資源簡(jiǎn)介 第三章一元函數(shù)的導(dǎo)數(shù)及其應(yīng)用 第二節(jié)導(dǎo)數(shù)與函數(shù)的單調(diào)性導(dǎo)數(shù)與函數(shù)單調(diào)性專題考點(diǎn)一:函數(shù)的單調(diào)性與導(dǎo)數(shù)的關(guān)系1.判斷正誤.(正確的畫“√”,錯(cuò)誤的畫“×”)(1)函數(shù)f(x)在(a,b)內(nèi)單調(diào)遞增,那么一定有f'(x)>0.( × )(2)如果f(x)在某個(gè)區(qū)間內(nèi)恒有f'(x)=0,則f(x)在此區(qū)間內(nèi)沒有單調(diào)性.( √ )(3)若函數(shù)f(x)在定義域上都有f'(x)>0,則f(x)在定義域上一定是增函數(shù).( × )2.已知f(x)是定義在(a,b)內(nèi)的可導(dǎo)函數(shù),則“f'(x)>0”是“f(x)在(a,b)內(nèi)為增函數(shù)”的A.充分不必要條件 B.必要不充分條件 C.充要條件 D.既不充分也不必要條件【答案】A 考點(diǎn)二:求已知函數(shù)(不含參數(shù))的單調(diào)區(qū)間1.函數(shù)f(x)=cos x-x在(0,π)上的單調(diào)性為( )A.先增后減 B.先減后增 C.單調(diào)遞增 D.單調(diào)遞減解析:D 因?yàn)樵趨^(qū)間(0,π)內(nèi),f'(x)=-sin x-1<0恒成立,所以f(x)在(0,π)上單調(diào)遞減,故選D.2.函數(shù)y=4x2+的單調(diào)遞增區(qū)間為 (,+∞) .解析:由y=4x2+(x≠0),得y'=8x-,令y'>0,即8x->0,解得x>,∴函數(shù)y=4x2+的單調(diào)遞增區(qū)間為(,+∞).3.函數(shù)f(x)=++x的單調(diào)遞減區(qū)間為 (0,) ;4.已知定義在區(qū)間(0,π)上的函數(shù)f(x)=x+2cos x,則f(x)的單調(diào)遞增區(qū)間為 (0,),(,π) .解析:(1)f(x)的定義域?yàn)椋?,+∞),f'(x)=-+1=,當(dāng)x∈(0,)時(shí),f'(x)<0,當(dāng)x∈(,+∞)時(shí),f'(x)>0,∴f(x)的單調(diào)遞減區(qū)間為(0,).(2)f'(x)=1-2sin x,x∈(0,π).令f'(x)=0,得x=或x=,當(dāng)0<x<或<x<π時(shí),f'(x)>0,當(dāng)<x<時(shí),f'(x)<0,∴f(x)在(0,)和(,π)上單調(diào)遞增,在(,)上單調(diào)遞減.5.已知函數(shù),則的單調(diào)遞減區(qū)間為( )A. B. C. D.【答案】A【分析】先求出函數(shù)的定義域,然后對(duì)函數(shù)求導(dǎo)后,由可求出其遞減區(qū)間.【詳解】的定義域?yàn)椋睿獾茫?br/>所以的單調(diào)遞減區(qū)間為,故選:A.6.函數(shù)的單調(diào)遞減區(qū)間是( )A. B. C. D.【答案】C【分析】求出導(dǎo)函數(shù),令,即可得解.【詳解】由函數(shù),可得,令,可得,所以函數(shù)的單調(diào)遞減區(qū)間是.故選:C.7.函數(shù)的單調(diào)遞增區(qū)間是( )A. B. C. D.【答案】D【分析】對(duì)函數(shù)求導(dǎo)并令導(dǎo)函數(shù)大于零,解不等式可得其單調(diào)遞增區(qū)間.【詳解】易知函數(shù)的定義域?yàn)椋傻茫睿獾?所以函數(shù)的單調(diào)遞增區(qū)間是.故選:D8.函數(shù)單調(diào)遞減區(qū)間是( )A. B. C. D.【答案】A【分析】求導(dǎo)后,令,解出即可.【詳解】,令,解得,所以單調(diào)遞減區(qū)間為.故選:A.9.已知函數(shù),其導(dǎo)函數(shù)為.(1)求在處的切線方程;(2)求的單調(diào)區(qū)間.【答案】(1)(2)單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為【分析】(1)利用導(dǎo)數(shù)的幾何意義即可得解;(2)利用導(dǎo)數(shù)與函數(shù)單調(diào)性的關(guān)系即可得解.【詳解】(1)因?yàn)榈膶?dǎo)數(shù)為,所以在處的切線斜率為,而故所求的切線方程為,即.因?yàn)椋x域?yàn)?br/>所以,解得,解得,所以的單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為.10.已知函數(shù) (其中為常數(shù)).(1)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;(2)求函數(shù)在上的最小值.【答案】(1)單調(diào)遞增區(qū)間為;單調(diào)遞減區(qū)間為(2)答案見解析【分析】(1)根據(jù)的正負(fù)確定單調(diào)區(qū)間; (2)分類討論,根據(jù)單調(diào)的單調(diào)性確定的最小值.【詳解】(1),令解得,所以的單調(diào)遞增區(qū)間為令解得,所以的單調(diào)遞減區(qū)間為(2)①當(dāng)時(shí),在上單調(diào)遞增,;②當(dāng)時(shí),在上單調(diào)遞增,;③當(dāng)時(shí),令和分別解得和,則在上單調(diào)遞減,單調(diào)遞增,所以;④當(dāng)時(shí),在上單調(diào)遞減.綜上所述:當(dāng)時(shí),;當(dāng)時(shí),;當(dāng)時(shí),.考點(diǎn)三:求已知函數(shù)(含參數(shù))的單調(diào)區(qū)間解題技法 討論函數(shù)f(x)單調(diào)性的步驟(1)確定函數(shù)f(x)的定義域;(2)求導(dǎo)數(shù)f'(x),并求方程f'(x)=0的根;(3)利用f'(x)=0的根將函數(shù)的定義域分成若干個(gè)子區(qū)間,在這些子區(qū)間上討論f'(x)的正負(fù),由符號(hào)確定f(x)在該區(qū)間上的單調(diào)性.提醒 研究含參函數(shù)的單調(diào)性時(shí),需注意依據(jù)參數(shù)取值對(duì)不等式解集的影響進(jìn)行分類討論.1.(2024·惠州模擬)已知函數(shù)f(x)=aln x+2x2-2(a∈R),討論函數(shù)f(x)的單調(diào)性.