資源簡介 期末復習??家族e專題10 (解方程)專 題 目 錄第一部分 數學核心素養目標第二部分 真題演練1、解方程當前教育形式,對于小學數學核心素養能力的培養非常重要,小學生必需具有以下數學核心素養(即教師培養學生的目標和方向):會用數學眼光觀察現實世界:抽象能力(包括數感、量感、符號意識)、幾何直觀、空間觀念與創新意識。數學眼光提供了觀察、探究世界的新視野,能將實際情境抽象為數學問題,能體會數學知識的實際意義。會用數學思維思考現實世界:運算能力、推理意識或推理能力。數學為人們提供了理解、解釋現實世界的思維途徑,在邏輯推理中體會數學的嚴謹性。會用數學語言表達現實世界:數據意識或數據觀念、模型意識或模型觀念、應用意識。數學建模與數據分析可以作為工具廣泛應用于其他學科,體現了數學具有應用的廣泛性。.一、解方程1.(23-24六年級上·山東菏澤·期末)解方程。① ② ③2.(23-24六年級上·浙江嘉興·期末)解方程。 3.(23-24六年級上·內蒙古巴彥淖爾·期末)解下列方程。x-1.25= x-40%x=1204.(23-24六年級上·廣西玉林·期末)解方程。75%x+44=98 5.(23-24六年級上·江西宜春·期末)解方程。 6.(23-24六年級上·廣東河源·期末)解方程。∶= -= +25%=457.(23-24六年級上·河南周口·期末)解方程。 8.(23-24六年級上·湖南懷化·期末)解方程。 9.(23-24六年級上·河南新鄉·期末)解方程。 10.(23-24六年級上·河南新鄉·期末)解方程。 11.(23-24六年級上·湖南株洲·期末)解方程。 12.(23-24六年級上·青海西寧·期末)解方程。(1)x= (2) (3)13.(23-24六年級上·福建莆田·期末)解方程。 14.(23-24六年級上·湖南懷化·期末)解方程。 15.(23-24六年級上·河北邯鄲·期末)解方程。-=1 80%-0.4×1.2=1.216.(23-24六年級上·江西贛州·期末)解方程。 17.(23-24六年級上·湖北十堰·期末)解方程。 18.(23-24六年級上·河南信陽·期末)解方程。(1-25%)x=36 90%x+=119.(23-24六年級上·四川廣元·期末)解方程。 20.(23-24六年級上·山東濟南·期末)解方程。 21.(23-24六年級上·河北保定·期末)解方程。 22.(23-24六年級上·河南許昌·期末)解方程。(1) (2) (3)23.(23-24六年級上·湖北黃岡·期末)解方程。∶= -=4.2 0.2×25-40%=24.(23-24六年級上·江西贛州·期末)解方程。0.2x=6 x+x=240 2x-50%x=2125.(23-24六年級上·江西贛州·期末)解方程。x=15% x+x=24 125%x÷=826.(23-24六年級上·河北保定·期末)解方程。80%x+x=3.6 x∶0.3= 27.(23-24六年級上·江西吉安·期末)解方程。 28.(23-24六年級上·江西贛州·期末)解方程。(1) (2) (3)8.7x+130%x=34.329.(23-24六年級上·湖北孝感·期末)解方程。x÷=1.5 x-40%x=0.230.(23-24六年級上·四川成都·期末)解方程。75%x-x=15 x-x=90 31.(23-24六年級上·福建莆田·期末)解方程。(1) (2)32.(23-24六年級上·河南南陽·期末)解方程。 33.(23-24六年級上·北京海淀·期末)解方程。15%x=75 34.(23-24六年級上·吉林四平·期末)解方程。(1)÷=15× (2)75%(-16)=2435.(23-24六年級上·浙江溫州·期末)解方程。(1) (2) (3)36.(23-24六年級上·湖北荊門·期末)解方程。① ②37.(23-24六年級上·福建莆田·期末)解方程。 38.(23-24六年級上·四川綿陽·期末)解方程。① ②39.(23-24六年級上·湖北黃石·期末)解方程。 40.(23-24六年級上·浙江紹興·期末)解方程。