資源簡介 5.3 導(dǎo)數(shù)在研究函數(shù)中的應(yīng)用5.3.1 函數(shù)的單調(diào)性第1課時 函數(shù)的單調(diào)性[學(xué)習(xí)目標(biāo)] 1.理解導(dǎo)數(shù)與函數(shù)的單調(diào)性的關(guān)系.(數(shù)學(xué)抽象)2.掌握利用導(dǎo)數(shù)判斷函數(shù)單調(diào)性的方法.(數(shù)學(xué)運算)3.對于多項式函數(shù),能求不超過三次的多項式函數(shù)的單調(diào)區(qū)間.(教師用書)如圖為某市一天內(nèi)的氣溫變化圖:(1)觀察這個氣溫變化圖,說出氣溫在這一天內(nèi)的變化情況.(2)怎樣用數(shù)學(xué)語言刻畫在這一天內(nèi)“隨著時間的推移,氣溫逐漸升高或下降”這一特征?問題:觀察圖形,你能得到什么信息?[討論交流] 問題1.函數(shù)的單調(diào)性與導(dǎo)數(shù)有什么關(guān)系?問題2.函數(shù)值變化快慢與導(dǎo)數(shù)有什么關(guān)系?[自我感知] 經(jīng)過認(rèn)真的預(yù)習(xí),結(jié)合對本節(jié)課的理解和認(rèn)知,請畫出本節(jié)課的知識邏輯體系.探究1 利用導(dǎo)數(shù)的正負(fù)判斷單調(diào)性探究問題1 已知函數(shù):(1)y=2x-1,(2)y=-3x,(3)y=2x,它們的導(dǎo)數(shù)的正負(fù)與它們的單調(diào)性之間有怎樣的關(guān)系?[提示] (1)y′=2>0,y=2x-1是增函數(shù).(2)y′=-3<0,y=-3x是減函數(shù).(3)y′=2x ln 2>0,y=2x是增函數(shù).探究問題2 如果函數(shù)f (x)在區(qū)間(a,b)內(nèi)有無數(shù)個點滿足f ′(x)>0,能認(rèn)為f (x)在這個區(qū)間內(nèi)單調(diào)遞增嗎?[提示] 不能,無數(shù)不代表任意,所以有可能在某點處導(dǎo)數(shù)為負(fù).[新知生成]函數(shù)的單調(diào)性與其導(dǎo)數(shù)的關(guān)系定義在區(qū)間(a,b)內(nèi)的函數(shù)y=f (x):f ′(x)的正負(fù) f (x)的單調(diào)性f ′(x)>0 單調(diào)遞增f ′(x)<0 單調(diào)遞減【教用·微提醒】 (1)f ′(x)>0(f ′(x)<0)是函數(shù)在(a,b)上單調(diào)遞增(遞減)的充分條件.(2)f ′(x)=0在某個區(qū)間內(nèi)恒成立時,該區(qū)間內(nèi)f (x)為常函數(shù).【鏈接·教材例題】例1 利用導(dǎo)數(shù)判斷下列函數(shù)的單調(diào)性:(1)f (x)=x3+3x;(2)f (x)=sin x-x,x∈(0,π);(3)f (x)=.[解] (1)因為f (x)=x3+3x,所以f ′(x)=3x2+3=3(x2+1)>0.所以,函數(shù)f (x)=x3+3x在R上單調(diào)遞增,如圖5.3-4(1)所示.(2)因為f (x)=sin x-x,x∈(0,π),所以f ′(x)=cos x-1<0.所以,函數(shù)f (x)=sin x-x在(0,π)內(nèi)單調(diào)遞減,如圖5.3-4(2)所示.(3)因為f (x)=1-,x∈(-∞,0)∪(0,+∞),所以f ′(x)=>0.所以,函數(shù)f (x)=在區(qū)間(-∞,0)和(0,+∞)上單調(diào)遞增,如圖5.3-4(3)所示.[典例講評] 1.利用導(dǎo)數(shù)判斷下列函數(shù)的單調(diào)性:(1)f (x)=x3-x2+2x-5;(2)f (x)=x--ln x.[解] (1)因為f (x)=x3-x2+2x-5,所以f ′(x)=x2-2x+2=(x-1)2+1>0,所以函數(shù)f (x)=x3-x2+2x-5在R上單調(diào)遞增.(2)因為f (x)=x--ln x,x∈(0,+∞),所以f ′(x)=1+==>0,所以f (x)=x--ln x在(0,+∞)上單調(diào)遞增. 利用導(dǎo)數(shù)判斷函數(shù)單調(diào)性的步驟(1)確定函數(shù)的定義域.(2)求導(dǎo)數(shù)f ′(x).(3)確定f ′(x)在定義域內(nèi)的符號,在此過程中,需要對導(dǎo)函數(shù)進(jìn)行通分、因式分解等變形.(4)得出結(jié)論.[學(xué)以致用] 1.下列函數(shù)在(0,+∞)上單調(diào)遞減的是( )A.y=xex B.y=x3-3x2C.y=ln x-x D.y=x-exD [當(dāng)x>0時,函數(shù)y=xex的導(dǎo)函數(shù)y′=ex+xex=ex(1+x)>0,故函數(shù)在(0,+∞)上單調(diào)遞增;函數(shù)y=x3-3x2的導(dǎo)函數(shù)y′=3x2-6x=3x(x-2),故函數(shù)在(0,2)上單調(diào)遞減,在(2,+∞)上單調(diào)遞增;令y=ln x-x的導(dǎo)函數(shù)y′=-1=>0,解得x<1,所以函數(shù)y=ln x-x在(0,1)上單調(diào)遞增,在(1,+∞)上單調(diào)遞減;函數(shù)y=x-ex的導(dǎo)函數(shù)y′=1-ex,在(0,+∞)上y′=1-ex<0,所以y=x-ex在(0,+∞)上單調(diào)遞減.故選D.]探究2 利用導(dǎo)數(shù)求函數(shù)的單調(diào)區(qū)間【鏈接·教材例題】例3 求函數(shù)f (x)=x3-x2-2x+1的單調(diào)區(qū)間.[解] 函數(shù)f (x)=x3-x2-2x+1的定義域為R.對f (x)求導(dǎo)數(shù),得f ′(x)=x2-x-2=(x+1)(x-2).令f ′(x)=0,解得x=-1,或x=2.x=-1和x=2把函數(shù)定義域劃分成三個區(qū)間,f ′(x)在各區(qū)間上的正負(fù),以及f (x)的單調(diào)性如表5.3-1所示.表5.3-1x (-∞,-1) -1 (-1,2) 2 (2,+∞)f ′(x) + 0 - 0 +f (x) 單調(diào) 遞增 f (-1)= 單調(diào) 遞減 f (2)=- 單調(diào) 遞增所以,f (x)在(-∞,-1)和(2,+∞)上單調(diào)遞增,在(-1,2)內(nèi)單調(diào)遞減,如圖5.3-6所示.[典例講評] 2.求下列函數(shù)的單調(diào)區(qū)間:(1)f (x)=x2-ln x;(2)f (x)=2x3+3x2-36x+1.[思路導(dǎo)引] 根據(jù)函數(shù)解析式求出函數(shù)的導(dǎo)函數(shù),根據(jù)導(dǎo)函數(shù)的符號確定函數(shù)單調(diào)區(qū)間.[解] (1)函數(shù)定義域為(0,+∞),且f ′(x)=2x-.令f ′(x)>0,即2x->0,解得x>;令f ′(x)<0,即2x-<0,解得0故函數(shù)f (x)的單調(diào)遞增區(qū)間是,單調(diào)遞減區(qū)間是.(2)f ′(x)=6x2+6x-36=6(x+3)(x-2).令f ′(x)=0,解得x=-3或x=2,x=-3和x=2把函數(shù)的定義域劃分為三個區(qū)間,f ′(x)在各個區(qū)間上的正負(fù)以及f (x)的單調(diào)性如表,x (-∞,-3) -3 (-3,2) 2 (2,+∞)f ′(x) + 0 - 0 +f (x) 單調(diào) 遞增 f (-3) 單調(diào)遞減 f (2) 單調(diào) 遞增故f (x)的單調(diào)遞增區(qū)間是(-∞,-3),(2,+∞),單調(diào)遞減區(qū)間為(-3,2).【教用·備選題】 求函數(shù)f (x)=x3-2x2+x-1的單調(diào)區(qū)間.[解] 對函數(shù)求導(dǎo)得f ′(x)=3x2-4x+1.令f ′(x)=3x2-4x+1>0,則x<或x>1,因此,函數(shù)f (x)=x3-2x2+x-1在區(qū)間和(1,+∞)上單調(diào)遞增.令f ′(x)=3x2-4x+1<0,則<x<1,因此,函數(shù)f (x)=x3-2x2+x-1在區(qū)間上單調(diào)遞減. 利用導(dǎo)數(shù)求函數(shù)單調(diào)區(qū)間的一般步驟(1)確定函數(shù)y=f (x)的定義域.(2)求出導(dǎo)數(shù)f ′(x)的零點.(3)用f ′(x)的零點將f (x)的定義域劃分為若干個區(qū)間,列表給出f ′(x)在各區(qū)間上的正負(fù),進(jìn)而求出單調(diào)區(qū)間.[學(xué)以致用] 2.求下列函數(shù)的單調(diào)區(qū)間:(1)f (x)=x2·e-x;(2)f (x)=x+.[解] (1)函數(shù)的定義域為(-∞,+∞).∵f ′(x)=(x2)′e-x+x2(e-x)′=2xe-x-x2e-x=e-x(2x-x2),令f ′(x)=0,由于e-x>0,∴x1=0,x2=2,用x1,x2分割定義域,如表所示:x (-∞,0) 0 (0,2) 2 (2,+∞)f ′(x) - 0 + 0 -f (x) 單調(diào)遞減 f (0) 單調(diào)遞增 f (2) 單調(diào)遞減∴f (x)的單調(diào)遞減區(qū)間為(-∞,0)和(2,+∞),單調(diào)遞增區(qū)間為(0,2).(2)函數(shù)的定義域為(-∞,0)∪(0,+∞).∵f ′(x)=1-,令f ′(x)=0,得x1=-1,x2=1,用x1,x2分割定義域,如表所示:x (-∞, -1) -1 (-1,0) (0,1) 1 (1, +∞)f ′(x) + 0 - - 0 +f (x) 單調(diào) 遞增 f (-1) 單調(diào) 遞減 單調(diào) 遞減 f (1) 單調(diào) 遞增∴函數(shù)f (x)的單調(diào)遞減區(qū)間為(-1,0)和(0,1),單調(diào)遞增區(qū)間為(-∞,-1)和(1,+∞).探究3 導(dǎo)函數(shù)與原函數(shù)的關(guān)聯(lián)圖象【鏈接·教材例題】例2 已知導(dǎo)函數(shù)f ′(x)的下列信息:當(dāng)1<x<4時,f ′(x)>0;當(dāng)x<1,或x>4時,f ′(x)<0;當(dāng)x=1,或x=4時,f ′(x)=0.試畫出函數(shù)f (x)圖象的大致形狀.[解] 當(dāng)1<x<4時,f ′(x)>0,可知f (x)在區(qū)間(1,4)內(nèi)單調(diào)遞增;當(dāng)x<1,或x>4時,f ′(x)<0,可知f (x)在區(qū)間(-∞,1)和(4,+∞)上都單調(diào)遞減;當(dāng)x=1,或x=4時,f ′(x)=0,這兩點比較特殊,我們稱它們?yōu)椤胺€(wěn)定點”.綜上,函數(shù)f (x)圖象的大致形狀如圖5.3-5所示.例4 設(shè)x>0,f (x)=ln x,g(x)=1-,兩個函數(shù)的圖象如圖5.3-8所示.判斷f (x),g(x)的圖象與C1,C2之間的對應(yīng)關(guān)系.[解] 因為f (x)=ln x,g(x)=1-,所以f ′(x)=,g′(x)=.當(dāng)x=1時,f ′(x)=g′(x)=1;當(dāng)0<x<1時,g′(x)>f ′(x)>1;當(dāng)x>1時,0<g′(x)<f ′(x)<1.所以,f (x),g(x)在(0,+∞)上都是增函數(shù).在區(qū)間(0,1)內(nèi),g(x)的圖象比f (x)的圖象要“陡峭”;在區(qū)間(1,+∞)上,g(x)的圖象比f (x)的圖象要“平緩”.所以,f (x),g(x)的圖象依次是圖5.3-8中的C2,C1.[典例講評] 3.(1)已知函數(shù)f (x)的導(dǎo)函數(shù)f ′(x)的圖象如圖所示,那么函數(shù)f (x)的圖象最有可能是( )A B C D(2)函數(shù)f (x)的圖象如圖所示,則導(dǎo)函數(shù)f ′(x)的圖象可能為( )A BC D(1)A (2)C [(1)當(dāng)x<-2時,f ′(x)<0,則f (x)單調(diào)遞減;當(dāng)-2<x<0時,f ′(x)>0,則f (x)單調(diào)遞增;當(dāng)x>0時,f ′(x)<0,則f (x)單調(diào)遞減.則符合上述條件的只有選項A.故選A.(2)由f (x)的圖象知,當(dāng)x∈(-∞,1)時,f (x)單調(diào)遞減,f ′(x)<0;當(dāng)x∈(1,4)時,f (x)單調(diào)遞增,f ′(x)>0;當(dāng)x∈(4,+∞)時,f (x)單調(diào)遞減,f ′(x)<0.由選項各圖知,選項C符合題意.故選C.] (1)導(dǎo)函數(shù)的正負(fù)看原函數(shù)的增減.①觀察原函數(shù)的圖象,重在找出“上升”“下降”產(chǎn)生變化的點,分析函數(shù)值的變化趨勢.②觀察導(dǎo)函數(shù)的圖象,重在找出導(dǎo)函數(shù)圖象與x軸的交點,分析導(dǎo)數(shù)的正負(fù).(2)導(dǎo)函數(shù)的絕對值大小決定原函數(shù)增減快慢.某一范圍內(nèi)導(dǎo)數(shù)的絕對值較大,那么函數(shù)在這個范圍內(nèi)變化得較快,這時函數(shù)的圖象就比較“陡峭”(向上或向下);反之,函數(shù)的圖象就比較“平緩”.(3)解決問題時,要分清是原函數(shù)圖象還是導(dǎo)函數(shù)圖象.[學(xué)以致用] 3.設(shè)函數(shù)y=f (x)在定義域內(nèi)可導(dǎo),y=f (x)的圖象如圖所示,則導(dǎo)函數(shù)y=f ′(x)的圖象可能為( )A BC DD [由題中函數(shù)f (x)的圖象可知,函數(shù)f (x)在(-∞,0)上先增后減,所以其對應(yīng)的導(dǎo)函數(shù)符號先正后負(fù),在y軸左側(cè)導(dǎo)函數(shù)的圖象由左上到右下穿過x軸;當(dāng)x∈(0,+∞)時,f (x)單調(diào)遞減,所以x∈(0,+∞)時,f ′(x)<0,只有D選項符合條件.故選D.]1.f ′(x)是f (x)的導(dǎo)函數(shù),f ′(x)的圖象如圖所示,則f (x)的圖象只可能是( )A BC DA [由f ′(x)圖象可知f ′(0)=0,f ′(2)=0,f (x)在區(qū)間[0,2]上的增長速度先快后慢,A選項符合.故選A.]2.命題甲:對任意x∈(a,b),有f ′(x)>0;命題乙:f (x)在(a,b)內(nèi)是單調(diào)遞增的,則甲是乙的( )A.充分不必要條件B.必要不充分條件C.充要條件D.既不充分也不必要條件A [例如,f (x)=x3在(-1,1)內(nèi)是單調(diào)遞增的,但f ′(x)=3x2≥0(-1<x<1),故甲是乙的充分不必要條件.