解:函數(shù)f(x)的定義域?yàn)椋?,+∞),且f'(x)=+4x=.當(dāng)a≥0時(shí),f'(x)>0恒成立,則函數(shù)f(x)在(0,+∞)上是增函數(shù);當(dāng)a<0時(shí),令f'(x)=0,解得x=,由f'(x)≤0,得0<x≤;由f'(x)≥0,得x≥.則函數(shù)f(x)在(0,]上單調(diào)遞減,在[,+∞)上單調(diào)遞增.綜上,當(dāng)a≥0時(shí),函數(shù)f(x)在(0,+∞)上是增函數(shù);當(dāng)a<0時(shí),函數(shù)f(x)在(0,]上單調(diào)遞減,在[,+∞)上單調(diào)遞增.2.(2023·新高考Ⅰ卷19題節(jié)選)已知函數(shù)f(x)=a(ex+a)-x,討論f(x)的單調(diào)性.解:由題意知,f(x)的定義域?yàn)椋ǎ蓿蓿琭'(x)=aex-1.當(dāng)a≤0時(shí),易知f'(x)<0,則f(x)在(-∞,+∞)上是減函數(shù).當(dāng)a>0時(shí),令f'(x)=0,得x=ln.當(dāng)x∈(-∞,ln)時(shí),f'(x)<0;當(dāng)x∈(ln,+∞)時(shí),f'(x)>0.所以f(x)在(-∞,ln)上單調(diào)遞減,在(ln,+∞)上單調(diào)遞增.綜上可知,當(dāng)a≤0時(shí),f(x)在(-∞,+∞)上是減函數(shù);當(dāng)a>0時(shí),f(x)在(-∞,ln)上單調(diào)遞減,在(ln,+∞)上單調(diào)遞增.3.已知函數(shù)f(x)=ex-ax-a,a∈R,求f(x)的單調(diào)區(qū)間.解:函數(shù)f(x)=ex-ax-a的定義域?yàn)镽,求導(dǎo)得f'(x)=ex-a,當(dāng)a≤0時(shí),f'(x)>0恒成立,即f(x)在R上是增函數(shù);當(dāng)a>0時(shí),令f'(x)=ex-a>0,解得x>ln a,令f'(x)=ex-a<0,解得x<ln a,即f(x)在(-∞,ln a)上單調(diào)遞減,在(ln a,+∞)上單調(diào)遞增,所以當(dāng)a≤0時(shí),f(x)在R上是增函數(shù);當(dāng)a>0時(shí),f(x)的單調(diào)遞減區(qū)間為(-∞,ln a),單調(diào)遞增區(qū)間為(ln a,+∞).4.設(shè)函數(shù).(1)若是的極值點(diǎn),求a的值,并求的單調(diào)區(qū)間;(2)討論的單調(diào)性;(3)若,求的取值范圍.【答案】(1)6,單調(diào)遞增區(qū)間,單調(diào)遞減區(qū)間(2)答案見解析(3)【分析】(1)先求導(dǎo),令,檢驗(yàn)即得解;代入,分別令,得到單增區(qū)間和單減區(qū)間;(2)根據(jù)二次函數(shù)及二次不等式的性質(zhì),結(jié)合函數(shù)定義域,分類討論即可求解;(3)轉(zhuǎn)化為,分,兩種情況討論即可.【詳解】(1),,解得,此時(shí),令,有或,令,有,所以是的極值點(diǎn),滿足題意,所以的單調(diào)遞增區(qū)間是,單調(diào)遞減區(qū)間是.(2)由(1)知,當(dāng)即時(shí),恒成立,所以在上單調(diào)遞增;當(dāng)即時(shí),由得或,由得,故的單調(diào)遞增區(qū)間為和,單調(diào)遞減區(qū)間為;當(dāng)即時(shí),由得或,由得,故的單調(diào)遞增區(qū)間為和,單調(diào)遞減區(qū)間為;當(dāng)即時(shí),由得,得,故的單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為.綜上,時(shí),在上單調(diào)遞增,無遞減區(qū)間,時(shí),的單調(diào)遞增區(qū)間為和,單調(diào)遞減區(qū)間為,時(shí),的單調(diào)遞增區(qū)間為和,單調(diào)遞減區(qū)間為,時(shí),的單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為.(3)由題意當(dāng)時(shí),令,有,令,有,所以在上單調(diào)遞減,在上單調(diào)遞增,所以,即當(dāng)時(shí),不成立.綜上,.5.已知函數(shù)(1)求函數(shù)的單調(diào)區(qū)間;(2)函數(shù)有唯一零點(diǎn),函數(shù)在上的零點(diǎn)為.證明:.【答案】(1)單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為(2)證明見解析【分析】(1)求出函數(shù)的定義域與導(dǎo)函數(shù),再解關(guān)于導(dǎo)函數(shù)的不等式,即可求出函數(shù)的單調(diào)區(qū)間;(2)法一:由已知導(dǎo)數(shù)與單調(diào)性關(guān)系及函數(shù)零點(diǎn)存在定理可知,,構(gòu)造函數(shù),結(jié)合導(dǎo)數(shù)及函數(shù)性質(zhì)可得的范圍,再令,結(jié)合導(dǎo)數(shù)分析的單調(diào)性,利用不等式放縮即可求解.法二:,設(shè)新函數(shù),利用零點(diǎn)存在性定理得,再證明單調(diào)性即可.【詳解】(1)函數(shù)的定義域?yàn)椋遥?br/>所以當(dāng)時(shí),當(dāng)時(shí),所以的單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為;(2)法一:由(1)可知若函數(shù)有唯一零點(diǎn),則,即,令,則,當(dāng)時(shí),單調(diào)遞減,當(dāng)時(shí),單調(diào)遞增,因?yàn)椋裕?br/>,當(dāng)時(shí),當(dāng)時(shí),所以在上存在唯一零點(diǎn),所以,即,令,則,所以在上單調(diào)遞減,故,所以,又,所以,令,則,所以在上單調(diào)遞增,又,所以.法二:因?yàn)椋桑?)可知若函數(shù)有唯一零點(diǎn),則,即,設(shè),而在上單調(diào)遞增,所以,,所以在上單調(diào)遞增,又,令,所以在上單調(diào)遞增,所以,而,.6.已知函數(shù).討論的單調(diào)性;證明:當(dāng)時(shí),.