調(diào)遞減.
②當(dāng)a>0時,若0<x<,則f ′(x)<0;
若x>,則f ′(x)>0,
所以f (x)在上單調(diào)遞減,在上單調(diào)遞增.
綜上可知,當(dāng)a≤0時,f (x)的單調(diào)遞減區(qū)間為(0,+∞),當(dāng)a>0時,f (x)的單調(diào)遞減區(qū)間為.
探究2 根據(jù)函數(shù)的單調(diào)性求參數(shù)的取值范圍
探究問題1 如果函數(shù)y=f (x)在區(qū)間(a,b)內(nèi)單調(diào)遞增,則f ′(x)有什么特點?
[提示] f ′(x)≥0,但f ′(x)不可以恒為0.
探究問題2 如果函數(shù)y=f (x)在區(qū)間(a,b)內(nèi)存在單調(diào)遞增區(qū)間,則
f ′(x)有什么特點?
[提示] f ′(x)>0有解.
[新知生成]
導(dǎo)數(shù)的符號與函數(shù)單調(diào)性的關(guān)系
(1)在某區(qū)間D上,若f ′(x)>0 函數(shù)f (x)在D上________;在某區(qū)間D上,若f ′(x)<0 函數(shù)f (x)在D上________.
(2)若函數(shù)f (x)在D上單調(diào)遞增 f ′(x)≥0;若函數(shù)f (x)在D上單調(diào)遞減 _________.需要檢驗f ′(x)=0不能恒成立.
(3)若函數(shù)f (x)在D上存在單調(diào)遞增區(qū)間 f ′(x)>0有解.
若函數(shù)f (x)在D上存在單調(diào)遞減區(qū)間 ______________.
單調(diào)遞增
單調(diào)遞減
f ′(x)≤0
f ′(x)<0有解
【教用·微提醒】 (1)單調(diào)區(qū)間可以寫成閉區(qū)間,我們習(xí)慣上寫成開區(qū)間.
(2)注意以下區(qū)別:若單調(diào)遞增,則f ′(x)≥0恒成立;若存在單調(diào)遞增區(qū)間,則f ′(x)>0能成立.
[典例講評] 2.已知函數(shù)f (x)=x3-ax-1為增函數(shù),求實數(shù)a的取值范圍.
[思路導(dǎo)引] →→
[解] 由已知得f ′(x)=3x2-a,
因為f (x)在R上是增函數(shù),
所以f ′(x)=3x2-a≥0在R上恒成立,
即a≤3x2對x∈R恒成立.因為3x2≥0,所以只需a≤0.又因為a=0時,f ′(x)=3x2≥0且不恒為0,f (x)=x3-1在R上是增函數(shù),所以a≤0.
[母題探究] 
1.若函數(shù)f (x)=x3-ax-1的單調(diào)遞減區(qū)間為(-1,1),求a的值.
[解] 由題意得f ′(x)=3x2-a,函數(shù)f (x)的定義域為R.
①當(dāng)a≤0時,f ′(x)≥0,
∴f (x)在R上為增函數(shù),與已知矛盾,不符合題意.
②當(dāng)a>0時,令3x2-a=0,得x=±,
當(dāng)-<x<時,f ′(x)<0.∴f (x)在上單調(diào)遞減,
∴f (x)的單調(diào)遞減區(qū)間為,
又函數(shù)f (x)=x3-ax-1的單調(diào)遞減區(qū)間為(-1,1),∴=1,即a=3.
2.若函數(shù)f (x)=x3-ax-1在(-1,1)上單調(diào)遞減,求a的取值范圍.
[解] 由題意可知f ′(x)=3x2-a≤0在(-1,1)上恒成立,∴即
∴a≥3.即a的取值范圍是[3,+∞).
3.若函數(shù)f (x)=x3-ax-1在(-1,1)上不單調(diào),求a的取值范圍.
[解] ∵f (x)=x3-ax-1,∴f ′(x)=3x2-a,
由題意可知a>0,由f ′(x)=0,得x=±(a>0).
∵f (x)在區(qū)間(-1,1)上不單調(diào),∴0<<1,即0<a<3.
故a的取值范圍為(0,3).
發(fā)現(xiàn)規(guī)律 利用函數(shù)的單調(diào)性求參數(shù),常用方法如下:
1 函數(shù)f (x)在區(qū)間D上單調(diào)遞增 ___________在區(qū)間D上恒成立
2 函數(shù)f (x)在區(qū)間D上單調(diào)遞減 ___________在區(qū)間D上恒成立
3 函數(shù)f (x)在區(qū)間D上不單調(diào) f ′(x)在區(qū)間D上存在變號____
f ′(x)≥0
f ′(x)≤0
零點
4 函數(shù)f (x)在區(qū)間D上存在單調(diào)遞增區(qū)間 x0∈D,使得___________成立
5 函數(shù)f (x)在區(qū)間D上存在單調(diào)遞減區(qū)間 x0∈D,使得___________成立
6 若已知f (x)在區(qū)間D上的單調(diào)性,區(qū)間D上含有參數(shù)時,可先求出
f (x)的單調(diào)區(qū)間,令D是其單調(diào)區(qū)間的________,從而求出參數(shù)的取值范圍
f ′(x0)>0
f ′(x0)<0
非空子集
[學(xué)以致用] 2.已知a∈R,函數(shù)f (x)=x3-6x2+3(4-a)x.
(1)若曲線y=f (x)在點(3,f (3))處的切線與直線x-3y=0垂直,求a的值;
(2)若函數(shù)f (x)在區(qū)間(1,4)上單調(diào)遞減,求a的取值范圍.
[解] (1)因為f ′(x)=3x2-12x+12-3a,所以曲線y=f (x)在點(3,
f (3))處的切線斜率k=f ′(3)=27-36+12-3a=3-3a.而直線x-3y=0的斜率為,則3-3a=-3,解得a=2.
(2)由f (x)在(1,4)上單調(diào)遞減,得f ′(x)=3x2-12x+12-3a≤0在(1,4)上恒成立,即a≥x2-4x+4在(1,4)上恒成立.又x∈(1,4)時,y=x2-4x+4<4,所以a≥4,所以a的取值范圍是[4,+∞).
探究3 根據(jù)函數(shù)的單調(diào)性比較大小或解不等式
[典例講評] 3.(1)函數(shù)f (x)=sin x+2xf ′,f ′(x)為f (x)的導(dǎo)函數(shù),令a=,b=log32,則下列關(guān)系正確的是(  )
A.f (a)<f (b)   B.f (a)>f (b)
C.f (a)=f (b)   D.f (a)≤f (b)

(2)已知函數(shù)f (x)的定義域為R,f ′(x)為f (x)的導(dǎo)函數(shù),函數(shù)y=f ′(x)的圖象如圖所示,且f (-2)=1,f (3)=1,則不等式f (x2-6)>1的解集是(  )
A.(-3,-2)∪(2,3)
B.(-)
C.(2,3)
D.(-∞,-)∪(,+∞)

(1)B (2)A [(1)由題意得f ′(x)=cos x+2f ′,f ′=cos +
2f ′,
解得f ′=-,所以f (x)=sin x-x,
所以f ′(x)=cos x-1≤0,所以f (x)為減函數(shù).
因為b=log32>log3==a,
所以f (a)>f (b).故選B.
(2)由y=f ′(x)的圖象知,函數(shù)f (x)在(-∞,0)上單調(diào)遞增,在(0,
+∞)上單調(diào)遞減,且f (-2)=1,f (3)=1,則不等式f (x2-6)>1可轉(zhuǎn)化為-2<x2-6<3,
解得2<x<3或-3<x<-2.故選A.]
反思領(lǐng)悟 (1)在比較兩數(shù)(式)的大小關(guān)系時,首先要判斷所給函數(shù)的單調(diào)性,再根據(jù)函數(shù)的單調(diào)性比較大小.
(2)在解一些不等式時,先判斷函數(shù)的單調(diào)性,再利用單調(diào)性脫去f,即可得到變量的大小關(guān)系.
[學(xué)以致用] 3.(1)設(shè)函數(shù)f (x)=2x+sin x,則(  )
A.f (1)>f (2)   B.f (1)<f (2)
C.f (1)=f (2)   D.以上都不正確
(2)已知f (x)是定義在R上的偶函數(shù)且連續(xù),當(dāng)x>0時,f ′(x)<0,若
f (lg x)>f (1),則x的取值范圍是________.