故選A.]3.下列函數(shù)中,在(0,+∞)內(nèi)單調(diào)遞增的是( )A.y=sin x B.y=xe2C.y=x3-x D.y=ln x-xB [對于B,y=xe2,則y′=e2,∴y=xe2在R上為增函數(shù),在(0,+∞)內(nèi)單調(diào)遞增.其他選項可同理逐一求導(dǎo)排除.故選B.]4.函數(shù)y=ln (x2-x-2)的單調(diào)遞減區(qū)間為________.(-∞,-1) [函數(shù)y=ln (x2-x-2)的定義域為(-∞,-1)∪(2,+∞),令f (x)=x2-x-2,f ′(x)=2x-1<0,得x<,∴函數(shù)y=ln (x2-x-2)的單調(diào)遞減區(qū)間為(-∞,-1).]1.知識鏈:(1)函數(shù)的單調(diào)性與其導(dǎo)數(shù)的關(guān)系.(2)利用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性.(3)利用導(dǎo)數(shù)求函數(shù)的單調(diào)區(qū)間.(4)原函數(shù)與導(dǎo)函數(shù)圖象的關(guān)系.2.方法鏈:方程思想、分類討論.3.警示牌:忽略定義域的限制而出錯.回顧本節(jié)知識,自主完成以下問題:1.利用導(dǎo)數(shù)求函數(shù)單調(diào)性的思路是怎樣的?[提示] 利用導(dǎo)數(shù)求函數(shù)的單調(diào)性一般通過解不等式的方法完成,其步驟為:①確定函數(shù)f (x)的定義域;②求導(dǎo)函數(shù)f ′(x);③解不等式f ′(x)>0(或f ′(x)<0),并寫出解集;④根據(jù)③的結(jié)果確定函數(shù)f (x)的單調(diào)區(qū)間.2.原函數(shù)圖象與導(dǎo)函數(shù)圖象之間有何關(guān)系?[提示] 導(dǎo)函數(shù)f ′(x)圖象在x軸上方時對應(yīng)的自變量的取值區(qū)間為原函數(shù)f (x)圖象上升部分對應(yīng)的區(qū)間(單調(diào)遞增區(qū)間),導(dǎo)函數(shù)f ′(x)圖象在x軸下方時對應(yīng)的自變量的取值區(qū)間為原函數(shù)f (x)圖象下降部分對應(yīng)的區(qū)間(單調(diào)遞減區(qū)間).課時分層作業(yè)(十八) 函數(shù)的單調(diào)性一、選擇題1.函數(shù)y=x3-x2-x的單調(diào)遞增區(qū)間為( )A.和(1,+∞)B.C.∪(1,+∞)D.A [由題意知,y′=3x2-2x-1(x∈R).由y′>0可解得x<-或x>1,∴函數(shù)的單調(diào)遞增區(qū)間為和(1,+∞).故選A.]2.函數(shù)y=x ln x在(0,5)上的單調(diào)性是( )A.單調(diào)遞增B.單調(diào)遞減C.在上單調(diào)遞減,在上單調(diào)遞增D.在上單調(diào)遞增,在上單調(diào)遞減C [由已知得函數(shù)y=x ln x的定義域為(0,+∞).y′=ln x+1,令y′>0,得x>;令y′<0,得0<x<.∴函數(shù)y=x ln x在上單調(diào)遞減,在上單調(diào)遞增.]3.設(shè)函數(shù)f (x)在定義域內(nèi)可導(dǎo),y=f (x)的圖象如圖所示,則導(dǎo)函數(shù)y=f ′(x)的圖象可能為( )A BC DD [觀察函數(shù)f (x)的圖象得:f (x)在(-∞,0)上單調(diào)遞增,在(0,+∞)上先單調(diào)遞增,再單調(diào)遞減,后又單調(diào)遞增,則當(dāng)x∈(-∞,0)時,f ′(x)>0,即當(dāng)x∈(-∞,0)時,函數(shù)y=f ′(x)的圖象在x軸上方,于是排除A,C.當(dāng)x∈(0,+∞)時,f ′(x)的值先大于0,接著變?yōu)樾∮?,之后又變?yōu)榇笥?,即當(dāng)x∈(0,+∞)時,函數(shù)y=f ′(x)的圖象先在x軸上方,接著變化到x軸下方,最后又變到x軸上方,于是排除B,選項D相符.故選D.]4.(多選)下列函數(shù)在定義域上為增函數(shù)的有( )A.f (x)=x- B.f (x)=xexC.f (x)=x+sin x D.f (x)=ex-e-x-2xCD [根據(jù)題意,依次分析選項.對于A,f (x)=x-,有f (-1)=f (1)=0,則f (x)在其定義域上不是單調(diào)函數(shù),不符合題意;對于B,f (x)=xex,其導(dǎo)數(shù)f ′(x)=xex+ex=(x+1)ex,在區(qū)間(-∞,-1)上,f ′(x)<0,則f (x)單調(diào)遞減,不符合題意;對于C,f (x)=x+sin x,其導(dǎo)數(shù)f ′(x)=1+cos x≥0,則f (x)在定義域上為增函數(shù),符合題意;對于D,f (x)=ex-e-x-2x,其導(dǎo)數(shù)f ′(x)=ex+e-x-2≥0,則f (x)在定義域上為增函數(shù),符合題意.故選CD.]5.(多選)函數(shù)f (x)=(x-3)ex在下列區(qū)間上單調(diào)遞增的是( )A.(-∞,2) B.(0,3)C.(3,4) D.(2,+∞)CD [∵f ′(x)=ex+(x-3)ex=(x-2)ex,由f ′(x)>0,得(x-2)ex>0,∴x>2.∴f (x)的單調(diào)遞增區(qū)間為(2,+∞),CD符合.]二、填空題6.已知函數(shù)f (x)的導(dǎo)函數(shù)y=f ′(x)的圖象如圖所示,則函數(shù)f (x)的單調(diào)遞增區(qū)間是________.(-1,2),(4,+∞) [由題圖可知,在區(qū)間(-1,2),(4,+∞)上,f ′(x)>0;在區(qū)間(-∞,-1),(2,4)上,f ′(x)<0.由導(dǎo)函數(shù)的正負(fù)與函數(shù)單調(diào)性的關(guān)系可得,函數(shù)f (x)的單調(diào)遞增區(qū)間是(-1,2),(4,+∞).]7.已知m是實數(shù),函數(shù)f (x)=x2(x-m),若f ′(-1)=-1,則函數(shù)f (x)的單調(diào)遞減區(qū)間是________. [f ′(x)=2x(x-m)+x2,因為f ′(-1)=-1,所以-2(-1-m)+1=-1,解得m=-2,令f ′(x)=2x(x+2)+x2<0,解得-<x<0,則函數(shù)f (x)的單調(diào)遞減區(qū)間是.]8.函數(shù)f (x)=x2-5x+2ln (2x)的單調(diào)遞增區(qū)間是________.,(2,+∞) [f (x)的定義域是(0,+∞),f ′(x)=,由f ′(x)>0,得x>2或0<x<,故f (x)的單調(diào)遞增區(qū)間是,(2,+∞).]三、解答題9.已知導(dǎo)函數(shù)f ′(x)的下列信息:當(dāng)2<x<3時,f ′(x)<0;當(dāng)x>3或x<2時,f ′(x)>0;當(dāng)x=3或x=2時,f ′(x)=0;試畫出函數(shù)f (x)圖象的大致形狀.[解] 當(dāng)2<x<3時,f ′(x)<0,可知函數(shù)在此區(qū)間上單調(diào)遞減;當(dāng)x>3或x<2時,f ′(x)>0,可知函數(shù)在這兩個區(qū)間上單調(diào)遞增;當(dāng)x=3或x=2時,f ′(x)=0,可知在這兩點處的兩側(cè),函數(shù)單調(diào)性發(fā)生改變.綜上可畫出函數(shù)f (x)圖象的大致形狀,如圖所示(答案不唯一).10.函數(shù)f (x)=x3+ax2+bx+c,其中a,b,c為實數(shù),當(dāng)a2-3b<0時,f (x)是( )A.增函數(shù)B.減函數(shù)C.常數(shù)函數(shù)D.既不是增函數(shù)也不是減函數(shù)A [求得函數(shù)的導(dǎo)函數(shù)f ′(x)=3x2+2ax+b,導(dǎo)函數(shù)對應(yīng)方程f ′(x)=0的Δ=4(a2-3b)<0,所以f ′(x)>0恒成立,故f (x)是增函數(shù).]11.(多選)已知函數(shù)f (x)=(x2-4x+1)ex,則函數(shù)f (x)在下列區(qū)間上單調(diào)遞增的是( )A.(-1,0) B.(-2,-1)C.(-1,3) D.(3,4)BD [f ′(x)=(2x-4)ex+(x2-4x+1)ex=(x2-2x-3)ex,令f ′(x)>0,可得x2-2x-3>0,解得x<-1或x>3,所以f (x)的單調(diào)遞增區(qū)間是(-∞,-1),(3,+∞),所以f (x)在(-2,-1)與(3,4)上單調(diào)遞增.故選BD.]12.已知函數(shù)f (x)=2x-ln |x|,則f (x)的大致圖象為( )A B C DA [當(dāng)x<0時,f (x)=2x-ln (-x),f ′(x)=2-·(-1)=2->0,所以f (x)在(-∞,0)上單調(diào)遞增,則B,D錯誤;當(dāng)x>0時,f (x)=2x-ln x,f ′(x)=2-=,則f (x)在上單調(diào)遞減,在上單調(diào)遞增,所以A正確,故選A.]13.函數(shù)f (x)=e2x-2(x+2)的單調(diào)遞增區(qū)間為________.(0,+∞) [f (x)=e2x-2x-4,求導(dǎo)得f ′(x)=2e2x-2,令f ′(x)>0,解得x∈(0,+∞),所以f (x)的單調(diào)遞增區(qū)間為(0,+∞).]14.已知函數(shù)f (x)=-1.(1)求函數(shù)在點(1,f (1))處的切線方程;(2)試判斷函數(shù)f (x)的單調(diào)性.[解] (1)由題可知,f ′(x)=,所以f ′(1)=1,f (1)=-1.∴函數(shù)在點(1,f (1))處的切線方程為y-(-1)=x-1,即y=x-2.(2)因為函數(shù)的定義域為(0,+∞)且f ′(x)=,令f ′(x)=>0,得0<x<e,令f ′(x)=<0,得x>e,因此函數(shù)f (x)在區(qū)間(0,e)上單調(diào)遞增,在(e,+∞)上單調(diào)遞減.15.(多選)若函數(shù)f (x)在定義域D內(nèi)的某個區(qū)間I上是單調(diào)遞增函數(shù),且F(x)=在區(qū)間I上也是單調(diào)遞增函數(shù),則稱y=f (x)是I上的“一致遞增函數(shù)”.已知f (x)=x+,若函數(shù)f (x)是區(qū)間I上的“一致遞增函數(shù)”,則區(qū)間I可能是( )A.(-∞,-2) B.(-∞,0)C.(0,+∞) D.(2,+∞)AD [f (x)=x+,則f ′(x)=.F(x)==1+,則F′(x)=,當(dāng)x∈(-∞,-2)時,f ′(x)=>>0,函數(shù)f (x)單調(diào)遞增,F′(x)=>0,函數(shù)F(x)單調(diào)遞增,故A滿足;f ′=<0,故B不滿足;F′(1)=-e<0,故C不滿足;當(dāng)x∈(2,+∞)時,f ′(x)=>0,函數(shù)f (x)單調(diào)遞增,F(xiàn)′(x)=>0,函數(shù)F(x)單調(diào)遞增.故D滿足.故選AD.]16/16(共65張PPT)第1課時 函數(shù)的單調(diào)性第五章 一元函數(shù)的導(dǎo)數(shù)及其應(yīng)用5.3 導(dǎo)數(shù)在研究函數(shù)中的應(yīng)用5.3.1 函數(shù)的單調(diào)性整體感知[學(xué)習(xí)目標(biāo)] 1.理解導(dǎo)數(shù)與函數(shù)的單調(diào)性的關(guān)系.(數(shù)學(xué)抽象)2.掌握利用導(dǎo)數(shù)判斷函數(shù)單調(diào)性的方法.(數(shù)學(xué)運算)3.對于多項式函數(shù),能求不超過三次的多項式函數(shù)的單調(diào)區(qū)間.(教師用書)如圖為某市一天內(nèi)的氣溫變化圖:(1)觀察這個氣溫變化圖,說出氣溫在這一天內(nèi)的變化情況.(2)怎樣用數(shù)學(xué)語言刻畫在這一天內(nèi)“隨著時間的推移,氣溫逐漸升高或下降”這一特征?問題:觀察圖形,你能得到什么信息?[討論交流] 問題1.函數(shù)的單調(diào)性與導(dǎo)數(shù)有什么關(guān)系?問題2.函數(shù)值變化快慢與導(dǎo)數(shù)有什么關(guān)系?[自我感知] 經(jīng)過認(rèn)真的預(yù)習(xí),結(jié)合對本節(jié)課的理解和認(rèn)知,請畫出本節(jié)課的知識邏輯體系.探究建構(gòu)探究1 利用導(dǎo)數(shù)的正負(fù)判斷單調(diào)性探究問題1 已知函數(shù):(1)y=2x-1,(2)y=-3x,(3)y=2x,它們的導(dǎo)數(shù)的正負(fù)與它們的單調(diào)性之間有怎樣的關(guān)系?[提示] (1)y′=2>0,y=2x-1是增函數(shù).(2)y′=-3<0,y=-3x是減函數(shù).(3)y′=2x ln 2>0,y=2x是增函數(shù).探究問題2 如果函數(shù)f (x)在區(qū)間(a,b)內(nèi)有無數(shù)個點滿足f ′(x)>0,能認(rèn)為f (x)在這個區(qū)間內(nèi)單調(diào)遞增嗎?[提示] 不能,無數(shù)不代表任意,所以有可能在某點處導(dǎo)數(shù)為負(fù).[新知生成]函數(shù)的單調(diào)性與其導(dǎo)數(shù)的關(guān)系定義在區(qū)間(a,b)內(nèi)的函數(shù)y=f (x):f ′(x)的正負(fù) f (x)的單調(diào)性f ′(x)>0 單調(diào)遞__f ′(x)<0 單調(diào)遞__增減【教用·微提醒】 (1)f ′(x)>0(f ′(x)<0)是函數(shù)在(a,b)上單調(diào)遞增(遞減)的充分條件.(2)f ′(x)=0在某個區(qū)間內(nèi)恒成立時,該區(qū)間內(nèi)f (x)為常函數(shù).【鏈接·教材例題】例1 利用導(dǎo)數(shù)判斷下列函數(shù)的單調(diào)性:(1) f (x)=x3+3x;(2) f (x)=sin x-x,x∈(0,π);(3) f (x)=.[解] (1)因為f (x)=x3+3x,所以f ′(x)=3x2+3=3(x2+1)>0.所以,函數(shù)f (x)=x3+3x在R上單調(diào)遞增,如圖5.3-4(1)所示.(2)因為f (x)=sin x-x,x∈(0,π),所以f ′(x)=cos x-1<0.所以,函數(shù)f (x)=sin x-x在(0,π)內(nèi)單調(diào)遞減,如圖5.3-4(2)所示.(3)因為f (x)=1-,x∈(-∞,0)∪(0,+∞),所以f ′(x)=>0.