【答案】解:,當(dāng)時(shí),在單調(diào)遞減,當(dāng)時(shí),,在單調(diào)遞減,當(dāng)時(shí),令,,時(shí),,單調(diào)遞減.時(shí),單調(diào)遞增,故當(dāng)時(shí)在單調(diào)遞減,當(dāng)時(shí),在區(qū)間單調(diào)遞減,在區(qū)間單調(diào)遞增.由知當(dāng)時(shí),在區(qū)間單調(diào)遞減,在區(qū)間單調(diào)遞增故,令,,令,因?yàn)椋剩趨^(qū)間單調(diào)遞減,在區(qū)間單調(diào)遞增,,即恒成立,即,即當(dāng)時(shí),. 【解析】本題考查了函數(shù)的求導(dǎo),利用導(dǎo)數(shù)分析函數(shù)的單調(diào)性,根據(jù)函數(shù)的極值、最值證明不等式,屬于中等難度.先對(duì)函數(shù)求導(dǎo)后,得到,根據(jù)得出分、、進(jìn)行討論,得出時(shí)在單調(diào)遞減.時(shí)求出函數(shù)零點(diǎn),再依據(jù)導(dǎo)函數(shù)正負(fù)判斷函數(shù)單調(diào)性.要證時(shí),結(jié)合討論結(jié)果知的單調(diào)性,得到在處取得最小值,只需證明即可.構(gòu)造,只需證明,進(jìn)一步利用導(dǎo)數(shù)得出在區(qū)間單調(diào)遞減,在區(qū)間單調(diào)遞增,求出最小值,發(fā)現(xiàn),即證恒大于,即證當(dāng)時(shí),.7.已知函數(shù),.討論函數(shù)的單調(diào)性;若存在,使成立,求實(shí)數(shù)的取值范圍.注:為自然對(duì)數(shù)的底數(shù).【答案】解:,,,當(dāng)時(shí),,的單調(diào)遞增區(qū)間是當(dāng)時(shí),令,解得,所以的單調(diào)遞增區(qū)間是,單調(diào)遞減區(qū)間是綜上當(dāng)時(shí),的單調(diào)遞增區(qū)間是當(dāng)時(shí),的單調(diào)遞增區(qū)間是,單調(diào)遞減區(qū)間是,設(shè),當(dāng),,在上單調(diào)遞增,,即,不符合題意;當(dāng)時(shí),則存在唯一的,使得.當(dāng)時(shí),,當(dāng)時(shí),.故當(dāng),單調(diào)遞減,,單調(diào)遞增,,,這與矛盾,當(dāng)時(shí),,在上單調(diào)遞減,綜上實(shí)數(shù)的取值范圍為. 【解析】本題考查利用導(dǎo)數(shù)研究存在性問題,利用導(dǎo)數(shù)求函數(shù)的單調(diào)區(qū)間,屬于中檔題.求出函數(shù)的導(dǎo)數(shù),對(duì)分情況討論,求出函數(shù)的單調(diào)區(qū)間即可;構(gòu)造函數(shù),求導(dǎo),對(duì)分類討論,研究函數(shù)的單調(diào)性和最值即可得到結(jié)論.8.已知函數(shù).討論的單調(diào)性;當(dāng)有極小值,且極小值小于時(shí),求的取值范圍.【答案】解:的定義域?yàn)椋?br/>若,則,所以在上單調(diào)遞增.若,則當(dāng)時(shí),;當(dāng)時(shí),.所以在上單調(diào)遞減,在上單調(diào)遞增.綜上所述,當(dāng)時(shí),在上單調(diào)遞增;當(dāng)時(shí),在上單調(diào)遞減,在上單調(diào)遞增.由知,當(dāng)時(shí),在無極小值.當(dāng)時(shí),在取得極小值為.因此等價(jià)于即,令,其中,因?yàn)椋栽谏蠁握{(diào)遞增,且.于是,當(dāng)時(shí),;當(dāng)時(shí),.因此,的取值范圍是. 【解析】本題考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性與極值,屬于中檔題.求導(dǎo)得到,對(duì)分和討論即可;首先排除,當(dāng)時(shí)得到,再設(shè)新函數(shù),得到其單調(diào)性和即可得到答案.9.已知函數(shù).當(dāng)時(shí),求曲線在處的切線方程;求函數(shù)的單調(diào)區(qū)間;【答案】解:當(dāng)時(shí),,所以,.又,所以曲線在處的切線方程為 函數(shù)的定義域?yàn)椋?br/>當(dāng)時(shí),因,,所以單調(diào)增區(qū)間為,無單調(diào)減區(qū)間.當(dāng)時(shí),令,得.當(dāng)時(shí),;當(dāng)時(shí),;所以的單調(diào)增區(qū)間為,減區(qū)間為.綜上,當(dāng)時(shí),的單調(diào)增區(qū)間為,無單調(diào)減區(qū)間;當(dāng)時(shí),的單調(diào)增區(qū)間為,減區(qū)間為 【解析】本題考查導(dǎo)數(shù)的幾何意義以及利用導(dǎo)數(shù)研究函數(shù)單調(diào)性,屬于中檔題.Ⅰ求出函數(shù)導(dǎo)數(shù),利用導(dǎo)數(shù)幾何意義求出切線斜率進(jìn)而通過點(diǎn)斜式求出切線方程;Ⅱ求出函數(shù)的導(dǎo)數(shù),分類討論判斷導(dǎo)數(shù)的正負(fù)進(jìn)而求出函數(shù)單調(diào)性.10.已知函數(shù).討論的單調(diào)性;若方程有兩個(gè)不相等的實(shí)根,證明:.【答案】解:因?yàn)椋?br/>所以,定義域?yàn)椋?br/>當(dāng)時(shí),,在上單調(diào)遞增;當(dāng)時(shí),時(shí),,在上單調(diào)遞增,時(shí),,在上單調(diào)遞減;綜上,當(dāng)時(shí),在上單調(diào)遞增;當(dāng)時(shí),在上單調(diào)遞增,在上單調(diào)遞減;證明:方程,即,即,即,令,則,因?yàn)椋栽谏蠁握{(diào)遞增,所以,即,所以,因?yàn)槭欠匠痰膬蓚€(gè)實(shí)根,所以是方程的兩個(gè)實(shí)根,即,所以是方程的兩個(gè)實(shí)根,令,則,當(dāng)時(shí),,單調(diào)遞減,當(dāng)時(shí),,單調(diào)遞增;,當(dāng)時(shí),,令,不妨設(shè),則,要證,即證,即證,令,則在 上單調(diào)遞增,且,所以,所以在上單調(diào)遞減,又,所以,即,因?yàn)樵趩握{(diào)遞增,所以,即,所以. 