(1)B (2) [(1)f ′(x)=2+cos x>0,
故f (x)是R上的增函數(shù),故f (1)<f (2).故選B.
(2)由題設(shè)知,當(dāng)x>0時,f (x)單調(diào)遞減;
當(dāng)x<0時,f (x)單調(diào)遞增,
∴f (lg x)>f (1) |lg x|<1 -1<lg x<1 <x<10.]
2
4
3
題號
1
應(yīng)用遷移

B [由題意可得,f ′(x)=sin x+a≥0恒成立,故a≥-sin x恒成立,因為-1≤-sin x≤1,所以a≥1.故選B.]
1.若函數(shù)f (x)=-cos x+ax為增函數(shù),則實數(shù)a的取值范圍為(  )
A.[-1,+∞)   B.[1,+∞)
C.(-1,+∞)   D.(1,+∞)
2
3
題號
1
4
2.已知函數(shù)f (x)=+ln x,則下列選項正確的是(  )
A.f (e)<f (π)<f (2.7)   B.f (π)<f (e)<f (2.7)
C.f (e)<f (2.7)<f (π)   D.f (2.7)<f (e)<f (π)

D [因為函數(shù)f (x)=+ln x(x>0),所以f ′(x)=>0,所以函數(shù)f (x)在(0,+∞)上單調(diào)遞增.又因為2.7<e<π,所以f (2.7)<f (e)<f (π).故選D.]
2
3
題號
4
1
3.函數(shù)f (x)=x3-mx2+m-2的單調(diào)遞減區(qū)間為(0,3),則m=________.
 [令f ′(x)=3x2-2mx=0,解得x=0或x=m,所以m=3,解得m=.]
2
4
3
題號
1
4.函數(shù)f (x)的圖象如圖所示,f ′(x)為函數(shù)f (x)的導(dǎo)函數(shù),則不等式<0的解集為___________________.
(-3,-1)∪(0,1) [由題圖知,當(dāng)x∈(-∞,-3)∪(-1,1)時,f ′(x)<0;
當(dāng)x∈(-3,-1)∪(1,+∞)時,f ′(x)>0,故不等式<0的解集為(-3,-1)∪(0,1).]
(-3,-1)∪(0,1)
1.知識鏈:(1)求含參函數(shù)的單調(diào)區(qū)間.
(2)由單調(diào)性求參數(shù)的取值范圍.
(3)函數(shù)單調(diào)性的應(yīng)用.
2.方法鏈:分類討論、數(shù)形結(jié)合.
3.警示牌:求參數(shù)的取值范圍時容易忽略對端點值的討論.
回顧本節(jié)知識,自主完成以下問題:
1.利用導(dǎo)數(shù)研究含參數(shù)函數(shù)的單調(diào)性,一般有哪幾種情況?如何解決這幾種情況?
[提示] 利用導(dǎo)數(shù)研究含參數(shù)函數(shù)的單調(diào)性時,常遇到三種情況:
①區(qū)間端點大小不確定型
由于函數(shù)導(dǎo)數(shù)不等式中的區(qū)間端點大小不定,因此需根據(jù)區(qū)間端點的大小確定參數(shù)的范圍,再分類討論函數(shù)的單調(diào)區(qū)間.
②區(qū)間端點與定義域關(guān)系不確定型
此類問題一般會有定義域限制,解函數(shù)導(dǎo)數(shù)不等式的區(qū)間端點含參數(shù),此端點與函數(shù)定義域的端點大小不確定,因此需分類討論.
③最高次項系數(shù)不確定型
此類問題一般要對最高次項的系數(shù)a,分a>0,a=0,a<0進(jìn)行討論.
2.總結(jié)由函數(shù)的單調(diào)性求參數(shù)的取值范圍的方法有哪幾種?
[提示] ①可導(dǎo)函數(shù)在區(qū)間(a,b)上單調(diào),實際上就是在該區(qū)間上f ′(x)≥0(或
f ′(x)≤0)恒成立,得到關(guān)于參數(shù)的不等式,根據(jù)已知條件,求出參數(shù)的取值范圍,但最后要注意檢驗.
②可導(dǎo)函數(shù)在區(qū)間(a,b)上存在單調(diào)區(qū)間,實際上就是f ′(x)>0(或f ′(x)<0)在區(qū)間(a,b)上存在解集,從而轉(zhuǎn)化為不等式問題,求出參數(shù)的取值范圍.
③若已知f (x)在區(qū)間I上的單調(diào)性,且區(qū)間I含有參數(shù)時,可先求出f ′(x)為正或負(fù)時的區(qū)間,令I(lǐng)是f (x)的單調(diào)區(qū)間的非空子集,從而求出參數(shù)的取值范圍.
課時分層作業(yè)(十九) 函數(shù)單調(diào)性的應(yīng)用
題號
1
3
5
2
4
6
8
7
9
10
11
12
13

14
15
一、選擇題
1.若函數(shù)y=x3+x2+mx+2(m∈R)是R上的單調(diào)函數(shù),則m的取值范圍是(  )
A.(-∞,1)   B.(-∞,1]
C.(1,+∞)   D.[1,+∞)
題號
1
3
5
2
4
6
8
7
9
10
11
12
13
14
15
D [函數(shù)y=x3+x2+mx+2是R上的單調(diào)函數(shù),即y′=x2+2x+m≥0(y′=x2+2x+m≤0舍去)在R上恒成立,
所以Δ=4-4m≤0,解得m≥1.故選D.]
題號
2
1
3
4
5
6
8
7
9
10
11
12
13
2.(多選)已知定義在R上的函數(shù)f (x),其導(dǎo)函數(shù)y=f ′(x)的大致圖象如圖所示,則下列結(jié)論一定正確的是(  )
A.f (b)>f (a)  
B.f (d)>f (e)
C.f (a)>f (d)  
D.f (c)>f (e)

14
15


題號
2
1
3
4
5
6
8
7
9
10
11
12
13
14
15
ABD [由題圖可得,當(dāng)x∈(-∞,c)∪(e,+∞)時,f ′(x)>0,
當(dāng)x∈(c,e)時,f ′(x)<0,
故f (x)在(-∞,c),(e,+∞)上單調(diào)遞增,在(c,e)上單調(diào)遞減,
所以f (b)>f (a),f (d)>f (e),f (c)>f (e).故選ABD.]
題號
3
2
4
5
6
8
7
9
10
11
12
13
1
3.若函數(shù)h(x)=2x-在(1,+∞)上單調(diào)遞增,則實數(shù)k的取值范圍是(  )
A.[-2,+∞)   B.[2,+∞)
C.(-∞,-2]   D.(-∞,2]

14
15
A [根據(jù)條件得h′(x)=2+=≥0在(1,+∞)上恒成立,
即k≥-2x2在(1,+∞)上恒成立,
所以k的取值范圍是[-2,+∞).]
題號
4
2
3
5
6
8
7
9
10
11
12
13
1
4.已知函數(shù)f (x)=x2-ax+3在(0,1)上單調(diào)遞減,函數(shù)g(x)=x2-
a ln x在(1,2)上單調(diào)遞增,則a=(  )
A.1  B.2  C.0  D.