所以,函數(shù)f (x)=在區(qū)間(-∞,0)和(0,+∞)上單調(diào)遞增,如圖5.3-4(3)所示.[典例講評] 1.利用導(dǎo)數(shù)判斷下列函數(shù)的單調(diào)性:(1) f (x)=x3-x2+2x-5;(2)f (x)=x--ln x.[解] (1)因為f (x)=x3-x2+2x-5,所以f ′(x)=x2-2x+2=(x-1)2+1>0,所以函數(shù)f (x)=x3-x2+2x-5在R上單調(diào)遞增.(2)因為f (x)=x--ln x,x∈(0,+∞),所以f ′(x)=1+==>0,所以f (x)=x--ln x在(0,+∞)上單調(diào)遞增.反思領(lǐng)悟 利用導(dǎo)數(shù)判斷函數(shù)單調(diào)性的步驟(1)確定函數(shù)的定義域.(2)求導(dǎo)數(shù)f ′(x).(3)確定f ′(x)在定義域內(nèi)的符號,在此過程中,需要對導(dǎo)函數(shù)進(jìn)行通分、因式分解等變形.(4)得出結(jié)論.[學(xué)以致用] 1.下列函數(shù)在(0,+∞)上單調(diào)遞減的是( )A.y=xex B.y=x3-3x2C.y=ln x-x D.y=x-ex√D [當(dāng)x>0時,函數(shù)y=xex的導(dǎo)函數(shù)y′=ex+xex=ex(1+x)>0,故函數(shù)在(0,+∞)上單調(diào)遞增;函數(shù)y=x3-3x2的導(dǎo)函數(shù)y′=3x2-6x=3x(x-2),故函數(shù)在(0,2)上單調(diào)遞減,在(2,+∞)上單調(diào)遞增;令y=ln x-x的導(dǎo)函數(shù)y′=-1=>0,解得x<1,所以函數(shù)y=ln x-x在(0,1)上單調(diào)遞增,在(1,+∞)上單調(diào)遞減;函數(shù)y=x-ex的導(dǎo)函數(shù)y′=1-ex,在(0,+∞)上y′=1-ex<0,所以y=x-ex在(0,+∞)上單調(diào)遞減.故選D.]【鏈接·教材例題】例3 求函數(shù)f (x)=x3-x2-2x+1的單調(diào)區(qū)間.探究2 利用導(dǎo)數(shù)求函數(shù)的單調(diào)區(qū)間[解] 函數(shù)f (x)=x3-x2-2x+1的定義域為R.對f (x)求導(dǎo)數(shù),得f ′(x)=x2-x-2=(x+1)(x-2).令f ′(x)=0,解得x=-1,或x=2.x=-1和x=2把函數(shù)定義域劃分成三個區(qū)間,f ′(x)在各區(qū)間上的正負(fù),以及f (x)的單調(diào)性如表5.3-1所示.表5.3-1x (-∞,-1) -1 (-1,2) 2 (2,+∞)f ′(x) + 0 - 0 +f (x) 單調(diào) 遞增 f (-1)= 單調(diào) 遞減 f (2)=- 單調(diào)遞增所以,f (x)在(-∞,-1)和(2,+∞)上單調(diào)遞增,在(-1,2)內(nèi)單調(diào)遞減,如圖5.3-6所示.[典例講評] 2.求下列函數(shù)的單調(diào)區(qū)間:(1)f (x)=x2-ln x;(2)f (x)=2x3+3x2-36x+1.[思路導(dǎo)引] 根據(jù)函數(shù)解析式求出函數(shù)的導(dǎo)函數(shù),根據(jù)導(dǎo)函數(shù)的符號確定函數(shù)單調(diào)區(qū)間.[解] (1)函數(shù)定義域為(0,+∞),且f ′(x)=2x-.令f ′(x)>0,即2x->0,解得x>;令f ′(x)<0,即2x-<0,解得0故函數(shù)f (x)的單調(diào)遞增區(qū)間是,單調(diào)遞減區(qū)間是.(2)f ′(x)=6x2+6x-36=6(x+3)(x-2).令f ′(x)=0,解得x=-3或x=2,x=-3和x=2把函數(shù)的定義域劃分為三個區(qū)間,f ′(x)在各個區(qū)間上的正負(fù)以及f (x)的單調(diào)性如表,x (-∞,-3) -3 (-3,2) 2 (2,+∞)f ′(x) + 0 - 0 +f (x) 單調(diào)遞增 f (-3) 單調(diào)遞減 f (2) 單調(diào)遞增故f (x)的單調(diào)遞增區(qū)間是(-∞,-3),(2,+∞),單調(diào)遞減區(qū)間為(-3,2).【教用·備選題】 求函數(shù)f (x)=x3-2x2+x-1的單調(diào)區(qū)間.[解] 對函數(shù)求導(dǎo)得f ′(x)=3x2-4x+1.令f ′(x)=3x2-4x+1>0,則x<或x>1,因此,函數(shù)f (x)=x3-2x2+x-1在區(qū)間和(1,+∞)上單調(diào)遞增.令f ′(x)=3x2-4x+1<0,則<x<1,因此,函數(shù)f (x)=x3-2x2+x-1在區(qū)間上單調(diào)遞減.反思領(lǐng)悟 利用導(dǎo)數(shù)求函數(shù)單調(diào)區(qū)間的一般步驟(1)確定函數(shù)y=f (x)的定義域.(2)求出導(dǎo)數(shù)f ′(x)的零點.(3)用f ′(x)的零點將f (x)的定義域劃分為若干個區(qū)間,列表給出f ′(x)在各區(qū)間上的正負(fù),進(jìn)而求出單調(diào)區(qū)間.[學(xué)以致用] 2.求下列函數(shù)的單調(diào)區(qū)間:(1)f (x)=x2·e-x;(2)f (x)=x+.[解] (1)函數(shù)的定義域為(-∞,+∞).∵f ′(x)=(x2)′e-x+x2(e-x)′=2xe-x-x2e-x=e-x(2x-x2),令f ′(x)=0,由于e-x>0,∴x1=0,x2=2,用x1,x2分割定義域,如表所示:x (-∞,0) 0 (0,2) 2 (2,+∞)f ′(x) - 0 + 0 -f (x) 單調(diào)遞減 f (0) 單調(diào)遞增 f (2) 單調(diào)遞減∴f (x)的單調(diào)遞減區(qū)間為(-∞,0)和(2,+∞),單調(diào)遞增區(qū)間為(0,2).(2)函數(shù)的定義域為(-∞,0)∪(0,+∞).∵f ′(x)=1-,令f ′(x)=0,得x1=-1,x2=1,用x1,x2分割定義域,如表所示:x (-∞,-1) -1 (-1,0) (0,1) 1 (1,+∞)f ′(x) + 0 - - 0 +f (x) 單調(diào)遞增 f (-1) 單調(diào)遞減 單調(diào)遞減 f (1) 單調(diào)遞增∴函數(shù)f (x)的單調(diào)遞減區(qū)間為(-1,0)和(0,1),單調(diào)遞增區(qū)間為(-∞,-1)和(1,+∞).【鏈接·教材例題】例2 已知導(dǎo)函數(shù)f ′(x)的下列信息:當(dāng)1<x<4時,f ′(x)>0;當(dāng)x<1,或x>4時,f ′(x)<0;當(dāng)x=1,或x=4時,f ′(x)=0.試畫出函數(shù)f (x)圖象的大致形狀.探究3 導(dǎo)函數(shù)與原函數(shù)的關(guān)聯(lián)圖象[解] 當(dāng)1<x<4時,f ′(x)>0,可知f (x)在區(qū)間(1,4)內(nèi)單調(diào)遞增;當(dāng)x<1,或x>4時,f ′(x)<0,可知f (x)在區(qū)間(-∞,1)和(4,+∞)上都單調(diào)遞減;當(dāng)x=1,或x=4時,f ′(x)=0,這兩點比較特殊,我們稱它們?yōu)椤胺€(wěn)定點”.綜上,函數(shù)f (x)圖象的大致形狀如圖5.3-5所示.【鏈接·教材例題】例4 設(shè)x>0,f (x)=ln x,g(x)=1-,兩個函數(shù)的圖象如圖5.3-8所示.判斷f (x),g(x)的圖象與C1,C2之間的對應(yīng)關(guān)系.[解] 因為f (x)=ln x,g(x)=1-,所以f ′(x)=,g′(x)=.當(dāng)x=1時,f ′(x)=g′(x)=1;當(dāng)0<x<1時,g′(x)>f ′(x)>1;當(dāng)x>1時,0<g′(x)<f ′(x)<1.所以,f (x),g(x)在(0,+∞)上都是增函數(shù).在區(qū)間(0,1)內(nèi),g(x)的圖象比f (x)的圖象要“陡峭”;在區(qū)間(1,+∞)上,g(x)的圖象比f (x)的圖象要“平緩”.所以,f (x),g(x)的圖象依次是圖5.3-8中的C2,C1.[典例講評] 3.(1)已知函數(shù)f (x)的導(dǎo)函數(shù)f ′(x)的圖象如圖所示,那么函數(shù)f (x)的圖象最有可能是( )A B C D(2)函數(shù)f (x)的圖象如圖所示,則導(dǎo)函數(shù)f ′(x)的圖象可能為( )A B C D√√(1)A (2)C [(1)當(dāng)x<-2時,f ′(x)<0,則f (x)單調(diào)遞減;當(dāng)-2<x<0時,f ′(x)>0,則f (x)單調(diào)遞增;當(dāng)x>0時,f ′(x)<0,則f (x)單調(diào)遞減.則符合上述條件的只有選項A.故選A.(2)由f (x)的圖象知,當(dāng)x∈(-∞,1)時,f (x)單調(diào)遞減,f ′(x)<0;當(dāng)x∈(1,4)時,f (x)單調(diào)遞增,f ′(x)>0;當(dāng)x∈(4,+∞)時,f (x)單調(diào)遞減,f ′(x)<0.由選項各圖知,選項C符合題意.故選C.]反思領(lǐng)悟 (1)導(dǎo)函數(shù)的正負(fù)看原函數(shù)的增減.①觀察原函數(shù)的圖象,重在找出“上升”“下降”產(chǎn)生變化的點,分析函數(shù)值的變化趨勢.②觀察導(dǎo)函數(shù)的圖象,重在找出導(dǎo)函數(shù)圖象與x軸的交點,分析導(dǎo)數(shù)的正負(fù).(2)導(dǎo)函數(shù)的絕對值大小決定原函數(shù)增減快慢.某一范圍內(nèi)導(dǎo)數(shù)的絕對值較大,那么函數(shù)在這個范圍內(nèi)變化得較快,這時函數(shù)的圖象就比較“陡峭”(向上或向下);反之,函數(shù)的圖象就比較“平緩”.(3)解決問題時,要分清是原函數(shù)圖象還是導(dǎo)函數(shù)圖象.[學(xué)以致用] 3.設(shè)函數(shù)y=f (x)在定義域內(nèi)可導(dǎo),y=f (x)的圖象如圖所示,則導(dǎo)函數(shù)y=f ′(x)的圖象可能為( )A B C D√D [由題中函數(shù)f (x)的圖象可知,函數(shù)f (x)在(-∞,0)上先增后減,所以其對應(yīng)的導(dǎo)函數(shù)符號先正后負(fù),在y軸左側(cè)導(dǎo)函數(shù)的圖象由左上到右下穿過x軸;當(dāng)x∈(0,+∞)時,f (x)單調(diào)遞減,所以x∈(0,+∞)時,f ′(x)<0,只有D選項符合條件.故選D.]243題號1應(yīng)用遷移1.f ′(x)是f (x)的導(dǎo)函數(shù),f ′(x)的圖象如圖所示,則f (x)的圖象只可能是( )A B C D√A [由f ′(x)圖象可知f ′(0)=0,f ′(2)=0,f (x)在區(qū)間[0,2]上的增長速度先快后慢,A選項符合.故選A.]23題號142.命題甲:對任意x∈(a,b),有f ′(x)>0;命題乙:f (x)在(a,b)內(nèi)是單調(diào)遞增的,則甲是乙的( )A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件√A [例如,f (x)=x3在(-1,1)內(nèi)是單調(diào)遞增的,但f ′(x)=3x2≥0(-1<x<1),故甲是乙的充分不必要條件.故選A.]23題號413.下列函數(shù)中,在(0,+∞)內(nèi)單調(diào)遞增的是( )A.y=sin x B.y=xe2C.y=x3-x D.y=ln x-xB [對于B,y=xe2,則y′=e2,∴y=xe2在R上為增函數(shù),在(0,+∞)內(nèi)單調(diào)遞增.其他選項可同理逐一求導(dǎo)排除.故選B.]√243題號14.函數(shù)y=ln (x2-x-2)的單調(diào)遞減區(qū)間為_____________.(-∞,-1) [函數(shù)y=ln (x2-x-2)的定義域為(-∞,-1)∪(2,+∞),令f (x)=x2-x-2,f ′(x)=2x-1<0,得x<,∴函數(shù)y=ln (x2-x-2)的單調(diào)遞減區(qū)間為(-∞,-1).](-∞,-1)1.知識鏈:(1)函數(shù)的單調(diào)性與其導(dǎo)數(shù)的關(guān)系.(2)利用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性.(3)利用導(dǎo)數(shù)求函數(shù)的單調(diào)區(qū)間.(4)原函數(shù)與導(dǎo)函數(shù)圖象的關(guān)系.2.方法鏈:方程思想、分類討論.3.警示牌:忽略定義域的限制而出錯.回顧本節(jié)知識,自主完成以下問題:1.利用導(dǎo)數(shù)求函數(shù)單調(diào)性的思路是怎樣的?[提示] 利用導(dǎo)數(shù)求函數(shù)的單調(diào)性一般通過解不等式的方法完成,其步驟為:①確定函數(shù)f (x)的定義域;②求導(dǎo)函數(shù)f ′(x);③解不等式f ′(x)>0(或f ′(x)<0),并寫出解集;④根據(jù)③的結(jié)果確定函數(shù)f (x)的單調(diào)區(qū)間.2.原函數(shù)圖象與導(dǎo)函數(shù)圖象之間有何關(guān)系?[提示] 導(dǎo)函數(shù)f ′(x)圖象在x軸上方時對應(yīng)的自變量的取值區(qū)間為原函數(shù)f (x)圖象上升部分對應(yīng)的區(qū)間(單調(diào)遞增區(qū)間),導(dǎo)函數(shù)f ′(x)圖象在x軸下方時對應(yīng)的自變量的取值區(qū)間為原函數(shù)f (x)圖象下降部分對應(yīng)的區(qū)間(單調(diào)遞減區(qū)間).一、選擇題1.函數(shù)y=x3-x2-x的單調(diào)遞增區(qū)間為( )A.和(1,+∞) B.C.∪(1,+∞) D.課時分層作業(yè)(十八) 函數(shù)的單調(diào)性題號13524687910111213√1415A [由題意知,y′=3x2-2x-1(x∈R).由y′>0可解得x<-或x>1,∴函數(shù)的單調(diào)遞增區(qū)間為和(1,+∞).故選A.]題號213456879101112132.函數(shù)y=x ln x在(0,5)上的單調(diào)性是( )A.單調(diào)遞增B.單調(diào)遞減C.在上單調(diào)遞減,在上單調(diào)遞增D.在上單調(diào)遞增,在上單調(diào)遞減√1415C [由已知得函數(shù)y=x ln x的定義域為(0,+∞).y′=ln x+1,令y′>0,得x>;令y′<0,得0<x<.