(-4)= 0.25×+30%=21世紀教育網(www.21cnjy.com)期末復習??家族e專題10 (解方程)專 題 目 錄第一部分 數學核心素養目標第二部分 真題演練1、解方程當前教育形式,對于小學數學核心素養能力的培養非常重要,小學生必需具有以下數學核心素養(即教師培養學生的目標和方向):會用數學眼光觀察現實世界:抽象能力(包括數感、量感、符號意識)、幾何直觀、空間觀念與創新意識。數學眼光提供了觀察、探究世界的新視野,能將實際情境抽象為數學問題,能體會數學知識的實際意義。會用數學思維思考現實世界:運算能力、推理意識或推理能力。數學為人們提供了理解、解釋現實世界的思維途徑,在邏輯推理中體會數學的嚴謹性。會用數學語言表達現實世界:數據意識或數據觀念、模型意識或模型觀念、應用意識。數學建模與數據分析可以作為工具廣泛應用于其他學科,體現了數學具有應用的廣泛性。.一、解方程1.(23-24六年級上·山東菏澤·期末)解方程。① ② ③【答案】①x=;②x=540;③x=【分析】①x÷=,根據等式的性質2,方程兩邊同時乘即可;②5%x+78=105,根據等式的性質1,方程兩邊同時減去78,再根據等式的性質2,方程兩邊同時除以5%即可;③x-x=,先化簡方程左邊含有x的算式,即求出-的差,再根據等式的性質2,方程兩邊同時除以-的差即可。【詳解】①x÷=解:x=×x=②5%x+78=105解:5%x=105-785%x=27x=27÷5%x=540③x-x=解:x-x=x=x=÷x=×9x=2.(23-24六年級上·浙江嘉興·期末)解方程。 【答案】=4.5;=60【分析】(1)根據乘法分配律,提出x。再利用等式的基本性質2:等式的兩邊同時乘或除以一個不為0的數,等式仍然成立。等式的兩邊同時除以則得出方程的解。(2)先將括號里面的加法算出來,有百分數有分數的減法,將百分數和分數都轉化為小數計算。再根據等式的基本性質2兩邊同時除以0.45求出方程的解。【詳解】+=6.6 解:=6.6=4.5(1-30%-)=27解:0.45=270.45÷0.45=27÷0.45=603.(23-24六年級上·內蒙古巴彥淖爾·期末)解下列方程。x-1.25= x-40%x=120【答案】x=12;x=200【分析】x-1.25=,根據等式的性質1和2,兩邊同時+1.25,再同時÷即可;x-40%x=120,先將左邊合并成0.6x,根據等式的性質2,兩邊同時÷0.6即可。【詳解】x-1.25=解:x-1.25+1.25=+1.25x=x÷=÷x=×8x=12x-40%x=120解:0.6x=1200.6x÷0.6=120÷0.6x=2004.(23-24六年級上·廣西玉林·期末)解方程。75%x+44=98 【答案】x=72;【分析】(1)先在方程的兩邊同時減44,然后再在方程兩邊同時除以75%即可求解;(2)先在方程兩邊同時乘然后同時除以即可求解。【詳解】(1)75%x+44=98解: 75%x+44-44=98-4475%x=5475%x÷75%=54÷75%x÷=54÷0.75x=72(2)解:5.(23-24六年級上·江西宜春·期末)解方程。 【答案】;;【分析】,根據等式的性質2,兩邊同時×即可;,根據等式的性質1和2,兩邊同時÷,再同時+即可;,先將左邊合并成2.6x,根據等式的性質2,兩邊同時÷2.6即可。【詳解】解:解:解:6.(23-24六年級上·廣東河源·期末)解方程。∶= -= +25%=45【答案】x=;x=;x=44.75【分析】根據比與除法的關系,將原式改成÷x=,再根據等式的性質,方程兩邊先同時乘x,再同時除以計算即可;先計算方程左邊的減法,-=x,再根據等式的性質,方程兩邊同時除以計算即可;將25%轉化成小數,根據等式的性質,方程兩邊同時減去0.25計算即可。【詳解】∶=解:÷x=÷x×x=×xx=x=÷x=×3x=-=解:x=x=÷x=×4x=+25%=45解:x+0.25=45x+0.25-0.25=45-0.25x=44.757.(23-24六年級上·河南周口·期末)解方程。 