【解析】本題考查導(dǎo)數(shù)中的函數(shù)不等式,利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,屬于較難題.利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,分和兩種情況討論,即可求出結(jié)果;利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,從而判斷出在上單調(diào)遞增,即 ,令,分析可知,當(dāng)時(shí),,單調(diào)遞減,當(dāng)時(shí),,單調(diào)遞增;將所求問題進(jìn)行轉(zhuǎn)化,要證,即證,,令,利用導(dǎo)數(shù)分析可知的單調(diào)性,從而證明不等式.11.已知.討論函數(shù)的單調(diào)性若函數(shù)有兩個(gè)零點(diǎn),求的取值范圍.【答案】解:因?yàn)椋?br/>所以,當(dāng)時(shí),,則在上單調(diào)遞增;當(dāng)時(shí),令,可得,當(dāng)時(shí),,在上單調(diào)遞減;當(dāng)時(shí),,在上單調(diào)遞增;綜上所述,當(dāng)時(shí),在上單調(diào)遞增;當(dāng)時(shí),在上單調(diào)遞減,在上單調(diào)遞增;由得,要使函數(shù)有兩個(gè)零點(diǎn),則,且,令,則,令,則恒成立,即在上單調(diào)遞減,,,,使得,即,且在上單調(diào)遞增,在上單調(diào)遞減,故只需,即,則,即,解得,則,又當(dāng)趨近于無窮大時(shí),趨近于正無窮大;當(dāng)趨近于負(fù)無窮時(shí),趨近于正無窮大,故當(dāng)時(shí),函數(shù)有兩個(gè)零點(diǎn). 【解析】本題考查利用導(dǎo)數(shù)求函數(shù)的單調(diào)區(qū)間,利用導(dǎo)數(shù)研究函數(shù)的零點(diǎn)或方程的根,利用導(dǎo)數(shù)求函數(shù)的最值,函數(shù)零點(diǎn)存在定理,屬于較難題.求出導(dǎo)數(shù),分,討論,即可求出結(jié)果;由得,要使函數(shù)有兩個(gè)零點(diǎn),則,且,令,利用導(dǎo)數(shù)并結(jié)合零點(diǎn)存在定理,得出只需,由此即可求出結(jié)果.12.已知函數(shù),討論的單調(diào)性當(dāng)時(shí),恒成立,求的取值范圍.【答案】解:函數(shù)定義域?yàn)椋?br/>若,,當(dāng)時(shí),,單調(diào)遞減;當(dāng)時(shí),,單調(diào)遞增;若,當(dāng)時(shí),,單調(diào)遞增;當(dāng)時(shí),,單調(diào)遞減;當(dāng)時(shí),,單調(diào)遞增;若,,在上單調(diào)遞增;若,當(dāng)時(shí),,單調(diào)遞增;當(dāng)時(shí),,單調(diào)遞減;當(dāng)時(shí),,單調(diào)遞增.由知:當(dāng)時(shí),在上單調(diào)遞增,故,,解得,當(dāng)時(shí),在上單調(diào)遞減,在上單調(diào)遞增,故, ,即,,解得,綜上, 【解析】本題考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,研究不等式恒成立問題,屬于較難題.求出導(dǎo)函數(shù),分類討論確定的得增區(qū)間,同時(shí)可由得減區(qū)間;對(duì)分類,由中函數(shù)的單調(diào)性得最值,由不等式恒成立求得的范圍.13.已知函數(shù),其中.討論的單調(diào)性;設(shè),若不等式對(duì)恒成立,求的取值范圍.【答案】解:由題意可知:的定義域?yàn)椋遥?br/>當(dāng)時(shí),恒成立,則在上單調(diào)遞減;當(dāng)時(shí),令,解得;令,解得;則在上單調(diào)遞減,在上單調(diào)遞增;綜上所述:當(dāng)時(shí),的單調(diào)減區(qū)間為,無單調(diào)增區(qū)間;當(dāng)時(shí),的單調(diào)減區(qū)間為,單調(diào)增區(qū)間為.當(dāng)時(shí),由可知在上單調(diào)遞減,在上單調(diào)遞增,故的最小值為.因?yàn)?不等式對(duì)恒成立,所以.設(shè),則的定義域?yàn)椋液愠闪ⅲ?br/>可知在上單調(diào)遞增.因?yàn)椋裕?br/>即,可得,即.綜上所述的取值范圍是. 【解析】本題考查了利用導(dǎo)數(shù)判斷函數(shù)單調(diào)性、研究恒成立與存在性問題,屬于較難題.求導(dǎo),分和兩種情況,利用導(dǎo)數(shù)判斷原函數(shù)單調(diào)性;結(jié)合可得,令,利用導(dǎo)數(shù)解不等式即可.14.函數(shù).討論的單調(diào)性若函數(shù)有兩個(gè)極值點(diǎn),,曲線上兩點(diǎn),連線斜率記為,求證:盒子中有編號(hào)為的個(gè)小球除編號(hào)外無區(qū)別,有放回的隨機(jī)抽取個(gè)小球,記抽取的個(gè)小球編號(hào)各不相同的概率為,求證:.【答案】解:的定義域?yàn)椋?br/>對(duì)于方程,,當(dāng),即時(shí),,,在上單調(diào)遞增,當(dāng),即或時(shí),方程有兩個(gè)不等根,,,而,,所以當(dāng)時(shí),,在上恒成立,在上單調(diào)遞增當(dāng)時(shí),,或時(shí),,時(shí),,所以在和上單調(diào)遞增,在上單調(diào)遞減,綜上,當(dāng)時(shí),在上單調(diào)遞增當(dāng)時(shí),在和上單調(diào)遞增,在上單調(diào)遞減.由題,,所以要證,即證,即證,也即證成立,設(shè),函數(shù),由知在上單調(diào)遞增,且,所以時(shí),,所以成立,原不等式得證.證明:由題,,因?yàn)椋裕?br/>又因?yàn)橛芍?br/>取,有,即,也即,所以. 【解析】本題考查利用導(dǎo)數(shù)判斷或證明已知函數(shù)的單調(diào)性,利用導(dǎo)數(shù)解不等式,古典概型及其計(jì)算,排列與排列數(shù)公式,屬于較難題.