∴函數(shù)y=x ln x在上單調(diào)遞減,在上單調(diào)遞增.]A B C D題號324568791011121313.設(shè)函數(shù)f (x)在定義域內(nèi)可導(dǎo),y=f (x)的圖象如圖所示,則導(dǎo)函數(shù)y=f ′(x)的圖象可能為( )√1415題號324568791011121311415D [觀察函數(shù)f (x)的圖象得:f (x)在(-∞,0)上單調(diào)遞增,在(0,+∞)上先單調(diào)遞增,再單調(diào)遞減,后又單調(diào)遞增,則當(dāng)x∈(-∞,0)時,f ′(x)>0,即當(dāng)x∈(-∞,0)時,函數(shù)y=f ′(x)的圖象在x軸上方,于是排除A,C.當(dāng)x∈(0,+∞)時,f ′(x)的值先大于0,接著變?yōu)樾∮?,之后又變?yōu)榇笥?,即當(dāng)x∈(0,+∞)時,函數(shù)y=f ′(x)的圖象先在x軸上方,接著變化到x軸下方,最后又變到x軸上方,于是排除B,選項D相符.故選D.]題號423568791011121314.(多選)下列函數(shù)在定義域上為增函數(shù)的有( )A.f (x)=x- B.f (x)=xexC.f (x)=x+sin x D.f (x)=ex-e-x-2x√1415√題號423568791011121311415CD [根據(jù)題意,依次分析選項.對于A,f (x)=x-,有f (-1)=f (1)=0,則f (x)在其定義域上不是單調(diào)函數(shù),不符合題意;對于B,f (x)=xex,其導(dǎo)數(shù)f ′(x)=xex+ex=(x+1)ex,在區(qū)間(-∞,-1)上,f ′(x)<0,則f (x)單調(diào)遞減,不符合題意;對于C,f (x)=x+sin x,其導(dǎo)數(shù)f ′(x)=1+cos x≥0,則f (x)在定義域上為增函數(shù),符合題意;對于D,f (x)=ex-e-x-2x,其導(dǎo)數(shù)f ′(x)=ex+e-x-2≥0,則f (x)在定義域上為增函數(shù),符合題意.故選CD.]題號245368791011121315.(多選)函數(shù)f (x)=(x-3)ex在下列區(qū)間上單調(diào)遞增的是( )A.(-∞,2) B.(0,3)C.(3,4) D.(2,+∞)√1415CD [∵f ′(x)=ex+(x-3)ex=(x-2)ex,由f ′(x)>0,得(x-2)ex>0,∴x>2.∴f (x)的單調(diào)遞增區(qū)間為(2,+∞),CD符合.]√題號24536879101112131二、填空題6.已知函數(shù)f (x)的導(dǎo)函數(shù)y=f ′(x)的圖象如圖所示,則函數(shù)f (x)的單調(diào)遞增區(qū)間是_________________________.1415(-1,2),(4,+∞)題號245368791011121311415(-1,2),(4,+∞) [由題圖可知,在區(qū)間(-1,2),(4,+∞)上,f ′(x)>0;在區(qū)間(-∞,-1),(2,4)上,f ′(x)<0.由導(dǎo)函數(shù)的正負(fù)與函數(shù)單調(diào)性的關(guān)系可得,函數(shù)f (x)的單調(diào)遞增區(qū)間是(-1,2),(4,+∞).]題號245376891011121317.已知m是實數(shù),函數(shù)f (x)=x2(x-m),若f ′(-1)=-1,則函數(shù)f (x)的單調(diào)遞減區(qū)間是____________.1415 [f ′(x)=2x(x-m)+x2,因為f ′(-1)=-1,所以-2(-1-m)+1=-1,解得m=-2,令f ′(x)=2x(x+2)+x2<0,解得-<x<0,則函數(shù)f (x)的單調(diào)遞減區(qū)間是.]題號245386791011121318.函數(shù)f (x)=x2-5x+2ln (2x)的單調(diào)遞增區(qū)間是_______________.1415,(2,+∞) [f (x)的定義域是(0,+∞),f ′(x)=,由f ′(x)>0,得x>2或0<x<,故f (x)的單調(diào)遞增區(qū)間是,(2,+∞).],(2,+∞)題號92453867101112131三、解答題9.已知導(dǎo)函數(shù)f ′(x)的下列信息:當(dāng)2<x<3時,f ′(x)<0;當(dāng)x>3或x<2時,f ′(x)>0;當(dāng)x=3或x=2時,f ′(x)=0;試畫出函數(shù)f (x)圖象的大致形狀.1415題號92453867101112131[解] 當(dāng)2<x<3時,f ′(x)<0,可知函數(shù)在此區(qū)間上單調(diào)遞減;當(dāng)x>3或x<2時,f ′(x)>0,可知函數(shù)在這兩個區(qū)間上單調(diào)遞增;當(dāng)x=3或x=2時,f ′(x)=0,可知在這兩點處的兩側(cè),函數(shù)單調(diào)性發(fā)生改變.綜上可畫出函數(shù)f (x)圖象的大致形狀,如圖所示(答案不唯一).1415題號9245386710111213110.函數(shù)f (x)=x3+ax2+bx+c,其中a,b,c為實數(shù),當(dāng)a2-3b<0時,f (x)是( )A.增函數(shù) B.減函數(shù)C.常數(shù)函數(shù) D.既不是增函數(shù)也不是減函數(shù)√1415A [求得函數(shù)的導(dǎo)函數(shù)f ′(x)=3x2+2ax+b,導(dǎo)函數(shù)對應(yīng)方程f ′(x)=0的Δ=4(a2-3b)<0,所以f ′(x)>0恒成立,故f (x)是增函數(shù).]題號9245386710111213111.(多選)已知函數(shù)f (x)=(x2-4x+1)ex,則函數(shù)f (x)在下列區(qū)間上單調(diào)遞增的是( )A.(-1,0) B.(-2,-1)C.(-1,3) D.(3,4)√1415BD [f ′(x)=(2x-4)ex+(x2-4x+1)ex=(x2-2x-3)ex,令f ′(x)>0,可得x2-2x-3>0,解得x<-1或x>3,所以f (x)的單調(diào)遞增區(qū)間是(-∞,-1),(3,+∞),所以f (x)在(-2,-1)與(3,4)上單調(diào)遞增.故選BD.]√12.已知函數(shù)f (x)=2x-ln |x|,則f (x)的大致圖象為( )A B C D題號92453867101112131√1415題號92453867101112131A [當(dāng)x<0時,f (x)=2x-ln (-x),f ′(x)=2-·(-1)=2->0,所以f (x)在(-∞,0)上單調(diào)遞增,則B,D錯誤;當(dāng)x>0時,f (x)=2x-ln x,f ′(x)=2-=,則f (x)在上單調(diào)遞減,在上單調(diào)遞增,所以A正確,故選A.]1415題號9245386710111213113.函數(shù)f (x)=e2x-2(x+2)的單調(diào)遞增區(qū)間為___________.1415(0,+∞) [f (x)=e2x-2x-4,求導(dǎo)得f ′(x)=2e2x-2,令f ′(x)>0,解得x∈(0,+∞),所以f (x)的單調(diào)遞增區(qū)間為(0,+∞).](0,+∞)題號9245386710111213114.已知函數(shù)f (x)=-1.(1)求函數(shù)在點(1,f (1))處的切線方程;(2)試判斷函數(shù)f (x)的單調(diào)性.1415題號92453867101112131[解] (1)由題可知,f ′(x)=,所以f ′(1)=1,f (1)=-1.∴函數(shù)在點(1,f (1))處的切線方程為y-(-1)=x-1,即y=x-2.(2)因為函數(shù)的定義域為(0,+∞)且f ′(x)=,令f ′(x)=>0,得0<x<e,令f ′(x)=<0,得x>e,因此函數(shù)f (x)在區(qū)間(0,e)上單調(diào)遞增,在(e,+∞)上單調(diào)遞減1415題號9245386710111213115.(多選)若函數(shù)f (x)在定義域D內(nèi)的某個區(qū)間I上是單調(diào)遞增函數(shù),且F(x)=在區(qū)間I上也是單調(diào)遞增函數(shù),則稱y=f (x)是I上的“一致遞增函數(shù)”.已知f (x)=x+,若函數(shù)f (x)是區(qū)間I上的“一致遞增函數(shù)”,則區(qū)間I可能是( )A.(-∞,-2) B.(-∞,0)C.(0,+∞) D.(2,+∞)1415√√題號92453867101112131AD [f (x)=x+,則f ′(x)=.F(x)==1+,則F′(x)=,當(dāng)x∈(-∞,-2)時,f ′(x)=>>0,函數(shù)f (x)單調(diào)遞增,F′(x)=>0,函數(shù)F(x)單調(diào)遞增,故A滿足;1415題號92453867101112131f ′=<0,故B不滿足;F′(1)=-e<0,故C不滿足;當(dāng)x∈(2,+∞)時,f ′(x)=>0,函數(shù)f (x)單調(diào)遞增,F(xiàn)′(x)=>0,函數(shù)F(x)單調(diào)遞增.故D滿足.故選AD.]1415THANKS5.3 導(dǎo)數(shù)在研究函數(shù)中的應(yīng)用5.3.1 函數(shù)的單調(diào)性第1課時 函數(shù)的單調(diào)性[學(xué)習(xí)目標(biāo)] 1.理解導(dǎo)數(shù)與函數(shù)的單調(diào)性的關(guān)系.(數(shù)學(xué)抽象)2.掌握利用導(dǎo)數(shù)判斷函數(shù)單調(diào)性的方法.(數(shù)學(xué)運算)3.對于多項式函數(shù),能求不超過三次的多項式函數(shù)的單調(diào)區(qū)間.[討論交流] 問題1.函數(shù)的單調(diào)性與導(dǎo)數(shù)有什么關(guān)系?問題2.函數(shù)值變化快慢與導(dǎo)數(shù)有什么關(guān)系?[自我感知] 經(jīng)過認(rèn)真的預(yù)習(xí),結(jié)合對本節(jié)課的理解和認(rèn)知,請畫出本節(jié)課的知識邏輯體系.探究1 利用導(dǎo)數(shù)的正負(fù)判斷單調(diào)性探究問題1 已知函數(shù):(1)y=2x-1,(2)y=-3x,(3)y=2x,它們的導(dǎo)數(shù)的正負(fù)與它們的單調(diào)性之間有怎樣的關(guān)系? 探究問題2 如果函數(shù)f (x)在區(qū)間(a,b)內(nèi)有無數(shù)個點滿足f ′(x)>0,能認(rèn)為f (x)在這個區(qū)間內(nèi)單調(diào)遞增嗎? [新知生成]函數(shù)的單調(diào)性與其導(dǎo)數(shù)的關(guān)系定義在區(qū)間(a,b)內(nèi)的函數(shù)y=f (x):f ′(x)的正負(fù) f (x)的單調(diào)性f ′(x)>0 單調(diào)遞________f ′(x)<0 單調(diào)遞________[典例講評] 1.利用導(dǎo)數(shù)判斷下列函數(shù)的單調(diào)性:(1)f (x)=x3-x2+2x-5;(2)f (x)=x--ln x.[嘗試解答] 利用導(dǎo)數(shù)判斷函數(shù)單調(diào)性的步驟(1)確定函數(shù)的定義域.(2)求導(dǎo)數(shù)f ′(x).(3)確定f ′(x)在定義域內(nèi)的符號,在此過程中,需要對導(dǎo)函數(shù)進(jìn)行通分、因式分解等變形.(4)得出結(jié)論.[學(xué)以致用] 1.下列函數(shù)在(0,+∞)上單調(diào)遞減的是( )A.y=xex B.y=x3-3x2C.y=ln x-x D.y=x-ex探究2 利用導(dǎo)數(shù)求函數(shù)的單調(diào)區(qū)間[典例講評] 2.求下列函數(shù)的單調(diào)區(qū)間:(1)f (x)=x2-ln x;(2)f (x)=2x3+3x2-36x+1.[思路導(dǎo)引] 根據(jù)函數(shù)解析式求出函數(shù)的導(dǎo)函數(shù),根據(jù)導(dǎo)函數(shù)的符號確定函數(shù)單調(diào)區(qū)間.[嘗試解答] 利用導(dǎo)數(shù)求函數(shù)單調(diào)區(qū)間的一般步驟(1)確定函數(shù)y=f (x)的定義域.(2)求出導(dǎo)數(shù)f ′(x)的零點.(3)用f ′(x)的零點將f (x)的定義域劃分為若干個區(qū)間,列表給出f ′(x)在各區(qū)間上的正負(fù),進(jìn)而求出單調(diào)區(qū)間.[學(xué)以致用] 2.求下列函數(shù)的單調(diào)區(qū)間:(1)f (x)=x2·e-x;(2)f (x)=x+. 探究3 導(dǎo)函數(shù)與原函數(shù)的關(guān)聯(lián)圖象[典例講評] 3.(1)已知函數(shù)f (x)的導(dǎo)函數(shù)f ′(x)的圖象如圖所示,那么函數(shù)f (x)的圖象最有可能是( )A B C D(2)函數(shù)f (x)的圖象如圖所示,則導(dǎo)函數(shù)f ′(x)的圖象可能為( )A BC D[嘗試解答] (1)導(dǎo)函數(shù)的正負(fù)看原函數(shù)的增減.①觀察原函數(shù)的圖象,重在找出“上升”“下降”產(chǎn)生變化的點,分析函數(shù)值的變化趨勢.②觀察導(dǎo)函數(shù)的圖象,重在找出導(dǎo)函數(shù)圖象與x軸的交點,分析導(dǎo)數(shù)的正負(fù).(2)導(dǎo)函數(shù)的絕對值大小決定原函數(shù)增減快慢.某一范圍內(nèi)導(dǎo)數(shù)的絕對值較大,那么函數(shù)在這個范圍內(nèi)變化得較快,這時函數(shù)的圖象就比較“陡峭”(向上或向下);反之,函數(shù)的圖象就比較“平緩”.(3)解決問題時,要分清是原函數(shù)圖象還是導(dǎo)函數(shù)圖象.[學(xué)以致用] 3.設(shè)函數(shù)y=f (x)在定義域內(nèi)可導(dǎo),y=f (x)的圖象如圖所示,則導(dǎo)函數(shù)y=f ′(x)的圖象可能為( )A BC D1.f ′(x)是f (x)的導(dǎo)函數(shù),f ′(x)的圖象如圖所示,則f (x)的圖象只可能是( )A BC D2.命題甲:對任意x∈(a,b),有f ′(x)>0;命題乙:f (x)在(a,b)內(nèi)是單調(diào)遞增的,則甲是乙的( )A.充分不必要條件B.必要不充分條件C.充要條件D.既不充分也不必要條件3.下列函數(shù)中,在(0,+∞)內(nèi)單調(diào)遞增的是( )A.y=sin x B.y=xe2C.y=x3-x D.y=ln x-x4.