14
15
B [∵函數(shù)f (x)=x2-ax+3在(0,1)上單調(diào)遞減,
∴≥1,得a≥2.g′(x)=2x-,
依題意g′(x)≥0在(1,2)上恒成立,
即2x2≥a在x∈(1,2)時恒成立,則a≤2,
∴a=2.故選B.]
題號
2
4
5
3
6
8
7
9
10
11
12
13
1
5.已知函數(shù)y=f (x)(x∈R)的圖象如圖所示,則不等式xf ′(x)<0的解集為(  )
A.(-∞,0)
B.
C.∪(2,+∞)
D.(-1,0)∪(1,3)

14
15
題號
2
4
5
3
6
8
7
9
10
11
12
13
1
A [由題圖可得,f (x)在上單調(diào)遞增,在上單調(diào)遞減,在(2,+∞)上單調(diào)遞增,所以在上,f ′(x)>0,在上,f ′(x)<0,在(2,+∞)上,f ′(x)>0.則不等式xf ′(x)<0可化為或解得<x<2或x<0.
故原不等式的解集為(-∞,0).故選A.]
14
15
題號
2
4
5
3
6
8
7
9
10
11
12
13
1
二、填空題
6.若函數(shù)f (x)=x2-16ln 2x在區(qū)間上單調(diào)遞減,則實數(shù)a的取值范圍是________.
14
15
 [顯然x>0,且f ′(x)=x-,令f ′(x)≤0,解得0<x≤4.
∵f (x)在區(qū)間上單調(diào)遞減,∴解得<a≤.]
題號
2
4
5
3
7
6
8
9
10
11
12
13
1
7.已知函數(shù)f (x)=x3+x2-6x+1在(-1,1)上單調(diào)遞減,則m的取值范圍為___________.
14
15
[-5,5] [∵f (x)在(-1,1)上單調(diào)遞減,∴f ′(x)=x2+mx-6≤0在(-1,1)上恒成立,
又f ′(x)=x2+mx-6是開口向上的二次函數(shù),為使f ′(x)≤0在(-1,1)上恒成立,
只需即則m∈[-5,5].]
[-5,5]
題號
2
4
5
3
8
6
7
9
10
11
12
13
1
8.已知函數(shù)f (x)=ln x+在[2,+∞)上單調(diào)遞增,則實數(shù)a的取值范圍是___________.
14
15
(-∞,2] [∵f (x)=ln x+在[2,+∞)上單調(diào)遞增,f ′(x)==,
∴f ′(x)=≥0在[2,+∞)上恒成立,即a≤x在[2,+∞)上恒成立,∴a≤2.
當(dāng)a=2時,f ′(x)=不恒為零,故a的取值范圍是(-∞,2].]
(-∞,2]
題號
9
2
4
5
3
8
6
7
10
11
12
13
1
三、解答題
9.(源自人教B版教材)討論函數(shù)f (x)=a ln x+x的單調(diào)性,其中a為實常數(shù).
14
15
[解] 函數(shù)f (x)的定義域為(0,+∞).
因為f ′(x)=+1,令f ′(x)>0,可得+1>0,即x>-a.
所以當(dāng)-a≤0,即a≥0時,f ′(x)>0恒成立,此時f (x)在(0,+∞)上單調(diào)遞增;
當(dāng)-a>0,即a<0時,f ′(x)>0的解為x>-a,此時f (x)在(0,-a)上單調(diào)遞減,在(-a,+∞)上單調(diào)遞增.
題號
9
2
4
5
3
8
6
7
10
11
12
13
1
10.若函數(shù)f (x)=ex(x2+a)在[-2,2]上單調(diào)遞減,則實數(shù)a的取值范圍是(  )
A.(-∞,0]   B.(-∞,-8)
C.(-∞,-8]   D.[0,+∞)

14
15
題號
9
2
4
5
3
8
6
7
10
11
12
13
1
C [因為函數(shù)f (x)=ex(x2+a),
所以f ′(x)=ex(x2+2x+a).
因為函數(shù)f (x)=ex(x2+a)在[-2,2]上單調(diào)遞減,所以f ′(x)=ex(x2+2x+a)≤0在[-2,2]上恒成立,即a≤-x2-2x在[-2,2]上恒成立.
令t=-x2-2x=-(x+1)2+1,則在[-2,2]上,tmin=-8,則a≤
-8,當(dāng)a=-8時,f ′(x)=ex(x2+2x-8)=ex[(x+1)2-9]不恒為零,也符合題意,所以實數(shù)a的取值范圍是(-∞,-8].故選C.]
14
15
題號
9
2
4
5
3
8
6
7
10
11
12
13
1
11.若函數(shù)f (x)=(e為自然對數(shù)的底數(shù))是減函數(shù),則實數(shù)a的取值范圍是________.
14
15
[0,1] [f (x)=,f ′(x)=.
因為函數(shù)f (x)是減函數(shù),所以f ′(x)≤0恒成立.
令g(x)=2ax-ax2-1,則g(x)≤0恒成立,
當(dāng)a=0時,g(x)=-1成立,所以a=0滿足條件.
[0,1]
題號
9
2
4
5
3
8
6
7
10
11
12
13
1
當(dāng)a<0時,則g(x)的圖象開口向上,g(x)≤0不恒成立,不符合題意,舍去.
當(dāng)a>0時,要使g(x)≤0恒成立,則Δ=4a2-4a≤0,解得0≤a≤1,又a>0,所以0<a≤1.綜上可得,實數(shù)a的取值范圍是[0,1].]
14
15
題號
9
2
4
5
3
8
6
7
10
11
12
13
1
12.已知函數(shù)f (x)=2x2-ln x,若f (x)在區(qū)間(2m,m+1)上單調(diào)遞增,則實數(shù)m
的取值范圍是________.
14
15
 [由f (x)=2x2-ln x,得f ′(x)=4x-=,
由于函數(shù)f (x)的定義域為(0,+∞),故令f ′(x)≥0,解得x≥,
故f (x)的單調(diào)遞增區(qū)間為,若f (x)在區(qū)間(2m,m+1)上單調(diào)遞增,
則解得≤m<1.]
題號
9
2
4
5
3
8
6
7
10
11
12
13
1
13.已知函數(shù)f (x)=aex-ln x在區(qū)間(1,2)上單調(diào)遞增,則a的最小值為________.
14
15
 [因為f (x)=aex-ln x(x>0),所以f ′(x)=aex-.
由于函數(shù)f (x)=aex-ln x在區(qū)間(1,2)上單調(diào)遞增,
即f ′(x)≥0在(1,2)上恒成立,顯然a>0,所以問題轉(zhuǎn)化為xex≥在(1,2)上恒成立,設(shè)g(x)=xex,x∈(1,2),所以g′(x)=ex+xex=(1+x)ex>0,
所以g(x)在(1,2)上單調(diào)遞增,所以g(x)>g(1)=e,
所以e≥,a≥,所以a的最小值為.]
題號
9
2
4
5
3
8
6
7
10
11
12
13
1
14.設(shè)函數(shù)f (x)=ex-ax-2(a∈R),求f (x)的單調(diào)區(qū)間.
14
15
[解] f (x)的定義域為R,f ′(x)=ex-a.
若a≤0,則f ′(x)>0,所以f (x)在R上單調(diào)遞增.
若a>0,則當(dāng)x∈(-∞,ln a)時,f ′(x)<0;
當(dāng)x∈(ln a,+∞)時,f ′(x)>0.
所以f (x)在(-∞,ln a)上單調(diào)遞減,在(ln a,+∞)上單調(diào)遞增.
綜上所述,當(dāng)a≤0時,函數(shù)f (x)的單調(diào)遞增區(qū)間為(-∞,+∞),無單調(diào)遞減區(qū)間;
當(dāng)a>0時,f (x)的單調(diào)遞減區(qū)間為(-∞,ln a),
單調(diào)遞增區(qū)間為(ln a,+∞).
題號
9
2
4
5
3
8
6
7
10
11
12
13
1
15.函數(shù)f (x)=ax3+x2+5x-1恰有3個單調(diào)區(qū)間的必要不充分條件是(  )
A.a(chǎn)∈   B.a(chǎn)∈
C.a(chǎn)∈(-∞,0) D.a(chǎn)∈(-∞,0)
14
15