對(duì)函數(shù)求導(dǎo),對(duì)的范圍分類討論,利用導(dǎo)數(shù)判斷或證明已知函數(shù)的單調(diào)性即可;轉(zhuǎn)化問題為要證,即證,即證求解即可;,所以,又由知,求解即可.考點(diǎn)四:已知函數(shù)在區(qū)間上遞增(遞減)求參數(shù)1.若函數(shù)f(x)=kx-ln x在區(qū)間(1,+∞)上單調(diào)遞增,則k的取值范圍是( )A.(-∞,-2] B.(-∞,-1] C.[2,+∞) D.[1,+∞)解析:D 因?yàn)閒(x)=kx-ln x,所以f'(x)=k-.因?yàn)閒(x)在區(qū)間(1,+∞)上單調(diào)遞增,所以當(dāng)x>1時(shí),f'(x)=k-≥0恒成立,即k≥在區(qū)間(1,+∞)上恒成立.因?yàn)閤>1,所以0<<1,所以k≥1.2.若函數(shù)f(x)=ex+ax-x2存在單調(diào)遞減區(qū)間,則實(shí)數(shù)a的取值范圍是 (-∞,-1) .解析:函數(shù)f(x)的定義域是R,則f'(x)=ex+a-x.由結(jié)論2,若f(x)存在單調(diào)遞減區(qū)間,則a<(x-ex)max.令g(x)=x-ex,則g'(x)=1-ex,令g'(x)>0,解得x<0,令g'(x)<0,解得x>0,故g(x)在(-∞,0)上單調(diào)遞增,在(0,+∞)上單調(diào)遞減,故g(x)max=g(0)=-1,故a<-1.3.函數(shù)g(x)=2x+ln x-在區(qū)間[1,2]上不單調(diào),則實(shí)數(shù)a的取值范圍為 (-10,-3) .解析:g'(x)=,∵函數(shù)g(x)在區(qū)間[1,2]上不單調(diào),∴g'(x)=0在區(qū)間(1,2)內(nèi)有解,則a=-2x2-x=-2(x+)2+在(1,2)內(nèi)有解,易知函數(shù)y=-2x2-x在(1,2)上單調(diào)遞減,∴y=-2x2-x在(1,2)上的值域?yàn)椋ǎ?0,-3),因此實(shí)數(shù)a的取值范圍為(-10,-3).4.(2023·新高考Ⅱ卷6題)已知函數(shù)f(x)=aex-ln x在區(qū)間(1,2)上單調(diào)遞增,則實(shí)數(shù)a的最小值為( )A.e2 B.e C.e-1 D.e-2解析:C 法一 由題意,得f'(x)=aex-,∴f'(x)=aex-≥0在區(qū)間(1,2)上恒成立,即a≥在區(qū)間(1,2)上恒成立.設(shè)函數(shù)g(x)=,x∈(1,2),則g'(x)=-<0,∴函數(shù)g(x)在區(qū)間(1,2)單調(diào)遞減.∴ x∈(1,2),g(x)<g(1)==e-1.∴a≥e-1,∴a的最小值為e-1.故選C.法二 ∵函數(shù)f(x)=aex-ln x,∴f'(x)=aex-.∵函數(shù)f(x)=aex-ln x在區(qū)間(1,2)單調(diào)遞增,∴f'(x)≥0在(1,2)恒成立,即aex-≥0在(1,2)恒成立,易知a>0,則0<≤xex在(1,2)恒成立.設(shè)g(x)=xex,則g'(x)=(x+1)ex.當(dāng)x∈(1,2)時(shí),g'(x)>0,g(x)單調(diào)遞增,∴在(1,2)上,g(x)>g(1)=e,∴≤e,即a≥=e-1,故選C.已知函數(shù)在區(qū)間上遞增(遞減)求參數(shù)已知函數(shù)在區(qū)間上單調(diào)①已知在區(qū)間上單調(diào)遞增,恒成立.②已知在區(qū)間上單調(diào)遞減,恒成立.注:1.在區(qū)間內(nèi)是函數(shù)在此區(qū)間上為增(減)函數(shù)的充分不必要條件;2.可導(dǎo)函數(shù)在區(qū)間是增(減)函數(shù)的充要條件是:都有,且在的任意一個(gè)子區(qū)間內(nèi)都不恒為;3.由函數(shù)在區(qū)間是增(減)函數(shù),求參數(shù)范圍問題,可轉(zhuǎn)化為恒成立問題求解.1.若函數(shù)的單調(diào)遞增區(qū)間是,則( )A. B. C. D.2【答案】D【分析】求導(dǎo)可得,由,可得,可求.【詳解】,若,則可得在上單調(diào)遞減,若,令,可得,所以在上單調(diào)遞增,又因?yàn)榈膯握{(diào)遞增區(qū)間是,所以.故選:D.2.已知函數(shù)在上單調(diào)遞增,則實(shí)數(shù)的取值范圍是( )A. B. C. D.【答案】D【分析】將在上單調(diào)遞增,化為對(duì)任意成立,再轉(zhuǎn)化為對(duì)任意成立,求解即可.【詳解】因?yàn)楹瘮?shù)在上單調(diào)遞增,所以對(duì)任意成立,即對(duì)任意成立,令,則,因?yàn)椋裕睿矗獾没?br/>因?yàn)椋裕栽谏蠁握{(diào)遞增,在上單調(diào)遞減,所以在時(shí)取得最大值為,所以.故選:.3.已知函數(shù)在區(qū)間[1,2]上單調(diào)遞增,則實(shí)數(shù)a的最大值是( )A.1 B. C. D.【答案】B【分析】將函數(shù)求導(dǎo),從而將函數(shù)單調(diào)性問題轉(zhuǎn)化為導(dǎo)數(shù)不等式在給定區(qū)間上的恒成立問題,繼而通過參變分離法求出函數(shù)的最值,即可得到參數(shù)的范圍.【詳解】由函數(shù)在區(qū)間上單調(diào)遞增,可得在[1,2]上恒成立,即,設(shè),則,,,故當(dāng)時(shí),即時(shí),,故得,即a的最大值為.故選:B.4.已知函數(shù)在上單調(diào)遞增,則的最大值為( )A.3 B. C. D.【答案】C【分析】由題意可得恒成立,進(jìn)而可得出答案.【詳解】,因?yàn)楹瘮?shù)在上單調(diào)遞增,所以恒成立,則,解得,所以的最大值為.故選:C.5.已知函數(shù)為定義域上的減函數(shù),則的取值范圍是( )A. B. C. D.【答案】A【分析】根據(jù)題意,將問題轉(zhuǎn)化為在恒成立,然后利用導(dǎo)數(shù)求得函數(shù)最值,即可得到結(jié)果.【詳解】,由函數(shù)為定義域上的減函數(shù),可得在恒成立,即在恒成立,即在恒成立,令,即,則,令可得,當(dāng)時(shí),,則函數(shù)單調(diào)遞增,當(dāng)時(shí),,則函數(shù)單調(diào)遞減,所以時(shí),有極大值,即最大值為,所以,即,所以的取值范圍是.故選:A6.若對(duì)任意的,且,,則的最大值是 .【答案】/【分析】由題意可得,令,則,則可得在上遞增,然后利用導(dǎo)數(shù)求出的遞增區(qū)間,從而可求出的最大值.