【答案】;;【分析】,先將左邊進行合并,根據等式的性質2,兩邊同時÷即可;,根據等式的性質2,兩邊同時×,再同時÷即可;,根據等式的性質1和2,兩邊同時-,再同時÷即可。【詳解】解:解:解:8.(23-24六年級上·湖南懷化·期末)解方程。 【答案】;;【分析】,先將左邊合并成,根據等式的性質2,兩邊同時÷即可;,根據等式的性質1和2,兩邊同時+的積,再同時÷即可;,先將左邊合并成,根據等式的性質2,兩邊同時÷即可。【詳解】解:解:解:9.(23-24六年級上·河南新鄉·期末)解方程。 【答案】x=;x=;x=【分析】x-x=,先化簡方程左邊含有x的算式,即求出1-的差,再根據等式的性質2,方程兩邊同時除以1-的差即可;x÷=5,根據等式的性質2,方程兩邊同時乘,再除以即可;40%x-=,根據等式的性質1,方程兩邊同時加上,再根據等式的性質2,方程兩邊同時除以40%即可。【詳解】x-x=解:x=x=÷x=×x=x÷=5解:x=x=÷x=×x=40%x-=解:40%x-+=+x=x÷=÷x=×x=10.(23-24六年級上·河南新鄉·期末)解方程。 【答案】;【分析】,先將左邊合并成,根據等式的性質2,兩邊同時÷即可;,根據等式的性質1和2,兩邊同時-,再同時÷即可。【詳解】%解:解:11.(23-24六年級上·湖南株洲·期末)解方程。 【答案】;;【分析】(1)先把方程化簡成,然后方程兩邊同時除以,求出方程的解;(2)先把方程化簡成,然后方程兩邊同時除以,求出方程的解;(3)先把方程化簡成,然后方程兩邊同時除以,求出方程的解。【詳解】(1)解:(2)解:(3)解:12.(23-24六年級上·青海西寧·期末)解方程。(1)x= (2) (3)【答案】(1)x=;(2)x=42;(3)x=63【分析】(1)根據等式的性質,方程兩邊同時除以即可;(2)先化簡方程,再根據等式的性質,方程兩邊同時除以即可;(3)根據等式的性質,方程兩邊同時乘,再同時除以即可。【詳解】(1)x=解:x÷=÷x=×x=(2)50%x+x=27解:x+x=27x=27x÷=27÷x=27×x=42(3)x÷=48解:x÷×=48×x=42x÷=42÷x=42×x=6313.(23-24六年級上·福建莆田·期末)解方程。 【答案】;;【分析】,根據等式的性質2,兩邊同時×即可;,先將左邊合并成1.25x,根據等式的性質2,兩邊同時÷1.25即可;,先將左邊計算得到,根據等式的性質1和2,兩邊同時+,再同時÷2即可。【詳解】解:解:解:14.(23-24六年級上·湖南懷化·期末)解方程。 【答案】;;【分析】(1)方程兩邊先同時加上24,再同時除以2,求出方程的解;(2)方程兩邊同時除以,求出方程的解;(3)先把方程化簡成,然后方程兩邊同時除以,求出方程的解。【詳解】(1)解:(2)解:(3)解:15.(23-24六年級上·河北邯鄲·期末)解方程。-=1 80%-0.4×1.2=1.2【答案】=;=2.1【分析】(1)方程兩邊先同時加上,再同時除以,求出方程的解;(2)先把方程化簡成0.8-0.48=1.2,然后方程兩邊先同時加上0.48,再同時除以0.8,求出方程的解。【詳解】(1)-=1解:=1+==÷=×=(2)80%-0.4×1.2=1.2解:0.8-0.48=1.20.8=1.2+0.480.8=1.68=1.68÷0.8=2.116.(23-24六年級上·江西贛州·期末)解方程。 【答案】;;【分析】(1)根據等式的性質,在方程兩邊同時除以即可;(2)根據等式的性質,先在方程兩邊同時加上,再同時除以75%即可;(3)先把原方程化簡為,再根據等式的性質,在方程兩邊同時除以即可。【詳解】解:解:解:17.(23-24六年級上·湖北十堰·期末)解方程。 【答案】;;【分析】“”先合并,并且將帶分數化成假分數。再將等式兩邊同時除以60%,解出;“”先將等式兩邊同時乘3,再同時減去1.5,解出;“”先計算,再將等式兩邊同時除以,解出。【詳解】解:解:解:18.(23-24六年級上·河南信陽·期末)解方程。