函數(shù)y=ln (x2-x-2)的單調(diào)遞減區(qū)間為________.1.知識鏈:(1)函數(shù)的單調(diào)性與其導(dǎo)數(shù)的關(guān)系.(2)利用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性.(3)利用導(dǎo)數(shù)求函數(shù)的單調(diào)區(qū)間.(4)原函數(shù)與導(dǎo)函數(shù)圖象的關(guān)系.2.方法鏈:方程思想、分類討論.3.警示牌:忽略定義域的限制而出錯.6/6(共59張PPT)第2課時 函數(shù)單調(diào)性的應(yīng)用第五章 一元函數(shù)的導(dǎo)數(shù)及其應(yīng)用5.3 導(dǎo)數(shù)在研究函數(shù)中的應(yīng)用5.3.1 函數(shù)的單調(diào)性整體感知[學(xué)習(xí)目標(biāo)] 1.進(jìn)一步理解函數(shù)的導(dǎo)數(shù)和其單調(diào)性的關(guān)系.(數(shù)學(xué)運算)2.能求簡單的含參的函數(shù)的單調(diào)區(qū)間以及根據(jù)函數(shù)的單調(diào)性求參數(shù)的取值范圍.(數(shù)學(xué)運算)(教師用書)請大家解這樣一個關(guān)于x的一元一次不等式:ax-2>0,根據(jù)不等式的性質(zhì)可知,我們無法直接進(jìn)行求解,它依賴于a的符號,于是我們分類討論進(jìn)行求解如下:當(dāng)a>0時,得x>;當(dāng)a=0時,x無解;當(dāng)a<0時,得x<,參數(shù)的存在不僅對解不等式有影響,對于一些函數(shù)的單調(diào)性也有影響,如何解答含參函數(shù)的單調(diào)性問題,今天我們就來探究一下.[討論交流] 問題1.若函數(shù)f (x)為可導(dǎo)函數(shù),且在區(qū)間(a,b)上單調(diào)遞增(或遞減),則f ′(x)滿足什么條件?問題2.對于函數(shù)y=f (x),f ′(x)≥0是f (x)為增函數(shù)的充要條件嗎?[自我感知] 經(jīng)過認(rèn)真的預(yù)習(xí),結(jié)合對本節(jié)課的理解和認(rèn)知,請畫出本節(jié)課的知識邏輯體系.探究建構(gòu)探究1 討論含參函數(shù)的單調(diào)性[典例講評] 1.已知函數(shù)f (x)=ln x-ax2+(1-a)x+a(a∈R),判斷函數(shù)f (x)的單調(diào)性.[解] 函數(shù)f (x)的定義域為(0,+∞),f ′(x)=-ax+1-a==.當(dāng)a≤0時,f ′(x)>0,函數(shù)f (x)在(0,+∞)上單調(diào)遞增.當(dāng)a>0時,令f ′(x)>0,解得0<x<,則f (x)在上單調(diào)遞增;令f ′(x)<0,解得x>,則f (x)在上單調(diào)遞減.綜上,當(dāng)a≤0時,函數(shù)f (x)在(0,+∞)上單調(diào)遞增;當(dāng)a>0時,函數(shù)f (x)在上單調(diào)遞增,在上單調(diào)遞減.反思領(lǐng)悟 (1)研究含參數(shù)的函數(shù)的單調(diào)性,要依據(jù)參數(shù)對不等式解集的影響進(jìn)行分類討論.(2)劃分函數(shù)的單調(diào)區(qū)間時,要在函數(shù)的定義域內(nèi)討論,還要確定導(dǎo)數(shù)為0的點和函數(shù)的間斷點.【教用·備選題】 已知函數(shù)f (x)=x3+ax2-3a2x+1(a≤0).試求函數(shù)f (x)的單調(diào)區(qū)間.[解] f ′(x)=x2+2ax-3a2=(x+3a)(x-a),且x∈(-∞,+∞).當(dāng)a=0時,f ′(x)=x2≥0,此時f (x)在(-∞,+∞)上單調(diào)遞增.當(dāng)a<0,x∈(-∞,a)時,f ′(x)>0,此時f (x)單調(diào)遞增;x∈(a,-3a)時,f ′(x)<0,此時f (x)單調(diào)遞減;x∈(-3a,+∞)時,f ′(x)>0,此時f (x)單調(diào)遞增.綜上,當(dāng)a=0時,函數(shù)f (x)的單調(diào)遞增區(qū)間為(-∞,+∞),無單調(diào)遞減區(qū)間;當(dāng)a<0時,函數(shù)f (x)的單調(diào)遞增區(qū)間為(-∞,a),(-3a,+∞);函數(shù)f (x)的單調(diào)遞減區(qū)間為(a,-3a).[學(xué)以致用] 1.求函數(shù)f (x)=+a ln x(a∈R)的單調(diào)遞減區(qū)間.[解] 易得函數(shù)f (x)的定義域是(0,+∞),f ′(x)=-=.①當(dāng)a≤0時,f ′(x)<0在(0,+∞)上恒成立,故f (x)在(0,+∞)上單調(diào)遞減.②當(dāng)a>0時,若0<x<,則f ′(x)<0;若x>,則f ′(x)>0,所以f (x)在上單調(diào)遞減,在上單調(diào)遞增.綜上可知,當(dāng)a≤0時,f (x)的單調(diào)遞減區(qū)間為(0,+∞),當(dāng)a>0時,f (x)的單調(diào)遞減區(qū)間為.探究2 根據(jù)函數(shù)的單調(diào)性求參數(shù)的取值范圍探究問題1 如果函數(shù)y=f (x)在區(qū)間(a,b)內(nèi)單調(diào)遞增,則f ′(x)有什么特點?[提示] f ′(x)≥0,但f ′(x)不可以恒為0.探究問題2 如果函數(shù)y=f (x)在區(qū)間(a,b)內(nèi)存在單調(diào)遞增區(qū)間,則f ′(x)有什么特點?[提示] f ′(x)>0有解.[新知生成]導(dǎo)數(shù)的符號與函數(shù)單調(diào)性的關(guān)系(1)在某區(qū)間D上,若f ′(x)>0 函數(shù)f (x)在D上________;在某區(qū)間D上,若f ′(x)<0 函數(shù)f (x)在D上________.(2)若函數(shù)f (x)在D上單調(diào)遞增 f ′(x)≥0;若函數(shù)f (x)在D上單調(diào)遞減 _________.需要檢驗f ′(x)=0不能恒成立.(3)若函數(shù)f (x)在D上存在單調(diào)遞增區(qū)間 f ′(x)>0有解.若函數(shù)f (x)在D上存在單調(diào)遞減區(qū)間 ______________.單調(diào)遞增單調(diào)遞減f ′(x)≤0f ′(x)<0有解【教用·微提醒】 (1)單調(diào)區(qū)間可以寫成閉區(qū)間,我們習(xí)慣上寫成開區(qū)間.(2)注意以下區(qū)別:若單調(diào)遞增,則f ′(x)≥0恒成立;若存在單調(diào)遞增區(qū)間,則f ′(x)>0能成立.[典例講評] 2.已知函數(shù)f (x)=x3-ax-1為增函數(shù),求實數(shù)a的取值范圍.[思路導(dǎo)引] →→[解] 由已知得f ′(x)=3x2-a,因為f (x)在R上是增函數(shù),所以f ′(x)=3x2-a≥0在R上恒成立,即a≤3x2對x∈R恒成立.因為3x2≥0,所以只需a≤0.又因為a=0時,f ′(x)=3x2≥0且不恒為0,f (x)=x3-1在R上是增函數(shù),所以a≤0.[母題探究] 1.若函數(shù)f (x)=x3-ax-1的單調(diào)遞減區(qū)間為(-1,1),求a的值.[解] 由題意得f ′(x)=3x2-a,函數(shù)f (x)的定義域為R.①當(dāng)a≤0時,f ′(x)≥0,∴f (x)在R上為增函數(shù),與已知矛盾,不符合題意.②當(dāng)a>0時,令3x2-a=0,得x=±,當(dāng)-<x<時,f ′(x)<0.∴f (x)在上單調(diào)遞減,∴f (x)的單調(diào)遞減區(qū)間為,又函數(shù)f (x)=x3-ax-1的單調(diào)遞減區(qū)間為(-1,1),∴=1,即a=3.2.若函數(shù)f (x)=x3-ax-1在(-1,1)上單調(diào)遞減,求a的取值范圍.[解] 由題意可知f ′(x)=3x2-a≤0在(-1,1)上恒成立,∴即∴a≥3.即a的取值范圍是[3,+∞).3.若函數(shù)f (x)=x3-ax-1在(-1,1)上不單調(diào),求a的取值范圍.[解] ∵f (x)=x3-ax-1,∴f ′(x)=3x2-a,由題意可知a>0,由f ′(x)=0,得x=±(a>0).∵f (x)在區(qū)間(-1,1)上不單調(diào),∴0<<1,即0<a<3.故a的取值范圍為(0,3).發(fā)現(xiàn)規(guī)律 利用函數(shù)的單調(diào)性求參數(shù),常用方法如下:1 函數(shù)f (x)在區(qū)間D上單調(diào)遞增 ___________在區(qū)間D上恒成立2 函數(shù)f (x)在區(qū)間D上單調(diào)遞減 ___________在區(qū)間D上恒成立3 函數(shù)f (x)在區(qū)間D上不單調(diào) f ′(x)在區(qū)間D上存在變號____f ′(x)≥0f ′(x)≤0零點4 函數(shù)f (x)在區(qū)間D上存在單調(diào)遞增區(qū)間 x0∈D,使得___________成立5 函數(shù)f (x)在區(qū)間D上存在單調(diào)遞減區(qū)間 x0∈D,使得___________成立6 若已知f (x)在區(qū)間D上的單調(diào)性,區(qū)間D上含有參數(shù)時,可先求出f (x)的單調(diào)區(qū)間,令D是其單調(diào)區(qū)間的________,從而求出參數(shù)的取值范圍f ′(x0)>0f ′(x0)<0非空子集[學(xué)以致用] 2.已知a∈R,函數(shù)f (x)=x3-6x2+3(4-a)x.(1)若曲線y=f (x)在點(3,f (3))處的切線與直線x-3y=0垂直,求a的值;(2)若函數(shù)f (x)在區(qū)間(1,4)上單調(diào)遞減,求a的取值范圍.[解] (1)因為f ′(x)=3x2-12x+12-3a,所以曲線y=f (x)在點(3,f (3))處的切線斜率k=f ′(3)=27-36+12-3a=3-3a.而直線x-3y=0的斜率為,則3-3a=-3,解得a=2.(2)由f (x)在(1,4)上單調(diào)遞減,得f ′(x)=3x2-12x+12-3a≤0在(1,4)上恒成立,即a≥x2-4x+4在(1,4)上恒成立.又x∈(1,4)時,y=x2-4x+4<4,所以a≥4,所以a的取值范圍是[4,+∞).探究3 根據(jù)函數(shù)的單調(diào)性比較大小或解不等式[典例講評] 3.(1)函數(shù)f (x)=sin x+2xf ′,f ′(x)為f (x)的導(dǎo)函數(shù),令a=,b=log32,則下列關(guān)系正確的是( )A.f (a)<f (b) B.f (a)>f (b)C.f (a)=f (b) D.f (a)≤f (b)√(2)已知函數(shù)f (x)的定義域為R,f ′(x)為f (x)的導(dǎo)函數(shù),函數(shù)y=f ′(x)的圖象如圖所示,且f (-2)=1,f (3)=1,則不等式f (x2-6)>1的解集是( )A.(-3,-2)∪(2,3)B.(-)C.(2,3)D.(-∞,-)∪(,+∞)√(1)B (2)A [(1)由題意得f ′(x)=cos x+2f ′,f ′=cos +2f ′,解得f ′=-,所以f (x)=sin x-x,所以f ′(x)=cos x-1≤0,所以f (x)為減函數(shù).因為b=log32>log3==a,所以f (a)>f (b).故選B.(2)由y=f ′(x)的圖象知,函數(shù)f (x)在(-∞,0)上單調(diào)遞增,在(0,+∞)上單調(diào)遞減,且f (-2)=1,f (3)=1,則不等式f (x2-6)>1可轉(zhuǎn)化為-2<x2-6<3,解得2<x<3或-3<x<-2.故選A.]反思領(lǐng)悟 (1)在比較兩數(shù)(式)的大小關(guān)系時,首先要判斷所給函數(shù)的單調(diào)性,再根據(jù)函數(shù)的單調(diào)性比較大小.(2)在解一些不等式時,先判斷函數(shù)的單調(diào)性,再利用單調(diào)性脫去f,即可得到變量的大小關(guān)系.[學(xué)以致用] 3.(1)設(shè)函數(shù)f (x)=2x+sin x,則( )A.f (1)>f (2) B.f (1)<f (2)C.f (1)=f (2) D.以上都不正確(2)已知f (x)是定義在R上的偶函數(shù)且連續(xù),當(dāng)x>0時,f ′(x)<0,若f (lg x)>f (1),則x的取值范圍是________.√(1)B (2) [(1)f ′(x)=2+cos x>0,故f (x)是R上的增函數(shù),故f (1)<f (2).故選B.(2)由題設(shè)知,當(dāng)x>0時,f (x)單調(diào)遞減;當(dāng)x<0時,f (x)單調(diào)遞增,∴f (lg x)>f (1) |lg x|<1 -1<lg x<1 <x<10.]243題號1應(yīng)用遷移√B [由題意可得,f ′(x)=sin x+a≥0恒成立,故a≥-sin x恒成立,因為-1≤-sin x≤1,所以a≥1.故選B.]1.若函數(shù)f (x)=-cos x+ax為增函數(shù),則實數(shù)a的取值范圍為( )A.[-1,+∞) B.[1,+∞)C.(-1,+∞) D.(1,+∞)23題號142.已知函數(shù)f (x)=+ln x,則下列選項正確的是( )A.f (e)<f (π)<f (2.7) B.f (π)<f (e)<f (2.7)C.f (e)<f (2.7)<f (π) D.f (2.7)<f (e)<f (π)√D [因為函數(shù)f (x)=+ln x(x>0),所以f ′(x)=>0,所以函數(shù)f (x)在(0,+∞)上單調(diào)遞增.又因為2.7<e<π,所以f (2.7)<f (e)<f (π).故選D.]23題號413.函數(shù)f (x)=x3-mx2+m-2的單調(diào)遞減區(qū)間為(0,3),則m=________. [令f ′(x)=3x2-2mx=0,解得x=0或x=m,所以m=3,解得m=.]243題號14.函數(shù)f (x)的圖象如圖所示,f ′(x)為函數(shù)f (x)的導(dǎo)函數(shù),則不等式<0的解集為___________________.(-3,-1)∪(0,1) [由題圖知,當(dāng)x∈(-∞,-3)∪(-1,1)時,f ′(x)<0;當(dāng)x∈(-3,-1)∪(1,+∞)時,f ′(x)>0,故不等式<0的解集為(-3,-1)∪(0,1).](-3,-1)∪(0,1)1.知識鏈:(1)求含參函數(shù)的單調(diào)區(qū)間.(2)由單調(diào)性求參數(shù)的取值范圍.