【詳解】因?yàn)椋裕杂桑茫?br/>所以,所以,令,則,因?yàn)閷?duì)任意的,且,所以在上遞增,由,得,由,得,得,解得,所以的遞增區(qū)間為,所以的最大值為.故答案為:7.若函數(shù)在上單調(diào)遞增,則實(shí)數(shù)的取值范圍為 .【答案】【分析】求出函數(shù)的導(dǎo)數(shù),結(jié)合已知可得,再由函數(shù)不等式恒成立問題求函數(shù)最值即可得結(jié)論.【詳解】函數(shù),求導(dǎo)得,由函數(shù)在上單調(diào)遞增,得,,而函數(shù)在上的最小值為,因此,所以實(shí)數(shù)的取值范圍為.故答案為:考點(diǎn)五:已知函數(shù)存在單調(diào)區(qū)間或在區(qū)間上不單調(diào)求參數(shù),已知函數(shù)在區(qū)間上不單調(diào),使得(且是變號(hào)零點(diǎn))1.已知函數(shù)在區(qū)間上不單調(diào),則m的取值范圍是 .【答案】【分析】根據(jù)題意可知在區(qū)間有變號(hào)零點(diǎn),結(jié)合變號(hào)零點(diǎn)與給定區(qū)間的關(guān)系求解即可.【詳解】由題意知,因?yàn)樵趨^(qū)間上不單調(diào),即在區(qū)間有變號(hào)零點(diǎn),又,所以,,,所以在區(qū)間內(nèi),所以,解得,即m的取值范圍是.故答案為:.2.函數(shù)在上不單調(diào)的一個(gè)充分不必要條件是( )A. B. C. D.【詳解】依題意,,因在上不單調(diào),故導(dǎo)函數(shù)在上必有變號(hào)零點(diǎn).令,得,再令,則,由,得即在上單調(diào)遞增,所以,故只需,即,對(duì)于A,是的真子集,故 A選項(xiàng)是一個(gè)充分不必要條件,而其他選項(xiàng)中,的范圍都不是的真子集,故都不正確. 故選:A.3.已知函數(shù)在區(qū)間上不單調(diào),則實(shí)數(shù)的取值范圍是( )A. B. C. D.【詳解】由,函數(shù)定義域?yàn)椋?dāng)時(shí),函數(shù)單調(diào)遞增,不合題意;當(dāng)時(shí),令,解得;令,解得;可知在內(nèi)單調(diào)遞增,在內(nèi)單調(diào)遞減,若函數(shù)在區(qū)間不單調(diào),則,解得;綜上所述:實(shí)數(shù)的取值范圍是.故選:B.4.已知函數(shù)在區(qū)間上不單調(diào),則實(shí)數(shù)a的取值范圍為( )A. B. C. D.【詳解】由.①當(dāng)時(shí),函數(shù)單調(diào)遞增,不合題意;②當(dāng)時(shí),函數(shù)的極值點(diǎn)為,若函數(shù)在區(qū)間不單調(diào),必有,解得;綜上所述:實(shí)數(shù)a的取值范圍為. 故選:B.5.已知函數(shù)在上不單調(diào),則實(shí)數(shù)a的取值范圍是( )A. B. C. D.【詳解】,當(dāng)時(shí),在區(qū)間上單調(diào)遞減,不符合題意.當(dāng),時(shí),,在區(qū)間上單調(diào)遞減,不符合題意.當(dāng)時(shí),令,解得,要使在區(qū)間上不單調(diào),則,即,解得,此時(shí)在區(qū)間上遞減;在區(qū)間上遞增.故選:B6.已知函數(shù)在上不單調(diào),則a的取值范圍是( )A. B. C. D.【詳解】由題意可知,,若函數(shù)在上單調(diào),則或,當(dāng)時(shí),恒成立,當(dāng),轉(zhuǎn)化為,或,設(shè),則或恒成立,即或,,所以,所以函數(shù)在上不單調(diào),則.故選:B7.已知在上不單調(diào),則實(shí)數(shù)的取值范圍是( )A. B. C. D.【詳解】由于,可得,可得函數(shù)的極值點(diǎn)為:,,由在上不單調(diào),可得或,解得. 故選:D.8.已知函數(shù)在上不單調(diào),則實(shí)數(shù)a的取值范圍是( )A. B. C. D.【詳解】,當(dāng)時(shí),在區(qū)間上單調(diào)遞減,不符合題意.當(dāng),時(shí),,在區(qū)間上單調(diào)遞減,不符合題意.當(dāng)時(shí),令,解得,要使在區(qū)間上不單調(diào),則,即,解得,此時(shí)在區(qū)間上遞減;在區(qū)間上遞增.故選:B9.已知函數(shù)在處取得極大值,且極大值為3.(1)求的值:(2)求在區(qū)間上不單調(diào),求的取值范圍.【詳解】(1)解:因?yàn)椋傻茫?br/>因?yàn)楹瘮?shù)在處取得極大值,且極大值為,所以,解得.(2)解:由題意,函數(shù)在區(qū)間上不單調(diào),可得,解得,又由,當(dāng)時(shí),;當(dāng)時(shí),;時(shí),,所以函數(shù)在單調(diào)遞增,在上單調(diào)遞減,因?yàn)樵趨^(qū)間上不單調(diào),則滿足,解得,即實(shí)數(shù)的取值范圍為.考點(diǎn)六:導(dǎo)函數(shù)圖像與原函數(shù)圖像的關(guān)系1.如圖是函數(shù)y=f(x)的導(dǎo)函數(shù)y=f'(x)的圖象,則下列判斷正確的是( )A.在區(qū)間(-2,1)上f(x)單調(diào)遞增 B.在區(qū)間(1,3)上f(x)單調(diào)遞減C.在區(qū)間(4,5)上f(x)單調(diào)遞增 D.在區(qū)間(3,5)上f(x)單調(diào)遞增解析:C 在(4,5)上f'(x)>0恒成立,∴f(x)在區(qū)間(4,5)上單調(diào)遞增.2.已知定義在R上的函數(shù)f(x),其導(dǎo)函數(shù)f'(x)的大致圖象如圖所示,則下列結(jié)論正確的是( )A.f(b)>f(c)>f(a) B.f(b)>f(c)=f(e)C.f(c)>f(b)>f(a) D.f(e)>f(d)>f(c)解析:D 由f'(x)圖象可知f(x)圖象大致如圖,由圖可知f(a)>f(b),f(b)<f(c)<f(d)<f(e),故僅有D選項(xiàng)是正確的.故選D.3.函數(shù)y=f(x)的導(dǎo)函數(shù)y=f'(x)的圖象如圖所示,則函數(shù)y=f(x)的圖象可能是( )解析:D 利用導(dǎo)數(shù)與函數(shù)的單調(diào)性進(jìn)行驗(yàn)證.f'(x)>0的解集對(duì)應(yīng)y=f(x)的單調(diào)遞增區(qū)間,f'(x)<0的解集對(duì)應(yīng)y=f(x)的單調(diào)遞減區(qū)間,驗(yàn)證只有D符合.