題號
9
2
4
5
3
8
6
7
10
11
12
13
1
A [由f (x)=ax3+x2+5x-1,
得f ′(x)=3ax2+2x+5,
當(dāng)a=0時,由f ′(x)=0,解得x=-,函數(shù)f (x)有兩個單調(diào)區(qū)間;
當(dāng)a>0時,由Δ=4-60a>0,解得a<,即0<a<,此時函數(shù)f (x)=ax3+x2+5x-1恰有3個單調(diào)區(qū)間;
當(dāng)a<0時,Δ=4-60a>0,解得a<,即a<0,此時函數(shù)f (x)=ax3+x2+5x-1恰有3個單調(diào)區(qū)間.
綜上所述,a∈(-∞,0)是函數(shù)f (x)=ax3+x2+5x-1恰有3個單調(diào)區(qū)間的充要條件,分析可得a∈是其必要不充分條件.]
14
15
THANKS第2課時 函數(shù)單調(diào)性的應(yīng)用
[學(xué)習(xí)目標(biāo)] 1.進(jìn)一步理解函數(shù)的導(dǎo)數(shù)和其單調(diào)性的關(guān)系.(數(shù)學(xué)運算)
2.能求簡單的含參的函數(shù)的單調(diào)區(qū)間以及根據(jù)函數(shù)的單調(diào)性求參數(shù)的取值范圍.(數(shù)學(xué)運算)
[討論交流] 
問題1.若函數(shù)f (x)為可導(dǎo)函數(shù),且在區(qū)間(a,b)上單調(diào)遞增(或遞減),則f ′(x)滿足什么條件?
問題2.對于函數(shù)y=f (x),f ′(x)≥0是f (x)為增函數(shù)的充要條件嗎?
[自我感知] 經(jīng)過認(rèn)真的預(yù)習(xí),結(jié)合對本節(jié)課的理解和認(rèn)知,請畫出本節(jié)課的知識邏輯體系.
探究1 討論含參函數(shù)的單調(diào)性
[典例講評] 1.已知函數(shù)f (x)=ln x-ax2+(1-a)x+a(a∈R),判斷函數(shù)f (x)的單調(diào)性.
[嘗試解答]                              
                                  
                                  
                                  
                                  
                                  
 (1)研究含參數(shù)的函數(shù)的單調(diào)性,要依據(jù)參數(shù)對不等式解集的影響進(jìn)行分類討論.
(2)劃分函數(shù)的單調(diào)區(qū)間時,要在函數(shù)的定義域內(nèi)討論,還要確定導(dǎo)數(shù)為0的點和函數(shù)的間斷點.
[學(xué)以致用] 1.求函數(shù)f (x)=+a ln x(a∈R)的單調(diào)遞減區(qū)間.
                                  
                                  
                                  
                                  
                                  
探究2 根據(jù)函數(shù)的單調(diào)性求參數(shù)的取值范圍
探究問題1 如果函數(shù)y=f (x)在區(qū)間(a,b)內(nèi)單調(diào)遞增,則f ′(x)有什么特點?
                                  
                                  
                                  
探究問題2 如果函數(shù)y=f (x)在區(qū)間(a,b)內(nèi)存在單調(diào)遞增區(qū)間,則f ′(x)有什么特點?
                                  
                                  
                                  
[新知生成]
導(dǎo)數(shù)的符號與函數(shù)單調(diào)性的關(guān)系
(1)在某區(qū)間D上,若f ′(x)>0 函數(shù)f (x)在D上________;在某區(qū)間D上,若f ′(x)<0 函數(shù)f (x)在D上________.
(2)若函數(shù)f (x)在D上單調(diào)遞增 f ′(x)≥0;若函數(shù)f (x)在D上單調(diào)遞減 ________.需要檢驗f ′(x)=0不能恒成立.
(3)若函數(shù)f (x)在D上存在單調(diào)遞增區(qū)間 f ′(x)>0有解.
若函數(shù)f (x)在D上存在單調(diào)遞減區(qū)間 ________.
[典例講評] 2.已知函數(shù)f (x)=x3-ax-1為增函數(shù),求實數(shù)a的取值范圍.
[思路導(dǎo)引] →→
[嘗試解答]                              
                                  
                                  
                                  
                                  
                                  
[母題探究] 
1.若函數(shù)f (x)=x3-ax-1的單調(diào)遞減區(qū)間為(-1,1),求a的值.
                                  
                                  
                                  
                                  
                                  
2.若函數(shù)f (x)=x3-ax-1在(-1,1)上單調(diào)遞減,求a的取值范圍.
                                  
                                  
                                  
                                  
                                  
3.若函數(shù)f (x)=x3-ax-1在(-1,1)上不單調(diào),求a的取值范圍.
                                  
                                  
                                  
                                  
                                  
 利用函數(shù)的單調(diào)性求參數(shù),常用方法如下:
1 函數(shù)f (x)在區(qū)間D上單調(diào)遞增 ________在區(qū)間D上恒成立
2 函數(shù)f (x)在區(qū)間D上單調(diào)遞減 ________在區(qū)間D上恒成立
3 函數(shù)f (x)在區(qū)間D上不單調(diào) f ′(x)在區(qū)間D上存在變號________
4 函數(shù)f (x)在區(qū)間D上存在單調(diào)遞增區(qū)間 x0∈D,使得________成立
5 函數(shù)f (x)在區(qū)間D上存在單調(diào)遞減區(qū)間 x0∈D,使得________成立
6 若已知f (x)在區(qū)間D上的單調(diào)性,區(qū)間D上含有參數(shù)時,可先求出f (x)的單調(diào)區(qū)間,令D是其單調(diào)區(qū)間的________,從而求出參數(shù)的取值范圍
[學(xué)以致用] 2.已知a∈R,函數(shù)f (x)=x3-6x2+3(4-a)x.
(1)若曲線y=f (x)在點(3,f (3))處的切線與直線x-3y=0垂直,求a的值;
(2)若函數(shù)f (x)在區(qū)間(1,4)上單調(diào)遞減,求a的取值范圍.
                                  
