資源簡介 學習任務單課程基本信息學科 初中數學 年級 八年級 學期 秋季課題 1.6尺規作圖學習目標1. 了解尺規作圖的含義和基本尺規作圖的范圍。 2. 會進行以下尺規作圖,并了解作法的理由。 ①作一個角等于已知角;②作已知線段的垂直平分線;③在給定邊角條件下,求作三角形。3.經歷尺規作圖的過程,增強動手能力,能想象出通過尺規作圖的操作所形成的圖形,理解尺規作圖的基本原理和方法,發展空間觀念和空間想象力。課前學習任務1.尺規作圖:要求不用寫作法,保留作圖痕跡,寫出結論. (1)已知線段a,作一條線段AB=a. (2)已知∠ABC,作∠ABC的平分線. 2.通過查閱課本,互聯網資料等,嘗試以思維導圖的形式,整理構建“尺規作圖”知識結構圖.同學們可先獨立思考后,進行合作交流(相互比較、評價),進一步完善.課上學習任務【學習任務一】【基礎部分】 學習方式:預習、探究,合作交流·解決問題【整體構建】 我們已經學習作一條線段等于已知線段,作一個角的角平分線。今天我們要學習哪些尺規作圖? 【問題情境】 1.這些幾何圖形可以用什么工具完成? 2.尺規作圖的定義: 【歷史背景】 說一說:了解了尺規作圖歷史背景,你能說說有關尺規作圖的事件嗎? 【學習任務二】 【要點部分】 學習方式:獨學、對學,師生探究·合作交流 【例題解析】例1:如圖,已知線段AB,用直尺和圓規作線段AB的垂直平分線. 操作:在透明紙上畫出線段AB,把透明紙對折使點A與點B重合. 發現: 探究:線段垂直平分線是一條什么線?如何確定這條線? 畫法:用直尺和圓規作線段AB的垂直平分線(如圖1). 步驟:1. 2. 為什么要求大于線段AB長度一半為半徑作??? 原理: 尺規作圖方法: 【當堂練習】 直線l表示一條公路,點A和點B表示兩個村莊.現要在公路上建一個加油站,并到兩個村莊的距離相等.加油站應建在何處 請在圖上標明這個地點,并說明理由.(畫出圖形不寫作法,保留作圖痕跡).【學習任務三】 【要點部分】 學習方式:獨學、對學,師生探究·合作交流 【例題解析】例2:已知∠AOB,求作∠A'O'B',使∠A'O'B'=∠AOB 思考1:如何構造兩個三角形全等? 思考2:判定三角形全等的方法有哪些? 思考3:現在已知一個角及其兩邊,可以聯想到通過哪種判定方法構造全等? 思考4:如何利用圓規可以畫等長的特性,作出等邊? 畫法:用直尺和圓規作一個角等于已知∠AOB(如圖2) 步驟:1. 2. 3. 4. 原理:【學習任務四】 【要點部分】 學習方式:獨學、對學,師生探究·合作交流 【例題解析】例3:已知∠α,∠β和線段a,用直尺和圓規作ΔABC,使∠A=∠α,∠B=∠β,AB=a. 思考:要作ΔABC要用到哪些基本圖形 在作ΔABC過程中,你覺得先作邊還是先作角方便? 反思:此題作給定邊角的三角形實質是什么? 【拓展延伸】 變式1:已知∠α,∠β和線段a,用直尺和圓規作ΔABC,使∠BAC=∠α,∠ABC=∠β,AC=a. 思考:如何作已知兩個角及其中一個角的對邊三角形 第三個角怎么作呢? 反思:此題作給定邊角的三角形實質是什么? 變式2:已知線段a,b和∠β用直尺和圓規作ΔABC,使BC=a,AB=c,∠ABC=∠β. 思考:在作ΔABC過程中,你覺得先作邊還是先作角方便? 反思:此題作給定邊角的三角形實質是什么? 拓展:將AB=c改為AC=c.又會怎么樣呢?這樣的三角形能作幾個?【學習任務五】 【小結部分】 學習方式:獨學,解決問題 【課堂小結】 同學們,你還能利用尺規作出哪些圖?嘗試動手設計精美圖案吧. 【課后作業】 展開更多...... 收起↑ 資源預覽 縮略圖、資源來源于二一教育資源庫