原函數(shù)與導(dǎo)函數(shù)互相判斷應(yīng)遵循以下步驟:①若已知導(dǎo)函數(shù)判斷原函數(shù)第一步:觀察導(dǎo)函數(shù)軸的上下,上則為遞增,下則為遞減.第二步:導(dǎo)函數(shù)軸的值越大,則原函數(shù)增的越快(斜率越大)②若已知原函數(shù)判斷導(dǎo)函數(shù)第一步:觀察原函數(shù)是上坡路還是下坡路,若為上坡路則導(dǎo)函數(shù),若為下坡路則導(dǎo)函數(shù)第二步:原函數(shù)斜率越大,則導(dǎo)函數(shù)軸的值越大,原函數(shù)斜率越小,則導(dǎo)函數(shù)軸的值越小.1.已知函數(shù)的導(dǎo)函數(shù)為,定義域?yàn)椋液瘮?shù)的圖象如圖所示,則下列說法中正確的是( ) A.有極小值,極大值B.僅有極小值,極大值C.有極小值和,極大值和D.僅有極小值,極大值【答案】C【分析】根據(jù)函數(shù)的圖象,得出導(dǎo)函數(shù)符號(hào)的分布情況,再根據(jù)極值的定義即可得解.【詳解】由函數(shù)的圖象,得當(dāng)時(shí),,單調(diào)遞減,當(dāng)時(shí),,單調(diào)遞增,當(dāng)時(shí),,單調(diào)遞減,當(dāng)時(shí),,單調(diào)遞增,當(dāng)時(shí),,單調(diào)遞減,所以函數(shù)有極小值,極大值和.故選:C.2.已知函數(shù),其導(dǎo)數(shù)的圖象如下圖所示,則( )A.在上為增函數(shù) B.在處取得極小值C.在處取得極大值 D.在上為增函數(shù)【答案】D【分析】根據(jù)導(dǎo)函數(shù)的圖象判斷出其符號(hào)分布情況,進(jìn)而可求出函數(shù)的單調(diào)區(qū)間及極值點(diǎn),即可得解.【詳解】由導(dǎo)函數(shù)的圖象可知,函數(shù)在上單調(diào)遞減,在上單調(diào)遞增,在和處取得極小值,在處取得極大值,故ABC錯(cuò)誤,D正確.故選:D.3.已知定義域?yàn)榈暮瘮?shù)的導(dǎo)函數(shù)為,,且的圖象如圖所示,則的值域?yàn)椋? )A. B. C. D.【答案】D【分析】利用導(dǎo)函數(shù)的圖象判斷函數(shù)的單調(diào)性,結(jié)合判斷即可.【詳解】當(dāng)時(shí),,單調(diào)遞減,當(dāng)時(shí),,單調(diào)遞增,則.因?yàn)椋缘闹涤驗(yàn)?故選:D.4.已知函數(shù)的導(dǎo)函數(shù)圖象如圖所示,則下列說法正確的是( )A. B.是極大值點(diǎn)C.的圖象在點(diǎn)處的切線的斜率等于0 D.在區(qū)間內(nèi)一定有2個(gè)極值點(diǎn)【答案】D【分析】根據(jù)函數(shù)的圖象,結(jié)合導(dǎo)函數(shù)與原函數(shù)的關(guān)系,以及導(dǎo)數(shù)的幾何意義、函數(shù)的極值點(diǎn)的定義,逐項(xiàng)判定,即可求解.【詳解】對(duì)于A中,由函數(shù)的圖象,可得當(dāng)時(shí),,所以函數(shù)在區(qū)間為單調(diào)遞增函數(shù),所以,所以A錯(cuò)誤;對(duì)于B中,由A知,函數(shù)在區(qū)間為單調(diào)遞增函數(shù),因?yàn)椋圆皇呛瘮?shù)的極值點(diǎn),所以B錯(cuò)誤;對(duì)于C中,由函數(shù)的圖象,可得,所以函數(shù)的圖象在點(diǎn)處的切線的斜率大于,所以C不正確;對(duì)于D中,由函數(shù)的圖象,當(dāng)時(shí),;當(dāng)時(shí),;當(dāng)時(shí),,所以函數(shù)在區(qū)間上單調(diào)遞增,在區(qū)間上單遞減,在單調(diào)遞增,所以是函數(shù)的極大值點(diǎn),是函數(shù)的極小值點(diǎn),所以D正確.故選:D.5.已知函數(shù)的導(dǎo)函數(shù)的圖象如圖所示,則的圖象可能是( )A. B.C. D.【答案】D【分析】利用導(dǎo)函數(shù)的圖象求出函數(shù)的單調(diào)區(qū)間,由此判斷即可得解.【詳解】觀察導(dǎo)函數(shù)的圖象,當(dāng)或時(shí),,當(dāng)時(shí),,因此函數(shù)在上單調(diào)遞增,在上單調(diào)遞減,ABC錯(cuò)誤,D正確.故選:D6.函數(shù)的圖象如圖所示,為函數(shù)的導(dǎo)函數(shù),則不等式的解集為( )A. B.C. D.【答案】A【分析】由的圖象得到的單調(diào)區(qū)間,即得的取值情況,從而得解.【詳解】由圖可得在上單調(diào)遞減,在上單調(diào)遞增,在上單調(diào)遞減,在上單調(diào)遞增,則當(dāng)時(shí), ,當(dāng)時(shí),,由,得或,解得或,所以不等式的解集為.故選:A7.已知函數(shù)的圖象如圖所示,則不等式的解集為( )A. B. C. D.【答案】A【分析】根據(jù)函數(shù)圖象判斷其導(dǎo)數(shù)的正負(fù)情況,即可求得答案.【詳解】由函數(shù)的圖象知,當(dāng)或時(shí),;當(dāng)時(shí),,不等式等價(jià)于或,解得或,所以不等式的解集為.故選:A8.已知定義在上的函數(shù)的導(dǎo)函數(shù)為,且在上的圖象如圖所示,則( ) A.1是的極小值點(diǎn) B.1是的極大值點(diǎn)C.是的極小值點(diǎn) D.是的極大值點(diǎn)【答案】D【分析】根據(jù)導(dǎo)數(shù)大于0和小于0 確定的單調(diào)性,結(jié)合極值點(diǎn)的定義,即可得到答案.【詳解】由圖象可知,定義域,當(dāng)時(shí),;當(dāng)時(shí),,所以在上單調(diào)遞增,在上單調(diào)遞減,所以是的極大值點(diǎn),無極小值點(diǎn),故選:D.考點(diǎn)七:比較大小或解不等式1.已知a=,b=,c=e,則下列大小關(guān)系正確的是( )A.a<b<c B.a<c<b C.c<b<a D.c<a<b解析:C 由題,c=.