                                  
                                  
                                  
                                  
探究3 根據(jù)函數(shù)的單調(diào)性比較大小或解不等式
[典例講評] 3.(1)函數(shù)f (x)=sin x+2xf ′,f ′(x)為f (x)的導(dǎo)函數(shù),令a=,b=log32,則下列關(guān)系正確的是(  )
A.f (a)<f (b) B.f (a)>f (b)
C.f (a)=f (b) D.f (a)≤f (b)
(2)已知函數(shù)f (x)的定義域為R,f ′(x)為f (x)的導(dǎo)函數(shù),函數(shù)y=f ′(x)的圖象如圖所示,且f (-2)=1,f (3)=1,則不等式f (x2-6)>1的解集是(  )
A.(-3,-2)∪(2,3)
B.(-)
C.(2,3)
D.(-∞,-)∪(,+∞)
[嘗試解答]                              
                                  
                                  
                                  
                                  
                                  
 (1)在比較兩數(shù)(式)的大小關(guān)系時,首先要判斷所給函數(shù)的單調(diào)性,再根據(jù)函數(shù)的單調(diào)性比較大小.
(2)在解一些不等式時,先判斷函數(shù)的單調(diào)性,再利用單調(diào)性脫去f,即可得到變量的大小關(guān)系.
[學(xué)以致用] 3.(1)設(shè)函數(shù)f (x)=2x+sin x,則(  )
A.f (1)>f (2) B.f (1)<f (2)
C.f (1)=f (2) D.以上都不正確
(2)已知f (x)是定義在R上的偶函數(shù)且連續(xù),當(dāng)x>0時,f ′(x)<0,若f (lg x)>f (1),則x的取值范圍是________.
1.若函數(shù)f (x)=-cos x+ax為增函數(shù),則實數(shù)a的取值范圍為(  )
A.[-1,+∞) B.[1,+∞)
C.(-1,+∞) D.(1,+∞)
2.已知函數(shù)f (x)=+ln x,則下列選項正確的是(  )
A.f (e)<f (π)<f (2.7) B.f (π)<f (e)<f (2.7)
C.f (e)<f (2.7)<f (π) D.f (2.7)<f (e)<f (π)
3.函數(shù)f (x)=x3-mx2+m-2的單調(diào)遞減區(qū)間為(0,3),則m=________.
4.函數(shù)f (x)的圖象如圖所示,f ′(x)為函數(shù)f (x)的導(dǎo)函數(shù),則不等式<0的解集為________.
1.知識鏈:(1)求含參函數(shù)的單調(diào)區(qū)間.
(2)由單調(diào)性求參數(shù)的取值范圍.
(3)函數(shù)單調(diào)性的應(yīng)用.
2.方法鏈:分類討論、數(shù)形結(jié)合.
3.警示牌:求參數(shù)的取值范圍時容易忽略對端點值的討論.
3/5第2課時 函數(shù)單調(diào)性的應(yīng)用
[學(xué)習(xí)目標(biāo)] 1.進(jìn)一步理解函數(shù)的導(dǎo)數(shù)和其單調(diào)性的關(guān)系.(數(shù)學(xué)運算)
2.能求簡單的含參的函數(shù)的單調(diào)區(qū)間以及根據(jù)函數(shù)的單調(diào)性求參數(shù)的取值范圍.(數(shù)學(xué)運算)
(教師用書)
請大家解這樣一個關(guān)于x的一元一次不等式:ax-2>0,根據(jù)不等式的性質(zhì)可知,我們無法直接進(jìn)行求解,它依賴于a的符號,于是我們分類討論進(jìn)行求解如下:當(dāng)a>0時,得x>;當(dāng)a=0時,x無解;當(dāng)a<0時,得x<,參數(shù)的存在不僅對解不等式有影響,對于一些函數(shù)的單調(diào)性也有影響,如何解答含參函數(shù)的單調(diào)性問題,今天我們就來探究一下.
[討論交流] 
問題1.若函數(shù)f (x)為可導(dǎo)函數(shù),且在區(qū)間(a,b)上單調(diào)遞增(或遞減),則f ′(x)滿足什么條件?
問題2.對于函數(shù)y=f (x),f ′(x)≥0是f (x)為增函數(shù)的充要條件嗎?
[自我感知] 經(jīng)過認(rèn)真的預(yù)習(xí),結(jié)合對本節(jié)課的理解和認(rèn)知,請畫出本節(jié)課的知識邏輯體系.
探究1 討論含參函數(shù)的單調(diào)性
[典例講評] 1.已知函數(shù)f (x)=ln x-ax2+(1-a)x+a(a∈R),判斷函數(shù)f (x)的單調(diào)性.
[解] 函數(shù)f (x)的定義域為(0,+∞),
f ′(x)=-ax+1-a==.
當(dāng)a≤0時,f ′(x)>0,函數(shù)f (x)在(0,+∞)上單調(diào)遞增.
當(dāng)a>0時,令f ′(x)>0,解得0<x<,則f (x)在上單調(diào)遞增;
令f ′(x)<0,解得x>,則f (x)在上單調(diào)遞減.
綜上,當(dāng)a≤0時,函數(shù)f (x)在(0,+∞)上單調(diào)遞增;當(dāng)a>0時,函數(shù)f (x)在上單調(diào)遞增,在上單調(diào)遞減.
 (1)研究含參數(shù)的函數(shù)的單調(diào)性,要依據(jù)參數(shù)對不等式解集的影響進(jìn)行分類討論.
(2)劃分函數(shù)的單調(diào)區(qū)間時,要在函數(shù)的定義域內(nèi)討論,還要確定導(dǎo)數(shù)為0的點和函數(shù)的間斷點.
【教用·備選題】 已知函數(shù)f (x)=x3+ax2-3a2x+1(a≤0).試求函數(shù)f (x)的單調(diào)區(qū)間.
[解] f ′(x)=x2+2ax-3a2=(x+3a)(x-a),且x∈(-∞,+∞).
當(dāng)a=0時,f ′(x)=x2≥0,此時f (x)在(-∞,+∞)上單調(diào)遞增.
當(dāng)a<0,x∈(-∞,a)時,f ′(x)>0,此時f (x)單調(diào)遞增;
x∈(a,-3a)時,f ′(x)<0,此時f (x)單調(diào)遞減;
x∈(-3a,+∞)時,f ′(x)>0,此時f (x)單調(diào)遞增.
綜上,當(dāng)a=0時,函數(shù)f (x)的單調(diào)遞增區(qū)間為(-∞,+∞),無單調(diào)遞減區(qū)間;
當(dāng)a<0時,函數(shù)f (x)的單調(diào)遞增區(qū)間為(-∞,a),(-3a,+∞);
函數(shù)f (x)的單調(diào)遞減區(qū)間為(a,-3a).
[學(xué)以致用] 1.求函數(shù)f (x)=+a ln x(a∈R)的單調(diào)遞減區(qū)間.
[解] 易得函數(shù)f (x)的定義域是(0,+∞),
f ′(x)=-=.
①當(dāng)a≤0時,f ′(x)<0在(0,+∞)上恒成立,
故f (x)在(0,+∞)上單調(diào)遞減.
②當(dāng)a>0時,若0<x<,則f ′(x)<0;
若x>,則f ′(x)>0,