(3)函數(shù)單調(diào)性的應(yīng)用.2.方法鏈:分類討論、數(shù)形結(jié)合.3.警示牌:求參數(shù)的取值范圍時容易忽略對端點值的討論.回顧本節(jié)知識,自主完成以下問題:1.利用導(dǎo)數(shù)研究含參數(shù)函數(shù)的單調(diào)性,一般有哪幾種情況?如何解決這幾種情況?[提示] 利用導(dǎo)數(shù)研究含參數(shù)函數(shù)的單調(diào)性時,常遇到三種情況:①區(qū)間端點大小不確定型由于函數(shù)導(dǎo)數(shù)不等式中的區(qū)間端點大小不定,因此需根據(jù)區(qū)間端點的大小確定參數(shù)的范圍,再分類討論函數(shù)的單調(diào)區(qū)間.②區(qū)間端點與定義域關(guān)系不確定型此類問題一般會有定義域限制,解函數(shù)導(dǎo)數(shù)不等式的區(qū)間端點含參數(shù),此端點與函數(shù)定義域的端點大小不確定,因此需分類討論.③最高次項系數(shù)不確定型此類問題一般要對最高次項的系數(shù)a,分a>0,a=0,a<0進(jìn)行討論.2.總結(jié)由函數(shù)的單調(diào)性求參數(shù)的取值范圍的方法有哪幾種?[提示] ①可導(dǎo)函數(shù)在區(qū)間(a,b)上單調(diào),實際上就是在該區(qū)間上f ′(x)≥0(或f ′(x)≤0)恒成立,得到關(guān)于參數(shù)的不等式,根據(jù)已知條件,求出參數(shù)的取值范圍,但最后要注意檢驗.②可導(dǎo)函數(shù)在區(qū)間(a,b)上存在單調(diào)區(qū)間,實際上就是f ′(x)>0(或f ′(x)<0)在區(qū)間(a,b)上存在解集,從而轉(zhuǎn)化為不等式問題,求出參數(shù)的取值范圍.③若已知f (x)在區(qū)間I上的單調(diào)性,且區(qū)間I含有參數(shù)時,可先求出f ′(x)為正或負(fù)時的區(qū)間,令I(lǐng)是f (x)的單調(diào)區(qū)間的非空子集,從而求出參數(shù)的取值范圍.課時分層作業(yè)(十九) 函數(shù)單調(diào)性的應(yīng)用題號13524687910111213√1415一、選擇題1.若函數(shù)y=x3+x2+mx+2(m∈R)是R上的單調(diào)函數(shù),則m的取值范圍是( )A.(-∞,1) B.(-∞,1]C.(1,+∞) D.[1,+∞)題號135246879101112131415D [函數(shù)y=x3+x2+mx+2是R上的單調(diào)函數(shù),即y′=x2+2x+m≥0(y′=x2+2x+m≤0舍去)在R上恒成立,所以Δ=4-4m≤0,解得m≥1.故選D.]題號213456879101112132.(多選)已知定義在R上的函數(shù)f (x),其導(dǎo)函數(shù)y=f ′(x)的大致圖象如圖所示,則下列結(jié)論一定正確的是( )A.f (b)>f (a) B.f (d)>f (e)C.f (a)>f (d) D.f (c)>f (e)√1415√√題號213456879101112131415ABD [由題圖可得,當(dāng)x∈(-∞,c)∪(e,+∞)時,f ′(x)>0,當(dāng)x∈(c,e)時,f ′(x)<0,故f (x)在(-∞,c),(e,+∞)上單調(diào)遞增,在(c,e)上單調(diào)遞減,所以f (b)>f (a),f (d)>f (e),f (c)>f (e).故選ABD.]題號324568791011121313.若函數(shù)h(x)=2x-在(1,+∞)上單調(diào)遞增,則實數(shù)k的取值范圍是( )A.[-2,+∞) B.[2,+∞)C.(-∞,-2] D.(-∞,2]√1415A [根據(jù)條件得h′(x)=2+=≥0在(1,+∞)上恒成立,即k≥-2x2在(1,+∞)上恒成立,所以k的取值范圍是[-2,+∞).]題號423568791011121314.已知函數(shù)f (x)=x2-ax+3在(0,1)上單調(diào)遞減,函數(shù)g(x)=x2-a ln x在(1,2)上單調(diào)遞增,則a=( )A.1 B.2 C.0 D.√1415B [∵函數(shù)f (x)=x2-ax+3在(0,1)上單調(diào)遞減,∴≥1,得a≥2.g′(x)=2x-,依題意g′(x)≥0在(1,2)上恒成立,即2x2≥a在x∈(1,2)時恒成立,則a≤2,∴a=2.故選B.]題號245368791011121315.已知函數(shù)y=f (x)(x∈R)的圖象如圖所示,則不等式xf ′(x)<0的解集為( )A.(-∞,0)B.C.∪(2,+∞)D.(-1,0)∪(1,3)√1415題號24536879101112131A [由題圖可得,f (x)在上單調(diào)遞增,在上單調(diào)遞減,在(2,+∞)上單調(diào)遞增,所以在上,f ′(x)>0,在上,f ′(x)<0,在(2,+∞)上,f ′(x)>0.則不等式xf ′(x)<0可化為或解得<x<2或x<0.故原不等式的解集為(-∞,0).故選A.]1415題號24536879101112131二、填空題6.若函數(shù)f (x)=x2-16ln 2x在區(qū)間上單調(diào)遞減,則實數(shù)a的取值范圍是________.1415 [顯然x>0,且f ′(x)=x-,令f ′(x)≤0,解得0<x≤4.∵f (x)在區(qū)間上單調(diào)遞減,∴解得<a≤.]題號245376891011121317.已知函數(shù)f (x)=x3+x2-6x+1在(-1,1)上單調(diào)遞減,則m的取值范圍為___________.1415[-5,5] [∵f (x)在(-1,1)上單調(diào)遞減,∴f ′(x)=x2+mx-6≤0在(-1,1)上恒成立,又f ′(x)=x2+mx-6是開口向上的二次函數(shù),為使f ′(x)≤0在(-1,1)上恒成立,只需即則m∈[-5,5].][-5,5]題號245386791011121318.已知函數(shù)f (x)=ln x+在[2,+∞)上單調(diào)遞增,則實數(shù)a的取值范圍是___________.1415(-∞,2] [∵f (x)=ln x+在[2,+∞)上單調(diào)遞增,f ′(x)==,∴f ′(x)=≥0在[2,+∞)上恒成立,即a≤x在[2,+∞)上恒成立,∴a≤2.當(dāng)a=2時,f ′(x)=不恒為零,故a的取值范圍是(-∞,2].](-∞,2]題號92453867101112131三、解答題9.(源自人教B版教材)討論函數(shù)f (x)=a ln x+x的單調(diào)性,其中a為實常數(shù).1415[解] 函數(shù)f (x)的定義域為(0,+∞).因為f ′(x)=+1,令f ′(x)>0,可得+1>0,即x>-a.所以當(dāng)-a≤0,即a≥0時,f ′(x)>0恒成立,此時f (x)在(0,+∞)上單調(diào)遞增;當(dāng)-a>0,即a<0時,f ′(x)>0的解為x>-a,此時f (x)在(0,-a)上單調(diào)遞減,在(-a,+∞)上單調(diào)遞增.題號9245386710111213110.若函數(shù)f (x)=ex(x2+a)在[-2,2]上單調(diào)遞減,則實數(shù)a的取值范圍是( )A.(-∞,0] B.(-∞,-8)C.(-∞,-8] D.[0,+∞)√1415題號92453867101112131C [因為函數(shù)f (x)=ex(x2+a),所以f ′(x)=ex(x2+2x+a).因為函數(shù)f (x)=ex(x2+a)在[-2,2]上單調(diào)遞減,所以f ′(x)=ex(x2+2x+a)≤0在[-2,2]上恒成立,即a≤-x2-2x在[-2,2]上恒成立.令t=-x2-2x=-(x+1)2+1,則在[-2,2]上,tmin=-8,則a≤-8,當(dāng)a=-8時,f ′(x)=ex(x2+2x-8)=ex[(x+1)2-9]不恒為零,也符合題意,所以實數(shù)a的取值范圍是(-∞,-8].故選C.]1415題號9245386710111213111.若函數(shù)f (x)=(e為自然對數(shù)的底數(shù))是減函數(shù),則實數(shù)a的取值范圍是________.1415[0,1] [f (x)=,f ′(x)=.因為函數(shù)f (x)是減函數(shù),所以f ′(x)≤0恒成立.令g(x)=2ax-ax2-1,則g(x)≤0恒成立,當(dāng)a=0時,g(x)=-1成立,所以a=0滿足條件.[0,1]題號92453867101112131當(dāng)a<0時,則g(x)的圖象開口向上,g(x)≤0不恒成立,不符合題意,舍去.當(dāng)a>0時,要使g(x)≤0恒成立,則Δ=4a2-4a≤0,解得0≤a≤1,又a>0,所以0<a≤1.綜上可得,實數(shù)a的取值范圍是[0,1].]1415題號9245386710111213112.已知函數(shù)f (x)=2x2-ln x,若f (x)在區(qū)間(2m,m+1)上單調(diào)遞增,則實數(shù)m的取值范圍是________.1415 [由f (x)=2x2-ln x,得f ′(x)=4x-=,由于函數(shù)f (x)的定義域為(0,+∞),故令f ′(x)≥0,解得x≥,故f (x)的單調(diào)遞增區(qū)間為,若f (x)在區(qū)間(2m,m+1)上單調(diào)遞增,則解得≤m<1.]題號9245386710111213113.已知函數(shù)f (x)=aex-ln x在區(qū)間(1,2)上單調(diào)遞增,則a的最小值為________.1415 [因為f (x)=aex-ln x(x>0),所以f ′(x)=aex-.由于函數(shù)f (x)=aex-ln x在區(qū)間(1,2)上單調(diào)遞增,即f ′(x)≥0在(1,2)上恒成立,顯然a>0,所以問題轉(zhuǎn)化為xex≥在(1,2)上恒成立,設(shè)g(x)=xex,x∈(1,2),所以g′(x)=ex+xex=(1+x)ex>0,所以g(x)在(1,2)上單調(diào)遞增,所以g(x)>g(1)=e,所以e≥,a≥,所以a的最小值為.]題號9245386710111213114.設(shè)函數(shù)f (x)=ex-ax-2(a∈R),求f (x)的單調(diào)區(qū)間.1415[解] f (x)的定義域為R,f ′(x)=ex-a.若a≤0,則f ′(x)>0,所以f (x)在R上單調(diào)遞增.若a>0,則當(dāng)x∈(-∞,ln a)時,f ′(x)<0;當(dāng)x∈(ln a,+∞)時,f ′(x)>0.所以f (x)在(-∞,ln a)上單調(diào)遞減,在(ln a,+∞)上單調(diào)遞增.綜上所述,當(dāng)a≤0時,函數(shù)f (x)的單調(diào)遞增區(qū)間為(-∞,+∞),無單調(diào)遞減區(qū)間;當(dāng)a>0時,f (x)的單調(diào)遞減區(qū)間為(-∞,ln a),單調(diào)遞增區(qū)間為(ln a,+∞).題號9245386710111213115.函數(shù)f (x)=ax3+x2+5x-1恰有3個單調(diào)區(qū)間的必要不充分條件是( )A.a(chǎn)∈ B.a(chǎn)∈C.a(chǎn)∈(-∞,0) D.a(chǎn)∈(-∞,0)1415√題號92453867101112131A [由f (x)=ax3+x2+5x-1,得f ′(x)=3ax2+2x+5,當(dāng)a=0時,由f ′(x)=0,解得x=-,函數(shù)f (x)有兩個單調(diào)區(qū)間;當(dāng)a>0時,由Δ=4-60a>0,解得a<,即0<a<,此時函數(shù)f (x)=ax3+x2+5x-1恰有3個單調(diào)區(qū)間;當(dāng)a<0時,Δ=4-60a>0,解得a<,即a<0,此時函數(shù)f (x)=ax3+x2+5x-1恰有3個單調(diào)區(qū)間.綜上所述,a∈(-∞,0)是函數(shù)f (x)=ax3+x2+5x-1恰有3個單調(diào)區(qū)間的充要條件,分析可得a∈是其必要不充分條件.]1415THANKS第2課時 函數(shù)單調(diào)性的應(yīng)用[學(xué)習(xí)目標(biāo)] 1.進(jìn)一步理解函數(shù)的導(dǎo)數(shù)和其單調(diào)性的關(guān)系.(數(shù)學(xué)運算)2.能求簡單的含參的函數(shù)的單調(diào)區(qū)間以及根據(jù)函數(shù)的單調(diào)性求參數(shù)的取值范圍.(數(shù)學(xué)運算)[討論交流] 問題1.若函數(shù)f (x)為可導(dǎo)函數(shù),且在區(qū)間(a,b)上單調(diào)遞增(或遞減),則f ′(x)滿足什么條件?問題2.對于函數(shù)y=f (x),f ′(x)≥0是f (x)為增函數(shù)的充要條件嗎?[自我感知] 經(jīng)過認(rèn)真的預(yù)習(xí),結(jié)合對本節(jié)課的理解和認(rèn)知,請畫出本節(jié)課的知識邏輯體系.探究1 討論含參函數(shù)的單調(diào)性[典例講評] 1.已知函數(shù)f (x)=ln x-ax2+(1-a)x+a(a∈R),判斷函數(shù)f (x)的單調(diào)性.[嘗試解答] (1)研究含參數(shù)的函數(shù)的單調(diào)性,要依據(jù)參數(shù)對不等式解集的影響進(jìn)行分類討論.(2)劃分函數(shù)的單調(diào)區(qū)間時,要在函數(shù)的定義域內(nèi)討論,還要確定導(dǎo)數(shù)為0的點和函數(shù)的間斷點.[學(xué)以致用] 1.求函數(shù)f (x)=+a ln x(a∈R)的單調(diào)遞減區(qū)間. 探究2 根據(jù)函數(shù)的單調(diào)性求參數(shù)的取值范圍探究問題1 如果函數(shù)y=f (x)在區(qū)間(a,b)內(nèi)單調(diào)遞增,則f ′(x)有什么特點? 探究問題2 如果函數(shù)y=f (x)在區(qū)間(a,b)內(nèi)存在單調(diào)遞增區(qū)間,則f ′(x)有什么特點? [新知生成]導(dǎo)數(shù)的符號與函數(shù)單調(diào)性的關(guān)系(1)在某區(qū)間D上,若f ′(x)>0 函數(shù)f (x)在D上________;在某區(qū)間D上,若f ′(x)<0 函數(shù)f (x)在D上________.(2)若函數(shù)f (x)在D上單調(diào)遞增 f ′(x)≥0;若函數(shù)f (x)在D上單調(diào)遞減 ________.需要檢驗f ′(x)=0不能恒成立.(3)若函數(shù)f (x)在D上存在單調(diào)遞增區(qū)間 f ′(x)>0有解.若函數(shù)f (x)在D上存在單調(diào)遞減區(qū)間 ________.