(1-25%)x=36 90%x+=1【答案】;【分析】(1-25%)x=36,先計算括號里的減法,轉化成分數后,再根據等式的性質2,方程左右兩邊同時除以,解出方程;90%x+=1,方程兩邊同時減后再同時除以,方程得解。【詳解】(1-25%)x=36 解:75% x=36 90%x+=1解:90%x+-=1-19.(23-24六年級上·四川廣元·期末)解方程。 【答案】x=;x=400;x=70【分析】根據等式的性質1,方程的兩邊同時減去,再根據等式的性質2,方程的兩邊同時除以1.5即可;化簡方程為0.25x=100,再根據等式的性質2,方程的兩邊同時除以0.25即可;根據等式的性質2,方程的兩邊同時除以(1+40%)即可。【詳解】解:1.5x+-=36-1.5x=1.5x÷1.5=÷1.5x=解:0.25x=1000.25x÷0.25=100÷0.25x=400解:(1+40%)x÷(1+40%)=98÷(1+40%)x=98÷1.4x=7020.(23-24六年級上·山東濟南·期末)解方程。 【答案】x=16.4;x=27;x=160【分析】25%x+1.7=5.8,根據等式的性質1,方程兩邊同時減去1.7,再根據等式的性質2,方程兩邊同時除以25%即可;36-x=18,根據等式的性質1,方程兩邊同時加上x,再減去18,再根據等式的性質2,方程兩邊同時除以即可;x-x=60×,先化簡方程左邊含有x的算式,即求出1-的差,以及計算出方程右邊60×的積,再根據等式的性質2,方程兩邊同時除以1-的差即可。【詳解】25%x+1.7=5.8解:25%x+1.7-1.7=5.8-1.725%x=4.125%x÷25%x=4.1÷25%x=16.436-x=18解:36-x+x-18=18-18+xx=18x÷=18÷x=18×x=27x-x=60×解:x=40x÷=40÷x=40×4x=16021.(23-24六年級上·河北保定·期末)解方程。 【答案】;【分析】(1)先把方程化簡成,然后方程兩邊同時除以,求出方程的解;(2)先把化成,然后方程兩邊先同時減去,再同時除以,求出方程的解。【詳解】(1)解:(2)解:22.(23-24六年級上·河南許昌·期末)解方程。(1) (2) (3)【答案】;;【分析】(1)根據等式的性質2,方程兩邊同時乘,再同時乘即可;(2)先將化為0.2,然后根據等式的性質1,方程兩邊同時減去40,再根據等式的性質2,方程兩邊同時除以0.2即可;(3)先將化為0.5,然后化簡含有x的算式,,再根據等式的性質2,方程兩邊同時除以0.2即可。【詳解】(1)解:(2)解:(3)解:23.(23-24六年級上·湖北黃岡·期末)解方程。∶= -=4.2 0.2×25-40%=【答案】=;=9;=12【分析】∶=,比的前項相當于被除數,后項相當于除數,比值相當于商,根據等式的性質2,兩邊同時×即可;-=4.2,先將左邊合并成,根據等式的性質2,兩邊同時÷即可;0.2×25-40%=,能計算的計算出結果,將百分數化小數,根據等式的性質1和2,兩邊同時+0.4,再同時-,最后同時÷0.4即可。【詳解】∶=解:÷×=×=-=4.2解:=4.2÷=4.2÷=4.2×=90.2×25-40%=解:5-0.4=5-0.4+0.4=+0.4+0.4=5+0.4-=5-0.4=4.80.4÷0.4=4.8÷0.4=1224.(23-24六年級上·江西贛州·期末)解方程。0.2x=6 x+x=240 2x-50%x=21【答案】x=30;x=200;x=14【分析】0.2x=6,根據等式的性質2,將方程左右兩邊同時除以0.2即可;x+x=240,先將左邊合并為x,然后根據等式的性質2,將方程左右兩邊同時除以即可;2x-50%x=21,先將左邊合并為1.5x,然后根據等式的性質2,將方程左右兩邊同時除以1.5即可。【詳解】0.2x=6 解:x=6÷0.2 x=30 x+x=240解:x=240x=240÷x=240×x=2002x-50%x=21解:1.5x=21x=21÷1.5x=1425.