所以f (x)在上單調(diào)遞減,在上單調(diào)遞增.
綜上可知,當(dāng)a≤0時,f (x)的單調(diào)遞減區(qū)間為(0,+∞),當(dāng)a>0時,f (x)的單調(diào)遞減區(qū)間為.
探究2 根據(jù)函數(shù)的單調(diào)性求參數(shù)的取值范圍
探究問題1 如果函數(shù)y=f (x)在區(qū)間(a,b)內(nèi)單調(diào)遞增,則f ′(x)有什么特點?
[提示] f ′(x)≥0,但f ′(x)不可以恒為0.
探究問題2 如果函數(shù)y=f (x)在區(qū)間(a,b)內(nèi)存在單調(diào)遞增區(qū)間,則f ′(x)有什么特點?
[提示] f ′(x)>0有解.
[新知生成]
導(dǎo)數(shù)的符號與函數(shù)單調(diào)性的關(guān)系
(1)在某區(qū)間D上,若f ′(x)>0 函數(shù)f (x)在D上單調(diào)遞增;在某區(qū)間D上,若f ′(x)<0 函數(shù)f (x)在D上單調(diào)遞減.
(2)若函數(shù)f (x)在D上單調(diào)遞增 f ′(x)≥0;若函數(shù)f (x)在D上單調(diào)遞減 f ′(x)≤0.需要檢驗f ′(x)=0不能恒成立.
(3)若函數(shù)f (x)在D上存在單調(diào)遞增區(qū)間 f ′(x)>0有解.
若函數(shù)f (x)在D上存在單調(diào)遞減區(qū)間 f ′(x)<0有解.
【教用·微提醒】 (1)單調(diào)區(qū)間可以寫成閉區(qū)間,我們習(xí)慣上寫成開區(qū)間.
(2)注意以下區(qū)別:若單調(diào)遞增,則f ′(x)≥0恒成立;若存在單調(diào)遞增區(qū)間,則f ′(x)>0能成立.
[典例講評] 2.已知函數(shù)f (x)=x3-ax-1為增函數(shù),求實數(shù)a的取值范圍.
[思路導(dǎo)引] →→
[解] 由已知得f ′(x)=3x2-a,
因為f (x)在R上是增函數(shù),
所以f ′(x)=3x2-a≥0在R上恒成立,
即a≤3x2對x∈R恒成立.因為3x2≥0,所以只需a≤0.又因為a=0時,f ′(x)=3x2≥0且不恒為0,f (x)=x3-1在R上是增函數(shù),所以a≤0.
[母題探究] 
1.若函數(shù)f (x)=x3-ax-1的單調(diào)遞減區(qū)間為(-1,1),求a的值.
[解] 由題意得f ′(x)=3x2-a,函數(shù)f (x)的定義域為R.
①當(dāng)a≤0時,f ′(x)≥0,
∴f (x)在R上為增函數(shù),與已知矛盾,不符合題意.
②當(dāng)a>0時,令3x2-a=0,得x=±,
當(dāng)-<x<時,f ′(x)<0.
∴f (x)在上單調(diào)遞減,
∴f (x)的單調(diào)遞減區(qū)間為,
又函數(shù)f (x)=x3-ax-1的單調(diào)遞減區(qū)間為(-1,1),∴=1,即a=3.
2.若函數(shù)f (x)=x3-ax-1在(-1,1)上單調(diào)遞減,求a的取值范圍.
[解] 由題意可知f ′(x)=3x2-a≤0在(-1,1)上恒成立,∴即
∴a≥3.即a的取值范圍是[3,+∞).
3.若函數(shù)f (x)=x3-ax-1在(-1,1)上不單調(diào),求a的取值范圍.
[解] ∵f (x)=x3-ax-1,∴f ′(x)=3x2-a,
由題意可知a>0,
由f ′(x)=0,得x=±(a>0).
∵f (x)在區(qū)間(-1,1)上不單調(diào),
∴0<<1,即0<a<3.
故a的取值范圍為(0,3).
 利用函數(shù)的單調(diào)性求參數(shù),常用方法如下:
1 函數(shù)f (x)在區(qū)間D上單調(diào)遞增 f ′(x)≥0在區(qū)間D上恒成立
2 函數(shù)f (x)在區(qū)間D上單調(diào)遞減 f ′(x)≤0在區(qū)間D上恒成立
3 函數(shù)f (x)在區(qū)間D上不單調(diào) f ′(x)在區(qū)間D上存在變號零點
4 函數(shù)f (x)在區(qū)間D上存在單調(diào)遞增區(qū)間 x0∈D,使得f ′(x0)>0成立
5 函數(shù)f (x)在區(qū)間D上存在單調(diào)遞減區(qū)間 x0∈D,使得f ′(x0)<0成立
6 若已知f (x)在區(qū)間D上的單調(diào)性,區(qū)間D上含有參數(shù)時,可先求出f (x)的單調(diào)區(qū)間,令D是其單調(diào)區(qū)間的非空子集,從而求出參數(shù)的取值范圍
[學(xué)以致用] 2.已知a∈R,函數(shù)f (x)=x3-6x2+3(4-a)x.
(1)若曲線y=f (x)在點(3,f (3))處的切線與直線x-3y=0垂直,求a的值;
(2)若函數(shù)f (x)在區(qū)間(1,4)上單調(diào)遞減,求a的取值范圍.
[解] (1)因為f ′(x)=3x2-12x+12-3a,所以曲線y=f (x)在點(3,f (3))處的切線斜率k=f ′(3)=27-36+12-3a=3-3a.而直線x-3y=0的斜率為,則3-3a=-3,解得a=2.
(2)由f (x)在(1,4)上單調(diào)遞減,得f ′(x)=3x2-12x+12-3a≤0在(1,4)上恒成立,即a≥x2-4x+4在(1,4)上恒成立.又x∈(1,4)時,y=x2-4x+4<4,所以a≥4,所以a的取值范圍是[4,+∞).
探究3 根據(jù)函數(shù)的單調(diào)性比較大小或解不等式
[典例講評] 3.(1)函數(shù)f (x)=sin x+2xf ′,f ′(x)為f (x)的導(dǎo)函數(shù),令a=,b=log32,則下列關(guān)系正確的是(  )
A.f (a)<f (b) B.f (a)>f (b)
C.f (a)=f (b) D.f (a)≤f (b)
(2)已知函數(shù)f (x)的定義域為R,f ′(x)為f (x)的導(dǎo)函數(shù),函數(shù)y=f ′(x)的圖象如圖所示,且f (-2)=1,f (3)=1,則不等式f (x2-6)>1的解集是(  )
A.(-3,-2)∪(2,3)
B.(-)
C.(2,3)
D.(-∞,-)∪(,+∞)
(1)B (2)A [(1)由題意得f ′(x)=cos x+2f ′,f ′=cos +2f ′,
解得f ′=-,所以f (x)=sin x-x,
所以f ′(x)=cos x-1≤0,所以f (x)為減函數(shù).
因為b=log32>log3==a,
所以f (a)>f (b).故選B.
(2)由y=f ′(x)的圖象知,函數(shù)f (x)在(-∞,0)上單調(diào)遞增,在(0,+∞)上單調(diào)遞減,且f (-2)=1,f (3)=1,則不等式f (x2-6)>1可轉(zhuǎn)化為-2<x2-6<3,
解得2<x<3或-3<x<-2.故選A.]
 (1)在比較兩數(shù)(式)的大小關(guān)系時,首先要判斷所給函數(shù)的單調(diào)性,再根據(jù)函數(shù)的單調(diào)性比較大小.
(2)在解一些不等式時,先判斷函數(shù)的單調(diào)性,再利用單調(diào)性脫去f,即可得到變量的大小關(guān)系.
[學(xué)以致用] 3.(1)設(shè)函數(shù)f (x)=2x+sin x,則(  )
A.f (1)>f (2) B.f (1)<f (2)
C.f (1)=f (2) D.以上都不正確
(2)已知f (x)是定義在R上的偶函數(shù)且連續(xù),當(dāng)x>0時,f ′(x)<0,若f (lg x)>f (1),則x的取值范圍是________.