[典例講評] 2.已知函數(shù)f (x)=x3-ax-1為增函數(shù),求實數(shù)a的取值范圍.[思路導(dǎo)引] →→[嘗試解答] [母題探究] 1.若函數(shù)f (x)=x3-ax-1的單調(diào)遞減區(qū)間為(-1,1),求a的值. 2.若函數(shù)f (x)=x3-ax-1在(-1,1)上單調(diào)遞減,求a的取值范圍. 3.若函數(shù)f (x)=x3-ax-1在(-1,1)上不單調(diào),求a的取值范圍. 利用函數(shù)的單調(diào)性求參數(shù),常用方法如下:1 函數(shù)f (x)在區(qū)間D上單調(diào)遞增 ________在區(qū)間D上恒成立2 函數(shù)f (x)在區(qū)間D上單調(diào)遞減 ________在區(qū)間D上恒成立3 函數(shù)f (x)在區(qū)間D上不單調(diào) f ′(x)在區(qū)間D上存在變號________4 函數(shù)f (x)在區(qū)間D上存在單調(diào)遞增區(qū)間 x0∈D,使得________成立5 函數(shù)f (x)在區(qū)間D上存在單調(diào)遞減區(qū)間 x0∈D,使得________成立6 若已知f (x)在區(qū)間D上的單調(diào)性,區(qū)間D上含有參數(shù)時,可先求出f (x)的單調(diào)區(qū)間,令D是其單調(diào)區(qū)間的________,從而求出參數(shù)的取值范圍[學(xué)以致用] 2.已知a∈R,函數(shù)f (x)=x3-6x2+3(4-a)x.(1)若曲線y=f (x)在點(3,f (3))處的切線與直線x-3y=0垂直,求a的值;(2)若函數(shù)f (x)在區(qū)間(1,4)上單調(diào)遞減,求a的取值范圍. 探究3 根據(jù)函數(shù)的單調(diào)性比較大小或解不等式[典例講評] 3.(1)函數(shù)f (x)=sin x+2xf ′,f ′(x)為f (x)的導(dǎo)函數(shù),令a=,b=log32,則下列關(guān)系正確的是( )A.f (a)<f (b) B.f (a)>f (b)C.f (a)=f (b) D.f (a)≤f (b)(2)已知函數(shù)f (x)的定義域為R,f ′(x)為f (x)的導(dǎo)函數(shù),函數(shù)y=f ′(x)的圖象如圖所示,且f (-2)=1,f (3)=1,則不等式f (x2-6)>1的解集是( )A.(-3,-2)∪(2,3)B.(-)C.(2,3)D.(-∞,-)∪(,+∞)[嘗試解答] (1)在比較兩數(shù)(式)的大小關(guān)系時,首先要判斷所給函數(shù)的單調(diào)性,再根據(jù)函數(shù)的單調(diào)性比較大小.(2)在解一些不等式時,先判斷函數(shù)的單調(diào)性,再利用單調(diào)性脫去f,即可得到變量的大小關(guān)系.[學(xué)以致用] 3.(1)設(shè)函數(shù)f (x)=2x+sin x,則( )A.f (1)>f (2) B.f (1)<f (2)C.f (1)=f (2) D.以上都不正確(2)已知f (x)是定義在R上的偶函數(shù)且連續(xù),當(dāng)x>0時,f ′(x)<0,若f (lg x)>f (1),則x的取值范圍是________.1.若函數(shù)f (x)=-cos x+ax為增函數(shù),則實數(shù)a的取值范圍為( )A.[-1,+∞) B.[1,+∞)C.(-1,+∞) D.(1,+∞)2.已知函數(shù)f (x)=+ln x,則下列選項正確的是( )A.f (e)<f (π)<f (2.7) B.f (π)<f (e)<f (2.7)C.f (e)<f (2.7)<f (π) D.f (2.7)<f (e)<f (π)3.函數(shù)f (x)=x3-mx2+m-2的單調(diào)遞減區(qū)間為(0,3),則m=________.4.函數(shù)f (x)的圖象如圖所示,f ′(x)為函數(shù)f (x)的導(dǎo)函數(shù),則不等式<0的解集為________.1.知識鏈:(1)求含參函數(shù)的單調(diào)區(qū)間.(2)由單調(diào)性求參數(shù)的取值范圍.(3)函數(shù)單調(diào)性的應(yīng)用.2.方法鏈:分類討論、數(shù)形結(jié)合.3.警示牌:求參數(shù)的取值范圍時容易忽略對端點值的討論.3/5第2課時 函數(shù)單調(diào)性的應(yīng)用[學(xué)習(xí)目標(biāo)] 1.進(jìn)一步理解函數(shù)的導(dǎo)數(shù)和其單調(diào)性的關(guān)系.(數(shù)學(xué)運算)2.能求簡單的含參的函數(shù)的單調(diào)區(qū)間以及根據(jù)函數(shù)的單調(diào)性求參數(shù)的取值范圍.(數(shù)學(xué)運算)(教師用書)請大家解這樣一個關(guān)于x的一元一次不等式:ax-2>0,根據(jù)不等式的性質(zhì)可知,我們無法直接進(jìn)行求解,它依賴于a的符號,于是我們分類討論進(jìn)行求解如下:當(dāng)a>0時,得x>;當(dāng)a=0時,x無解;當(dāng)a<0時,得x<,參數(shù)的存在不僅對解不等式有影響,對于一些函數(shù)的單調(diào)性也有影響,如何解答含參函數(shù)的單調(diào)性問題,今天我們就來探究一下.[討論交流] 問題1.若函數(shù)f (x)為可導(dǎo)函數(shù),且在區(qū)間(a,b)上單調(diào)遞增(或遞減),則f ′(x)滿足什么條件?問題2.對于函數(shù)y=f (x),f ′(x)≥0是f (x)為增函數(shù)的充要條件嗎?[自我感知] 經(jīng)過認(rèn)真的預(yù)習(xí),結(jié)合對本節(jié)課的理解和認(rèn)知,請畫出本節(jié)課的知識邏輯體系.探究1 討論含參函數(shù)的單調(diào)性[典例講評] 1.已知函數(shù)f (x)=ln x-ax2+(1-a)x+a(a∈R),判斷函數(shù)f (x)的單調(diào)性.[解] 函數(shù)f (x)的定義域為(0,+∞),f ′(x)=-ax+1-a==.當(dāng)a≤0時,f ′(x)>0,函數(shù)f (x)在(0,+∞)上單調(diào)遞增.當(dāng)a>0時,令f ′(x)>0,解得0<x<,則f (x)在上單調(diào)遞增;令f ′(x)<0,解得x>,則f (x)在上單調(diào)遞減.綜上,當(dāng)a≤0時,函數(shù)f (x)在(0,+∞)上單調(diào)遞增;當(dāng)a>0時,函數(shù)f (x)在上單調(diào)遞增,在上單調(diào)遞減. (1)研究含參數(shù)的函數(shù)的單調(diào)性,要依據(jù)參數(shù)對不等式解集的影響進(jìn)行分類討論.(2)劃分函數(shù)的單調(diào)區(qū)間時,要在函數(shù)的定義域內(nèi)討論,還要確定導(dǎo)數(shù)為0的點和函數(shù)的間斷點.【教用·備選題】 已知函數(shù)f (x)=x3+ax2-3a2x+1(a≤0).試求函數(shù)f (x)的單調(diào)區(qū)間.[解] f ′(x)=x2+2ax-3a2=(x+3a)(x-a),且x∈(-∞,+∞).當(dāng)a=0時,f ′(x)=x2≥0,此時f (x)在(-∞,+∞)上單調(diào)遞增.當(dāng)a<0,x∈(-∞,a)時,f ′(x)>0,此時f (x)單調(diào)遞增;x∈(a,-3a)時,f ′(x)<0,此時f (x)單調(diào)遞減;x∈(-3a,+∞)時,f ′(x)>0,此時f (x)單調(diào)遞增.綜上,當(dāng)a=0時,函數(shù)f (x)的單調(diào)遞增區(qū)間為(-∞,+∞),無單調(diào)遞減區(qū)間;當(dāng)a<0時,函數(shù)f (x)的單調(diào)遞增區(qū)間為(-∞,a),(-3a,+∞);函數(shù)f (x)的單調(diào)遞減區(qū)間為(a,-3a).[學(xué)以致用] 1.求函數(shù)f (x)=+a ln x(a∈R)的單調(diào)遞減區(qū)間.[解] 易得函數(shù)f (x)的定義域是(0,+∞),f ′(x)=-=.①當(dāng)a≤0時,f ′(x)<0在(0,+∞)上恒成立,故f (x)在(0,+∞)上單調(diào)遞減.②當(dāng)a>0時,若0<x<,則f ′(x)<0;若x>,則f ′(x)>0,所以f (x)在上單調(diào)遞減,在上單調(diào)遞增.綜上可知,當(dāng)a≤0時,f (x)的單調(diào)遞減區(qū)間為(0,+∞),當(dāng)a>0時,f (x)的單調(diào)遞減區(qū)間為.探究2 根據(jù)函數(shù)的單調(diào)性求參數(shù)的取值范圍探究問題1 如果函數(shù)y=f (x)在區(qū)間(a,b)內(nèi)單調(diào)遞增,則f ′(x)有什么特點?[提示] f ′(x)≥0,但f ′(x)不可以恒為0.探究問題2 如果函數(shù)y=f (x)在區(qū)間(a,b)內(nèi)存在單調(diào)遞增區(qū)間,則f ′(x)有什么特點?[提示] f ′(x)>0有解.[新知生成]導(dǎo)數(shù)的符號與函數(shù)單調(diào)性的關(guān)系(1)在某區(qū)間D上,若f ′(x)>0 函數(shù)f (x)在D上單調(diào)遞增;在某區(qū)間D上,若f ′(x)<0 函數(shù)f (x)在D上單調(diào)遞減.(2)若函數(shù)f (x)在D上單調(diào)遞增 f ′(x)≥0;若函數(shù)f (x)在D上單調(diào)遞減 f ′(x)≤0.需要檢驗f ′(x)=0不能恒成立.(3)若函數(shù)f (x)在D上存在單調(diào)遞增區(qū)間 f ′(x)>0有解.若函數(shù)f (x)在D上存在單調(diào)遞減區(qū)間 f ′(x)<0有解.【教用·微提醒】 (1)單調(diào)區(qū)間可以寫成閉區(qū)間,我們習(xí)慣上寫成開區(qū)間.(2)注意以下區(qū)別:若單調(diào)遞增,則f ′(x)≥0恒成立;若存在單調(diào)遞增區(qū)間,則f ′(x)>0能成立.[典例講評] 2.已知函數(shù)f (x)=x3-ax-1為增函數(shù),求實數(shù)a的取值范圍.[思路導(dǎo)引] →→[解] 由已知得f ′(x)=3x2-a,因為f (x)在R上是增函數(shù),所以f ′(x)=3x2-a≥0在R上恒成立,即a≤3x2對x∈R恒成立.因為3x2≥0,所以只需a≤0.又因為a=0時,f ′(x)=3x2≥0且不恒為0,f (x)=x3-1在R上是增函數(shù),所以a≤0.[母題探究] 1.若函數(shù)f (x)=x3-ax-1的單調(diào)遞減區(qū)間為(-1,1),求a的值.[解] 由題意得f ′(x)=3x2-a,函數(shù)f (x)的定義域為R.①當(dāng)a≤0時,f ′(x)≥0,∴f (x)在R上為增函數(shù),與已知矛盾,不符合題意.②當(dāng)a>0時,令3x2-a=0,得x=±,當(dāng)-<x<時,f ′(x)<0.∴f (x)在上單調(diào)遞減,∴f (x)的單調(diào)遞減區(qū)間為,又函數(shù)f (x)=x3-ax-1的單調(diào)遞減區(qū)間為(-1,1),∴=1,即a=3.2.若函數(shù)f (x)=x3-ax-1在(-1,1)上單調(diào)遞減,求a的取值范圍.[解] 由題意可知f ′(x)=3x2-a≤0在(-1,1)上恒成立,∴即∴a≥3.即a的取值范圍是[3,+∞).3.若函數(shù)f (x)=x3-ax-1在(-1,1)上不單調(diào),求a的取值范圍.[解] ∵f (x)=x3-ax-1,∴f ′(x)=3x2-a,由題意可知a>0,由f ′(x)=0,得x=±(a>0).∵f (x)在區(qū)間(-1,1)上不單調(diào),∴0<<1,即0<a<3.故a的取值范圍為(0,3). 利用函數(shù)的單調(diào)性求參數(shù),常用方法如下:1 函數(shù)f (x)在區(qū)間D上單調(diào)遞增 f ′(x)≥0在區(qū)間D上恒成立2 函數(shù)f (x)在區(qū)間D上單調(diào)遞減 f ′(x)≤0在區(qū)間D上恒成立3 函數(shù)f (x)在區(qū)間D上不單調(diào) f ′(x)在區(qū)間D上存在變號零點4 函數(shù)f (x)在區(qū)間D上存在單調(diào)遞增區(qū)間 x0∈D,使得f ′(x0)>0成立5 函數(shù)f (x)在區(qū)間D上存在單調(diào)遞減區(qū)間 x0∈D,使得f ′(x0)<0成立6 若已知f (x)在區(qū)間D上的單調(diào)性,區(qū)間D上含有參數(shù)時,可先求出f (x)的單調(diào)區(qū)間,令D是其單調(diào)區(qū)間的非空子集,從而求出參數(shù)的取值范圍[學(xué)以致用] 2.已知a∈R,函數(shù)f (x)=x3-6x2+3(4-a)x.(1)若曲線y=f (x)在點(3,f (3))處的切線與直線x-3y=0垂直,求a的值;(2)若函數(shù)f (x)在區(qū)間(1,4)上單調(diào)遞減,求a的取值范圍.[解] (1)因為f ′(x)=3x2-12x+12-3a,所以曲線y=f (x)在點(3,f (3))處的切線斜率k=f ′(3)=27-36+12-3a=3-3a.而直線x-3y=0的斜率為,則3-3a=-3,解得a=2.(2)由f (x)在(1,4)上單調(diào)遞減,得f ′(x)=3x2-12x+12-3a≤0在(1,4)上恒成立,即a≥x2-4x+4在(1,4)上恒成立.又x∈(1,4)時,y=x2-4x+4<4,所以a≥4,所以a的取值范圍是[4,+∞).探究3 根據(jù)函數(shù)的單調(diào)性比較大小或解不等式[典例講評] 3.(1)函數(shù)f (x)=sin x+2xf ′,f ′(x)為f (x)的導(dǎo)函數(shù),令a=,b=log32,則下列關(guān)系正確的是( )A.f (a)<f (b) B.f (a)>f (b)C.f (a)=f (b) D.f (a)≤f (b)(2)已知函數(shù)f (x)的定義域為R,f ′(x)為f (x)的導(dǎo)函數(shù),函數(shù)y=f ′(x)的圖象如圖所示,且f (-2)=1,f (3)=1,則不等式f (x2-6)>1的解集是( )A.(-3,-2)∪(2,3)B.(-)C.(2,3)D.(-∞,-)∪(,+∞)(1)B (2)A [(1)由題意得f ′(x)=cos x+2f ′,f ′=cos +2f ′,解得f ′=-,所以f (x)=sin x-x,所以f ′(x)=cos x-1≤0,所以f (x)為減函數(shù).