(23-24六年級上·江西贛州·期末)解方程。x=15% x+x=24 125%x÷=8【答案】x=;x=20;x=16【分析】“x=15%”將等式兩邊同時除以,解出x;“x+x=24”先合并x+x,再將等式兩邊同時除以,解出x;“125%x÷=8”先計算125%x÷,再將等式兩邊同時除以0.5,解出x。【詳解】x=15%解:x÷=15%÷x=15%×x=x+x=24解:x=24x÷=24÷x=24×x=20125%x÷=8解:125%x×=80.5x=80.5x÷0.5=8÷0.5x=1626.(23-24六年級上·河北保定·期末)解方程。80%x+x=3.6 x∶0.3= 【答案】x=2;x=0.1;x=【分析】80%x+x=3.6,先化簡方程左邊含有x的算式,即求出80%+1的和,再根據等式的性質2,方程兩邊同時除以80%+1的和即可;x∶0.3=,解比例,原式化為:x÷0.3=,再根據等式的性質2,方程兩邊同時乘0.3即可;x÷=,根據等式的性質2,方程兩邊同時乘,再除以即可。【詳解】80%x+x=3.6解:1.8x=3.61.8x÷1.8=3.6÷1.8x=2x∶0.3=解:x÷0.3=x=0.3×x=0.1x÷=解:x÷×=×x=1x÷=1÷x=1×x=27.(23-24六年級上·江西吉安·期末)解方程。 【答案】;;【分析】(1)根據等式的基本性質,方程兩邊同時加上5x,再同時減去2.5,最后同時除以5求解;(2)根據等式的基本性質,方程兩邊先同時減去10,再同時除以求解;(3)先化簡(x-25%x),再根據等式的基本性質,方程兩邊同時除以(1-25%)求解。【詳解】(1)解:(2)解:(3)解:28.(23-24六年級上·江西贛州·期末)解方程。(1) (2) (3)8.7x+130%x=34.3【答案】(1);(2)x=;(3)x=3.43【分析】(1)根據等式的性質,方程兩邊同時除以即可;(2)把比號看作除號,把式子轉化為2x÷=8,再根據等式的性質,方程兩邊同時乘,再同時除以2即可;(3)先化簡方程,再根據等式的性質,方程兩邊同時除以10即可。【詳解】(1)解:(2)解:2x÷=82x÷×=8×2x=2x÷2=÷2x=×x=(3)8.7x+130%x=34.3解:10x=34.310x÷10=34.3÷10x=3.4329.(23-24六年級上·湖北孝感·期末)解方程。x÷=1.5 x-40%x=0.2【答案】x=1.25;x=0.5【分析】“x÷=1.5”將等式兩邊同時乘,解出x;“x-40%x=0.2”先計算x-40%x,再將等式兩邊同時除以0.4,解出x。【詳解】x÷=1.5解:x÷×=1.5×x=1.25x-40%x=0.2解:0.8x-0.4x=0.20.4x=0.20.4x÷0.4=0.2÷0.4x=0.530.(23-24六年級上·四川成都·期末)解方程。75%x-x=15 x-x=90 【答案】x=60;x=270;【分析】75%x-x=15,先將左邊合并成0.25x,根據等式的性質2,兩邊同時÷0.25即可;x-x=90,先將左邊合并成x,根據等式的性質2,兩邊同時÷即可;,根據等式的性質2,兩邊同時÷x,再同時÷即可。【詳解】75%x-x=15解:0.75x-0.5x=150.25x=150.25x÷0.25=15÷0.25x=60x-x=90解:x=90x÷=90÷x=90×3x=270解:31.(23-24六年級上·福建莆田·期末)解方程。(1) (2)【答案】(1)x=180;(2)x=54【分析】(1)先把方程化簡成,再根據等式的性質,方程兩邊同時除以即可;(2)根據等式的性質,方程兩邊先同時加上5,再同時除以即可。【詳解】(1)解:(2)解:32.(23-24六年級上·河南南陽·期末)解方程。 【答案】;;【分析】,根據等式的性質2,將方程左右兩邊同時乘,再同時除以即可;,先將左邊合并為80%x,再根據等式的性質2,將方程左右兩邊同時除以80%即可;,根據等式的性質1和2,將方程左右兩邊同時加上,再同時除以即可。