(1)B (2) [(1)f ′(x)=2+cos x>0,
故f (x)是R上的增函數(shù),故f (1)<f (2).故選B.
(2)由題設(shè)知,當(dāng)x>0時,f (x)單調(diào)遞減;
當(dāng)x<0時,f (x)單調(diào)遞增,
∴f (lg x)>f (1) |lg x|<1 -1<lg x<1 <x<10.]
1.若函數(shù)f (x)=-cos x+ax為增函數(shù),則實數(shù)a的取值范圍為(  )
A.[-1,+∞) B.[1,+∞)
C.(-1,+∞) D.(1,+∞)
B [由題意可得,f ′(x)=sin x+a≥0恒成立,故a≥-sin x恒成立,因為-1≤-sin x≤1,所以a≥1.故選B.]
2.已知函數(shù)f (x)=+ln x,則下列選項正確的是(  )
A.f (e)<f (π)<f (2.7) B.f (π)<f (e)<f (2.7)
C.f (e)<f (2.7)<f (π) D.f (2.7)<f (e)<f (π)
D [因為函數(shù)f (x)=+ln x(x>0),所以f ′(x)=>0,所以函數(shù)f (x)在(0,+∞)上單調(diào)遞增.又因為2.7<e<π,所以f (2.7)<f (e)<f (π).故選D.]
3.函數(shù)f (x)=x3-mx2+m-2的單調(diào)遞減區(qū)間為(0,3),則m=________.
 [令f ′(x)=3x2-2mx=0,解得x=0或x=m,所以m=3,解得m=.]
4.函數(shù)f (x)的圖象如圖所示,f ′(x)為函數(shù)f (x)的導(dǎo)函數(shù),則不等式<0的解集為________.
(-3,-1)∪(0,1) [由題圖知,當(dāng)x∈(-∞,-3)∪(-1,1)時,f ′(x)<0;
當(dāng)x∈(-3,-1)∪(1,+∞)時,f ′(x)>0,故不等式<0的解集為(-3,-1)∪(0,1).]
1.知識鏈:(1)求含參函數(shù)的單調(diào)區(qū)間.
(2)由單調(diào)性求參數(shù)的取值范圍.
(3)函數(shù)單調(diào)性的應(yīng)用.
2.方法鏈:分類討論、數(shù)形結(jié)合.
3.警示牌:求參數(shù)的取值范圍時容易忽略對端點值的討論.
回顧本節(jié)知識,自主完成以下問題:
1.利用導(dǎo)數(shù)研究含參數(shù)函數(shù)的單調(diào)性,一般有哪幾種情況?如何解決這幾種情況?
[提示] 利用導(dǎo)數(shù)研究含參數(shù)函數(shù)的單調(diào)性時,常遇到三種情況:
①區(qū)間端點大小不確定型
由于函數(shù)導(dǎo)數(shù)不等式中的區(qū)間端點大小不定,因此需根據(jù)區(qū)間端點的大小確定參數(shù)的范圍,再分類討論函數(shù)的單調(diào)區(qū)間.
②區(qū)間端點與定義域關(guān)系不確定型
此類問題一般會有定義域限制,解函數(shù)導(dǎo)數(shù)不等式的區(qū)間端點含參數(shù),此端點與函數(shù)定義域的端點大小不確定,因此需分類討論.
③最高次項系數(shù)不確定型
此類問題一般要對最高次項的系數(shù)a,分a>0,a=0,a<0進(jìn)行討論.
2.總結(jié)由函數(shù)的單調(diào)性求參數(shù)的取值范圍的方法有哪幾種?
[提示] ①可導(dǎo)函數(shù)在區(qū)間(a,b)上單調(diào),實際上就是在該區(qū)間上f ′(x)≥0(或f ′(x)≤0)恒成立,得到關(guān)于參數(shù)的不等式,根據(jù)已知條件,求出參數(shù)的取值范圍,但最后要注意檢驗.
②可導(dǎo)函數(shù)在區(qū)間(a,b)上存在單調(diào)區(qū)間,實際上就是f ′(x)>0(或f ′(x)<0)在區(qū)間(a,b)上存在解集,從而轉(zhuǎn)化為不等式問題,求出參數(shù)的取值范圍.
③若已知f (x)在區(qū)間I上的單調(diào)性,且區(qū)間I含有參數(shù)時,可先求出f ′(x)為正或負(fù)時的區(qū)間,令I(lǐng)是f (x)的單調(diào)區(qū)間的非空子集,從而求出參數(shù)的取值范圍.
課時分層作業(yè)(十九) 函數(shù)單調(diào)性的應(yīng)用
一、選擇題
1.若函數(shù)y=x3+x2+mx+2(m∈R)是R上的單調(diào)函數(shù),則m的取值范圍是(  )
A.(-∞,1) B.(-∞,1]
C.(1,+∞) D.[1,+∞)
D [函數(shù)y=x3+x2+mx+2是R上的單調(diào)函數(shù),即y′=x2+2x+m≥0(y′=x2+2x+m≤0舍去)在R上恒成立,
所以Δ=4-4m≤0,解得m≥1.故選D.]
2.(多選)已知定義在R上的函數(shù)f (x),其導(dǎo)函數(shù)y=f ′(x)的大致圖象如圖所示,則下列結(jié)論一定正確的是(  )
A.f (b)>f (a) B.f (d)>f (e)
C.f (a)>f (d) D.f (c)>f (e)
ABD [由題圖可得,當(dāng)x∈(-∞,c)∪(e,+∞)時,f ′(x)>0,
當(dāng)x∈(c,e)時,f ′(x)<0,
故f (x)在(-∞,c),(e,+∞)上單調(diào)遞增,在(c,e)上單調(diào)遞減,
所以f (b)>f (a),f (d)>f (e),f (c)>f (e).故選ABD.]
3.若函數(shù)h(x)=2x-在(1,+∞)上單調(diào)遞增,則實數(shù)k的取值范圍是(  )
A.[-2,+∞) B.[2,+∞)
C.(-∞,-2] D.(-∞,2]
A [根據(jù)條件得h′(x)=2+=≥0在(1,+∞)上恒成立,
即k≥-2x2在(1,+∞)上恒成立,
所以k的取值范圍是[-2,+∞).]
4.已知函數(shù)f (x)=x2-ax+3在(0,1)上單調(diào)遞減,函數(shù)g(x)=x2-a ln x在(1,2)上單調(diào)遞增,則a=(  )
A.1 B.2 C.0 D.
B [∵函數(shù)f (x)=x2-ax+3在(0,1)上單調(diào)遞減,
∴≥1,得a≥2.
g′(x)=2x-,
依題意g′(x)≥0在(1,2)上恒成立,
即2x2≥a在x∈(1,2)時恒成立,則a≤2,
∴a=2.故選B.]
5.已知函數(shù)y=f (x)(x∈R)的圖象如圖所示,則不等式xf ′(x)<0的解集為(  )
A.(-∞,0)
B.
C.∪(2,+∞)
D.(-1,0)∪(1,3)
A [由題圖可得,f (x)在上單調(diào)遞增,在上單調(diào)遞減,在(2,+∞)上單調(diào)遞增,所以在上,f ′(x)>0,在上,f ′(x)<0,在(2,+∞)上,f ′(x)>0.則不等式xf ′(x)<0可化為或解得<x<2或x<0.
故原不等式的解集為(-∞,0).故選A.]
二、填空題
6.若函數(shù)f (x)=x2-16ln 2x在區(qū)間上單調(diào)遞減,則實數(shù)a的取值范圍是________.
 [顯然x>0,且f ′(x)=x-,令f ′(x)≤0,解得0<x≤4.
∵f (x)在區(qū)間上單調(diào)遞減,
∴解得<a≤.]
7.已知函數(shù)f (x)=x3+x2-6x+1在(-1,1)上單調(diào)遞減,則m的取值范圍為________.
[-5,5] [∵f (x)在(-1,1)上單調(diào)遞減,∴f ′(x)=x2+mx-6≤0在(-1,1)上恒成立,
又f ′(x)=x2+mx-6是開口向上的二次函數(shù),為使f ′(x)≤0在(-1,1)上恒成立,
只需