因為b=log32>log3==a,所以f (a)>f (b).故選B.(2)由y=f ′(x)的圖象知,函數(shù)f (x)在(-∞,0)上單調(diào)遞增,在(0,+∞)上單調(diào)遞減,且f (-2)=1,f (3)=1,則不等式f (x2-6)>1可轉(zhuǎn)化為-2<x2-6<3,解得2<x<3或-3<x<-2.故選A.] (1)在比較兩數(shù)(式)的大小關(guān)系時,首先要判斷所給函數(shù)的單調(diào)性,再根據(jù)函數(shù)的單調(diào)性比較大小.(2)在解一些不等式時,先判斷函數(shù)的單調(diào)性,再利用單調(diào)性脫去f,即可得到變量的大小關(guān)系.[學(xué)以致用] 3.(1)設(shè)函數(shù)f (x)=2x+sin x,則( )A.f (1)>f (2) B.f (1)<f (2)C.f (1)=f (2) D.以上都不正確(2)已知f (x)是定義在R上的偶函數(shù)且連續(xù),當(dāng)x>0時,f ′(x)<0,若f (lg x)>f (1),則x的取值范圍是________.(1)B (2) [(1)f ′(x)=2+cos x>0,故f (x)是R上的增函數(shù),故f (1)<f (2).故選B.(2)由題設(shè)知,當(dāng)x>0時,f (x)單調(diào)遞減;當(dāng)x<0時,f (x)單調(diào)遞增,∴f (lg x)>f (1) |lg x|<1 -1<lg x<1 <x<10.]1.若函數(shù)f (x)=-cos x+ax為增函數(shù),則實數(shù)a的取值范圍為( )A.[-1,+∞) B.[1,+∞)C.(-1,+∞) D.(1,+∞)B [由題意可得,f ′(x)=sin x+a≥0恒成立,故a≥-sin x恒成立,因為-1≤-sin x≤1,所以a≥1.故選B.]2.已知函數(shù)f (x)=+ln x,則下列選項正確的是( )A.f (e)<f (π)<f (2.7) B.f (π)<f (e)<f (2.7)C.f (e)<f (2.7)<f (π) D.f (2.7)<f (e)<f (π)D [因為函數(shù)f (x)=+ln x(x>0),所以f ′(x)=>0,所以函數(shù)f (x)在(0,+∞)上單調(diào)遞增.又因為2.7<e<π,所以f (2.7)<f (e)<f (π).故選D.]3.函數(shù)f (x)=x3-mx2+m-2的單調(diào)遞減區(qū)間為(0,3),則m=________. [令f ′(x)=3x2-2mx=0,解得x=0或x=m,所以m=3,解得m=.]4.函數(shù)f (x)的圖象如圖所示,f ′(x)為函數(shù)f (x)的導(dǎo)函數(shù),則不等式<0的解集為________.(-3,-1)∪(0,1) [由題圖知,當(dāng)x∈(-∞,-3)∪(-1,1)時,f ′(x)<0;當(dāng)x∈(-3,-1)∪(1,+∞)時,f ′(x)>0,故不等式<0的解集為(-3,-1)∪(0,1).]1.知識鏈:(1)求含參函數(shù)的單調(diào)區(qū)間.(2)由單調(diào)性求參數(shù)的取值范圍.(3)函數(shù)單調(diào)性的應(yīng)用.2.方法鏈:分類討論、數(shù)形結(jié)合.3.警示牌:求參數(shù)的取值范圍時容易忽略對端點值的討論.回顧本節(jié)知識,自主完成以下問題:1.利用導(dǎo)數(shù)研究含參數(shù)函數(shù)的單調(diào)性,一般有哪幾種情況?如何解決這幾種情況?[提示] 利用導(dǎo)數(shù)研究含參數(shù)函數(shù)的單調(diào)性時,常遇到三種情況:①區(qū)間端點大小不確定型由于函數(shù)導(dǎo)數(shù)不等式中的區(qū)間端點大小不定,因此需根據(jù)區(qū)間端點的大小確定參數(shù)的范圍,再分類討論函數(shù)的單調(diào)區(qū)間.②區(qū)間端點與定義域關(guān)系不確定型此類問題一般會有定義域限制,解函數(shù)導(dǎo)數(shù)不等式的區(qū)間端點含參數(shù),此端點與函數(shù)定義域的端點大小不確定,因此需分類討論.③最高次項系數(shù)不確定型此類問題一般要對最高次項的系數(shù)a,分a>0,a=0,a<0進(jìn)行討論.2.總結(jié)由函數(shù)的單調(diào)性求參數(shù)的取值范圍的方法有哪幾種?[提示] ①可導(dǎo)函數(shù)在區(qū)間(a,b)上單調(diào),實際上就是在該區(qū)間上f ′(x)≥0(或f ′(x)≤0)恒成立,得到關(guān)于參數(shù)的不等式,根據(jù)已知條件,求出參數(shù)的取值范圍,但最后要注意檢驗.②可導(dǎo)函數(shù)在區(qū)間(a,b)上存在單調(diào)區(qū)間,實際上就是f ′(x)>0(或f ′(x)<0)在區(qū)間(a,b)上存在解集,從而轉(zhuǎn)化為不等式問題,求出參數(shù)的取值范圍.③若已知f (x)在區(qū)間I上的單調(diào)性,且區(qū)間I含有參數(shù)時,可先求出f ′(x)為正或負(fù)時的區(qū)間,令I(lǐng)是f (x)的單調(diào)區(qū)間的非空子集,從而求出參數(shù)的取值范圍.課時分層作業(yè)(十九) 函數(shù)單調(diào)性的應(yīng)用一、選擇題1.若函數(shù)y=x3+x2+mx+2(m∈R)是R上的單調(diào)函數(shù),則m的取值范圍是( )A.(-∞,1) B.(-∞,1]C.(1,+∞) D.[1,+∞)D [函數(shù)y=x3+x2+mx+2是R上的單調(diào)函數(shù),即y′=x2+2x+m≥0(y′=x2+2x+m≤0舍去)在R上恒成立,所以Δ=4-4m≤0,解得m≥1.故選D.]2.(多選)已知定義在R上的函數(shù)f (x),其導(dǎo)函數(shù)y=f ′(x)的大致圖象如圖所示,則下列結(jié)論一定正確的是( )A.f (b)>f (a) B.f (d)>f (e)C.f (a)>f (d) D.f (c)>f (e)ABD [由題圖可得,當(dāng)x∈(-∞,c)∪(e,+∞)時,f ′(x)>0,當(dāng)x∈(c,e)時,f ′(x)<0,故f (x)在(-∞,c),(e,+∞)上單調(diào)遞增,在(c,e)上單調(diào)遞減,所以f (b)>f (a),f (d)>f (e),f (c)>f (e).故選ABD.]3.若函數(shù)h(x)=2x-在(1,+∞)上單調(diào)遞增,則實數(shù)k的取值范圍是( )A.[-2,+∞) B.[2,+∞)C.(-∞,-2] D.(-∞,2]A [根據(jù)條件得h′(x)=2+=≥0在(1,+∞)上恒成立,即k≥-2x2在(1,+∞)上恒成立,所以k的取值范圍是[-2,+∞).]4.已知函數(shù)f (x)=x2-ax+3在(0,1)上單調(diào)遞減,函數(shù)g(x)=x2-a ln x在(1,2)上單調(diào)遞增,則a=( )A.1 B.2 C.0 D.B [∵函數(shù)f (x)=x2-ax+3在(0,1)上單調(diào)遞減,∴≥1,得a≥2.g′(x)=2x-,依題意g′(x)≥0在(1,2)上恒成立,即2x2≥a在x∈(1,2)時恒成立,則a≤2,∴a=2.故選B.]5.已知函數(shù)y=f (x)(x∈R)的圖象如圖所示,則不等式xf ′(x)<0的解集為( )A.(-∞,0)B.C.∪(2,+∞)D.(-1,0)∪(1,3)A [由題圖可得,f (x)在上單調(diào)遞增,在上單調(diào)遞減,在(2,+∞)上單調(diào)遞增,所以在上,f ′(x)>0,在上,f ′(x)<0,在(2,+∞)上,f ′(x)>0.則不等式xf ′(x)<0可化為或解得<x<2或x<0.故原不等式的解集為(-∞,0).故選A.]二、填空題6.若函數(shù)f (x)=x2-16ln 2x在區(qū)間上單調(diào)遞減,則實數(shù)a的取值范圍是________. [顯然x>0,且f ′(x)=x-,令f ′(x)≤0,解得0<x≤4.∵f (x)在區(qū)間上單調(diào)遞減,∴解得<a≤.]7.已知函數(shù)f (x)=x3+x2-6x+1在(-1,1)上單調(diào)遞減,則m的取值范圍為________.[-5,5] [∵f (x)在(-1,1)上單調(diào)遞減,∴f ′(x)=x2+mx-6≤0在(-1,1)上恒成立,又f ′(x)=x2+mx-6是開口向上的二次函數(shù),為使f ′(x)≤0在(-1,1)上恒成立,只需即則m∈[-5,5].]8.已知函數(shù)f (x)=ln x+在[2,+∞)上單調(diào)遞增,則實數(shù)a的取值范圍是________.(-∞,2] [∵f (x)=ln x+在[2,+∞)上單調(diào)遞增,f ′(x)==,∴f ′(x)=≥0在[2,+∞)上恒成立,即a≤x在[2,+∞)上恒成立,∴a≤2.當(dāng)a=2時,f ′(x)=不恒為零,故a的取值范圍是(-∞,2].]三、解答題9.(源自人教B版教材)討論函數(shù)f (x)=a ln x+x的單調(diào)性,其中a為實常數(shù).[解] 函數(shù)f (x)的定義域為(0,+∞).因為f ′(x)=+1,令f ′(x)>0,可得+1>0,即x>-a.所以當(dāng)-a≤0,即a≥0時,f ′(x)>0恒成立,此時f (x)在(0,+∞)上單調(diào)遞增;當(dāng)-a>0,即a<0時,f ′(x)>0的解為x>-a,此時f (x)在(0,-a)上單調(diào)遞減,在(-a,+∞)上單調(diào)遞增.10.若函數(shù)f (x)=ex(x2+a)在[-2,2]上單調(diào)遞減,則實數(shù)a的取值范圍是( )A.(-∞,0] B.(-∞,-8)C.(-∞,-8] D.[0,+∞)C [因為函數(shù)f (x)=ex(x2+a),所以f ′(x)=ex(x2+2x+a).因為函數(shù)f (x)=ex(x2+a)在[-2,2]上單調(diào)遞減,所以f ′(x)=ex(x2+2x+a)≤0在[-2,2]上恒成立,即a≤-x2-2x在[-2,2]上恒成立.令t=-x2-2x=-(x+1)2+1,則在[-2,2]上,tmin=-8,則a≤-8,當(dāng)a=-8時,f ′(x)=ex(x2+2x-8)=ex[(x+1)2-9]不恒為零,也符合題意,所以實數(shù)a的取值范圍是(-∞,-8].故選C.]11.若函數(shù)f (x)=(e為自然對數(shù)的底數(shù))是減函數(shù),則實數(shù)a的取值范圍是________.[0,1] [f (x)=,f ′(x)=.因為函數(shù)f (x)是減函數(shù),所以f ′(x)≤0恒成立.令g(x)=2ax-ax2-1,則g(x)≤0恒成立,當(dāng)a=0時,g(x)=-1成立,所以a=0滿足條件.當(dāng)a<0時,則g(x)的圖象開口向上,g(x)≤0不恒成立,不符合題意,舍去.當(dāng)a>0時,要使g(x)≤0恒成立,則Δ=4a2-4a≤0,解得0≤a≤1,又a>0,所以0<a≤1.綜上可得,實數(shù)a的取值范圍是[0,1].]12.已知函數(shù)f (x)=2x2-ln x,若f (x)在區(qū)間(2m,m+1)上單調(diào)遞增,則實數(shù)m的取值范圍是________. [由f (x)=2x2-ln x,得f ′(x)=4x-=,由于函數(shù)f (x)的定義域為(0,+∞),故令f ′(x)≥0,解得x≥,故f (x)的單調(diào)遞增區(qū)間為,若f (x)在區(qū)間(2m,m+1)上單調(diào)遞增,則解得≤m<1.]13.已知函數(shù)f (x)=aex-ln x在區(qū)間(1,2)上單調(diào)遞增,則a的最小值為________. [因為f (x)=aex-ln x(x>0),所以f ′(x)=aex-.由于函數(shù)f (x)=aex-ln x在區(qū)間(1,2)上單調(diào)遞增,即f ′(x)≥0在(1,2)上恒成立,顯然a>0,所以問題轉(zhuǎn)化為xex≥在(1,2)上恒成立,設(shè)g(x)=xex,x∈(1,2),所以g′(x)=ex+xex=(1+x)ex>0,所以g(x)在(1,2)上單調(diào)遞增,所以g(x)>g(1)=e,所以e≥,a≥,所以a的最小值為.]14.設(shè)函數(shù)f (x)=ex-ax-2(a∈R),求f (x)的單調(diào)區(qū)間.[解] f (x)的定義域為R,f ′(x)=ex-a.若a≤0,則f ′(x)>0,所以f (x)在R上單調(diào)遞增.若a>0,則當(dāng)x∈(-∞,ln a)時,f ′(x)<0;當(dāng)x∈(ln a,+∞)時,f ′(x)>0.所以f (x)在(-∞,ln a)上單調(diào)遞減,在(ln a,+∞)上單調(diào)遞增.綜上所述,當(dāng)a≤0時,函數(shù)f (x)的單調(diào)遞增區(qū)間為(-∞,+∞),無單調(diào)遞減區(qū)間;當(dāng)a>0時,f (x)的單調(diào)遞減區(qū)間為(-∞,ln a),單調(diào)遞增區(qū)間為(ln a,+∞).15.函數(shù)f (x)=ax3+x2+5x-1恰有3個單調(diào)區(qū)間的必要不充分條件是( )A.a(chǎn)∈B.a(chǎn)∈C.a(chǎn)∈(-∞,0)D.a(chǎn)∈(-∞,0)A [由f (x)=ax3+x2+5x-1,得f ′(x)=3ax2+2x+5,當(dāng)a=0時,由f ′(x)=0,解得x=-,函數(shù)f (x)有兩個單調(diào)區(qū)間;當(dāng)a>0時,由Δ=4-60a>0,解得a<,即0<a<,此時函數(shù)f (x)=ax3+x2+5x-1恰有3個單調(diào)區(qū)間;當(dāng)a<0時,Δ=4-60a>0,解得a<,即a<0,此時函數(shù)f (x)=ax3+x2+5x-1恰有3個單調(diào)區(qū)間.綜上所述,a∈(-∞,0)是函數(shù)f (x)=ax3+x2+5x-1恰有3個單調(diào)區(qū)間的充要條件,分析可得a∈是其必要不充分條件.]4/13 展開更多...... 收起↑ 資源列表 24 第五章 5.3 5.3.1 第1課時 函數(shù)的單調(diào)性.docx 25 第五章 5.3 5.3.1 第1課時 函數(shù)的單調(diào)性.docx 25 第五章 5.3 5.3.1 第1課時 函數(shù)的單調(diào)性.pptx 25 第五章 5.3 5.3.1 第2課時 函數(shù)單調(diào)性的應(yīng)用.docx 26 第五章 5.3 5.3.1 第2課時 函數(shù)單調(diào)性的應(yīng)用.docx 26 第五章 5.3 5.3.1 第2課時 函數(shù)單調(diào)性的應(yīng)用.pptx 縮略圖、資源來源于二一教育資源庫