【詳解】解:解:解:33.(23-24六年級上·北京海淀·期末)解方程。15%x=75 【答案】;【分析】(1)根據等式的基本性質,方程兩邊同時除以15%求解;(2)先化簡(),再根據等式的基本性質,方程兩邊同時除以()求解。【詳解】(1)解:(2)解:34.(23-24六年級上·吉林四平·期末)解方程。(1)÷=15× (2)75%(-16)=24【答案】(1)x=;(2)x=48【分析】(1)先化簡方程,再根據等式的性質,方程兩邊同時乘即可;(2)根據等式的性質,方程兩邊同時除以75%,再同時加上16即可。【詳解】(1)÷=15×解:÷=10÷×=10×x=(2)75%(-16)=24解:75%(-16)÷75%=24÷75%x-16=32x-16+16=32+16x=4835.(23-24六年級上·浙江溫州·期末)解方程。(1) (2) (3)【答案】(1)x=25;(2)x=8.3;(3)x=72【分析】(1)x÷15=,根據等式的性質2,方程兩邊同時乘15即可;(2)×(x-0.3)=4,根據等式的性質2,方程兩邊同時除以,再根據等式的性質1,方程兩邊同時加上0.3即可;(3)25%x+12=30,根據等式的性質1,方程兩邊同時減去12,再根據等式的性質2,方程兩邊同時除以25%即可。【詳解】(1)x÷15=解:x÷15×15=×15x=25(2)×(x-0.3)=4解:×(x-0.3)÷=4÷x-0.3=4×2x-0.3=8x-0.3+0.3=8+0.3x=8.3(3)25%x+12=30解:25%x+12-12=30-1225%x=1825%x÷25%=18÷25%x=7236.(23-24六年級上·湖北荊門·期末)解方程。① ②【答案】①;②【分析】①先把方程化簡成,然后方程兩邊同時除以,求出方程的解;②先把方程化簡成,然后方程兩邊先同時減去,再同時除以,求出方程的解。【詳解】①解:②解:37.(23-24六年級上·福建莆田·期末)解方程。 【答案】;【分析】等式的性質1:等式兩邊加上或減去同一個數,左右兩邊仍然相等。等式的性質2:等式兩邊乘或除以同一個不為0的數,左右兩邊仍然相等。(1)先計算方程左邊=3.3,得到,接著等號左右兩邊同時減去3.3,最后等號左右兩邊同時除以70%,即可解出方程。(2)方程等號左右兩邊同時加上,然后等號左右兩邊同時減去28,最后等號左右兩邊同時除以,即可解出方程。【詳解】解:解:38.(23-24六年級上·四川綿陽·期末)解方程。① ②【答案】①;②【分析】①先利用等式的基本性質2:等式的兩邊同時乘或者除以一個不為0的數,等式仍然成立。將兩邊同時乘,再用時除以,除以一個分數等于乘這個分數的倒數。②先將50%轉換乘分數,再利用乘法的分配律,提出x,得出,再利用等式的基本性質2兩邊同時除以。【詳解】①解:②解:39.(23-24六年級上·湖北黃石·期末)解方程。 【答案】;【分析】(1)先計算,再將化為小數,,然后根據等式的性質1,方程兩邊同時減去0.4即可;(2)先將百分數化為分數,,再合并方程左邊的同類項,然后根據等式的性質2,方程兩邊同時除以的差即可。【詳解】(1)解:(2)解:40.(23-24六年級上·浙江紹興·期末)解方程。(-4)= 0.25×+30%=【答案】=;=【分析】根據等式的性質解方程。(1)方程兩邊先同時除以,再同時加上4,求出方程的解;(2)先把方程化簡成+=,然后方程兩邊先同時減去,再同時除以,求出方程的解。【詳解】(1)(-4)=解:(-4)÷=÷-4=×-4=-4+4=+4=(2)0.25×+30%=解:×+=+=+-=-=÷=÷=×=21世紀教育網(www.21cnjy.com) 展開更多...... 收起↑ 資源列表 期末復習常考易錯專題10(解方程)-2024-2025學年六年級數學上學期期末備考真題分類匯編(人教版)(學生版).docx 期末復習常考易錯專題10(解方程)-2024-2025學年六年級數學上學期期末備考真題分類匯編(人教版)(教師版).docx 縮略圖、資源來源于二一教育資源庫