則m∈[-5,5].]
8.已知函數(shù)f (x)=ln x+在[2,+∞)上單調(diào)遞增,則實數(shù)a的取值范圍是________.
(-∞,2] [∵f (x)=ln x+在[2,+∞)上單調(diào)遞增,f ′(x)==,
∴f ′(x)=≥0在[2,+∞)上恒成立,即a≤x在[2,+∞)上恒成立,∴a≤2.
當(dāng)a=2時,f ′(x)=不恒為零,故a的取值范圍是(-∞,2].]
三、解答題
9.(源自人教B版教材)討論函數(shù)f (x)=a ln x+x的單調(diào)性,其中a為實常數(shù).
[解] 函數(shù)f (x)的定義域為(0,+∞).
因為f ′(x)=+1,令f ′(x)>0,可得+1>0,即x>-a.
所以當(dāng)-a≤0,即a≥0時,f ′(x)>0恒成立,此時f (x)在(0,+∞)上單調(diào)遞增;
當(dāng)-a>0,即a<0時,f ′(x)>0的解為x>-a,此時f (x)在(0,-a)上單調(diào)遞減,在(-a,+∞)上單調(diào)遞增.
10.若函數(shù)f (x)=ex(x2+a)在[-2,2]上單調(diào)遞減,則實數(shù)a的取值范圍是(  )
A.(-∞,0] B.(-∞,-8)
C.(-∞,-8] D.[0,+∞)
C [因為函數(shù)f (x)=ex(x2+a),
所以f ′(x)=ex(x2+2x+a).
因為函數(shù)f (x)=ex(x2+a)在[-2,2]上單調(diào)遞減,所以f ′(x)=ex(x2+2x+a)≤0在[-2,2]上恒成立,即a≤-x2-2x在[-2,2]上恒成立.
令t=-x2-2x=-(x+1)2+1,則在[-2,2]上,tmin=-8,則a≤-8,當(dāng)a=-8時,f ′(x)=ex(x2+2x-8)=ex[(x+1)2-9]不恒為零,也符合題意,所以實數(shù)a的取值范圍是(-∞,-8].故選C.]
11.若函數(shù)f (x)=(e為自然對數(shù)的底數(shù))是減函數(shù),則實數(shù)a的取值范圍是________.
[0,1] [f (x)=,f ′(x)=.
因為函數(shù)f (x)是減函數(shù),所以f ′(x)≤0恒成立.
令g(x)=2ax-ax2-1,則g(x)≤0恒成立,
當(dāng)a=0時,g(x)=-1成立,所以a=0滿足條件.
當(dāng)a<0時,則g(x)的圖象開口向上,g(x)≤0不恒成立,不符合題意,舍去.
當(dāng)a>0時,要使g(x)≤0恒成立,則Δ=4a2-4a≤0,解得0≤a≤1,又a>0,所以0<a≤1.綜上可得,實數(shù)a的取值范圍是[0,1].]
12.已知函數(shù)f (x)=2x2-ln x,若f (x)在區(qū)間(2m,m+1)上單調(diào)遞增,則實數(shù)m的取值范圍是________.
 [由f (x)=2x2-ln x,得f ′(x)=4x-=,
由于函數(shù)f (x)的定義域為(0,+∞),故令f ′(x)≥0,解得x≥,
故f (x)的單調(diào)遞增區(qū)間為,若f (x)在區(qū)間(2m,m+1)上單調(diào)遞增,
則解得≤m<1.]
13.已知函數(shù)f (x)=aex-ln x在區(qū)間(1,2)上單調(diào)遞增,則a的最小值為________.
 [因為f (x)=aex-ln x(x>0),所以f ′(x)=aex-.
由于函數(shù)f (x)=aex-ln x在區(qū)間(1,2)上單調(diào)遞增,
即f ′(x)≥0在(1,2)上恒成立,顯然a>0,所以問題轉(zhuǎn)化為xex≥在(1,2)上恒成立,設(shè)g(x)=xex,x∈(1,2),所以g′(x)=ex+xex=(1+x)ex>0,
所以g(x)在(1,2)上單調(diào)遞增,所以g(x)>g(1)=e,
所以e≥,a≥,所以a的最小值為.]
14.設(shè)函數(shù)f (x)=ex-ax-2(a∈R),求f (x)的單調(diào)區(qū)間.
[解] f (x)的定義域為R,f ′(x)=ex-a.
若a≤0,則f ′(x)>0,
所以f (x)在R上單調(diào)遞增.
若a>0,則當(dāng)x∈(-∞,ln a)時,f ′(x)<0;
當(dāng)x∈(ln a,+∞)時,f ′(x)>0.
所以f (x)在(-∞,ln a)上單調(diào)遞減,在(ln a,+∞)上單調(diào)遞增.
綜上所述,當(dāng)a≤0時,函數(shù)f (x)的單調(diào)遞增區(qū)間為(-∞,+∞),無單調(diào)遞減區(qū)間;
當(dāng)a>0時,f (x)的單調(diào)遞減區(qū)間為(-∞,ln a),
單調(diào)遞增區(qū)間為(ln a,+∞).
15.函數(shù)f (x)=ax3+x2+5x-1恰有3個單調(diào)區(qū)間的必要不充分條件是(  )
A.a(chǎn)∈
B.a(chǎn)∈
C.a(chǎn)∈(-∞,0)
D.a(chǎn)∈(-∞,0)
A [由f (x)=ax3+x2+5x-1,
得f ′(x)=3ax2+2x+5,
當(dāng)a=0時,由f ′(x)=0,解得x=-,函數(shù)f (x)有兩個單調(diào)區(qū)間;
當(dāng)a>0時,由Δ=4-60a>0,解得a<,即0<a<,此時函數(shù)f (x)=ax3+x2+5x-1恰有3個單調(diào)區(qū)間;
當(dāng)a<0時,Δ=4-60a>0,解得a<,即a<0,此時函數(shù)f (x)=ax3+x2+5x-1恰有3個單調(diào)區(qū)間.
綜上所述,a∈(-∞,0)是函數(shù)f (x)=ax3+x2+5x-1恰有3個單調(diào)區(qū)間的充要條件,分析可得a∈是其必要不充分條件.]
4/13

展開更多......

收起↑

資源列表

<pre id="tfb94"><li id="tfb94"></li></pre>

<bdo id="tfb94"><rt id="tfb94"></rt></bdo>
  • <menu id="tfb94"><dl id="tfb94"></dl></menu><i id="tfb94"><acronym id="tfb94"><sub id="tfb94"></sub></acronym></i>

    1. 主站蜘蛛池模板: 汾西县| 秦皇岛市| 林州市| 长治市| 胶州市| 东兰县| 三原县| 东乡族自治县| 金沙县| 安福县| 永和县| 东方市| 遵义市| 长乐市| 阿克| 赣榆县| 湖北省| 昆明市| 西宁市| 新巴尔虎右旗| 西城区| 壶关县| 广灵县| 荆门市| 闸北区| 五大连池市| 内江市| 平昌县| 中牟县| 洪洞县| 彝良县| 舒兰市| 祥云县| 大洼县| 香港 | 玛沁县| 微山县| 禄丰县| 古交市| 兴安盟| 平原县|