令f(x)=(x≥e),則f'(x)=,因?yàn)閤≥e,所以f'(x)≥0,所以f(x)=在[e,+∞)上單調(diào)遞增,又a=f(4),b=f(3),c=f(e),e<3<4,故c<b<a.故選C.2.函數(shù)f(x)=ex-e-x+sin x,則不等式f(x)>0的解集是( )A.(0,+∞) B.(-∞,0) C.(0,π) D.(-π,0)解析:A 對(duì)函數(shù)f(x)求導(dǎo)得f'(x)=ex+e-x+cos x,因?yàn)閑x+≥2,當(dāng)且僅當(dāng)x=0時(shí)等號(hào)成立,-1≤cos x≤1,所以f'(x)>0,所以f(x)在R上是增函數(shù),又因?yàn)閒(0)=e0-e-0+sin 0=0,所以f(x)>0的解集為(0,+∞).3.設(shè)函數(shù)f(x)為奇函數(shù),且當(dāng)x≥0時(shí),f(x)=ex-cos x,則不等式f(2x-1)+f(x-2)>0的解集為( )A.(-∞,1) B.(-∞,) C.(,+∞) D.(1,+∞)解析:D 根據(jù)題意,當(dāng)x≥0時(shí),f(x)=ex-cos x,此時(shí)有f'(x)=ex+sin x>0,則f(x)在[0,+∞)上單調(diào)遞增,又f(x)為R上的奇函數(shù),故f(x)在R上為增函數(shù).f(2x-1)+f(x-2)>0 f(2x-1)>-f(x-2) f(2x-1)>f(2-x) 2x-1>2-x,解得x>1,即不等式的解集為(1,+∞).4.(2024·邯鄲一模)已知函數(shù)f(x)=3x+2cos x.若a=f(3),b=f(2),c=f(log27),則a,b,c的大小關(guān)系是( )A.a<b<c B.c<b<a C.b<a<c D.b<c<a解析:D 由題意,得f'(x)=3-2sin x.因?yàn)椋?≤sin x≤1,所以f'(x)>0恒成立,所以函數(shù)f(x)是增函數(shù).因?yàn)椋?,所以3>3.又log24<log27<log28,即2<log27<3,所以2<log27<3,所以f(2)<f(log27)<f(3),即b<c<a.5.已知函數(shù)y=f(x)(x∈R)的圖象如圖所示,則不等式xf'(x)≥0的解集為 [0,]∪[2,+∞) .解析:由題中f(x)的圖象特征可得,在(-∞,]和[2,+∞)上f'(x)≥0,在(,2)上f'(x)<0,所以xf'(x)≥0 或 0≤x≤或x≥2,所以xf'(x)≥0的解集為[0,]∪[2,+∞).第三章一元函數(shù)的導(dǎo)數(shù)及其應(yīng)用 第二節(jié)導(dǎo)數(shù)與函數(shù)的單調(diào)性導(dǎo)數(shù)與函數(shù)單調(diào)性專題考點(diǎn)一:函數(shù)的單調(diào)性與導(dǎo)數(shù)的關(guān)系1.判斷正誤.(正確的畫“√”,錯(cuò)誤的畫“×”)(1)函數(shù)f(x)在(a,b)內(nèi)單調(diào)遞增,那么一定有f'(x)>0.( )(2)如果f(x)在某個(gè)區(qū)間內(nèi)恒有f'(x)=0,則f(x)在此區(qū)間內(nèi)沒有單調(diào)性.( )(3)若函數(shù)f(x)在定義域上都有f'(x)>0,則f(x)在定義域上一定是增函數(shù).( )2.已知f(x)是定義在(a,b)內(nèi)的可導(dǎo)函數(shù),則“f'(x)>0”是“f(x)在(a,b)內(nèi)為增函數(shù)”的A.充分不必要條件 B.必要不充分條件 C.充要條件 D.既不充分也不必要條件考點(diǎn)二:求已知函數(shù)(不含參數(shù))的單調(diào)區(qū)間1.函數(shù)f(x)=cos x-x在(0,π)上的單調(diào)性為( )A.先增后減 B.先減后增 C.單調(diào)遞增 D.單調(diào)遞減2.函數(shù)y=4x2+的單調(diào)遞增區(qū)間為 .3.函數(shù)f(x)=++x的單調(diào)遞減區(qū)間為 ;4.已知定義在區(qū)間(0,π)上的函數(shù)f(x)=x+2cos x,則f(x)的單調(diào)遞增區(qū)間為 .5.已知函數(shù),則的單調(diào)遞減區(qū)間為( )A. B. C. D.6.函數(shù)的單調(diào)遞減區(qū)間是( )A. B. C. D.7.函數(shù)的單調(diào)遞增區(qū)間是( )A. B. C. D.8.函數(shù)單調(diào)遞減區(qū)間是( )A. B. C. D.9.已知函數(shù),其導(dǎo)函數(shù)為.(1)求在處的切線方程;(2)求的單調(diào)區(qū)間.10.已知函數(shù) (其中為常數(shù)).(1)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;(2)求函數(shù)在上的最小值.考點(diǎn)三:求已知函數(shù)(含參數(shù))的單調(diào)區(qū)間1.(2024·惠州模擬)已知函數(shù)f(x)=aln x+2x2-2(a∈R),討論函數(shù)f(x)的單調(diào)性.2.(2023·新高考Ⅰ卷19題節(jié)選)已知函數(shù)f(x)=a(ex+a)-x,討論f(x)的單調(diào)性.3.已知函數(shù)f(x)=ex-ax-a,a∈R,求f(x)的單調(diào)區(qū)間.4.設(shè)函數(shù).(1)若是的極值點(diǎn),求a的值,并求的單調(diào)區(qū)間;(2)討論的單調(diào)性;(3)若,求的取值范圍.5.已知函數(shù)(1)求函數(shù)的單調(diào)區(qū)間;(2)函數(shù)有唯一零點(diǎn),函數(shù)在上的零點(diǎn)為.證明:.6.已知函數(shù).討論的單調(diào)性;證明:當(dāng)時(shí),.7.已知函數(shù),.討論函數(shù)的單調(diào)性;若存在,使成立,求實(shí)數(shù)的取值范圍.注:為自然對(duì)數(shù)的底數(shù).8.已知函數(shù).討論的單調(diào)性;當(dāng)有極小值,且極小值小于時(shí),求的取值范圍.9.已知函數(shù).當(dāng)時(shí),求曲線在處的切線方程;求函數(shù)的單調(diào)區(qū)間;10.已知函數(shù).討論的單調(diào)性;若方程有兩個(gè)不相等的實(shí)根,證明:.11.已知.討論函數(shù)的單調(diào)性若函數(shù)有兩個(gè)零點(diǎn),求的取值范圍.12.已知函數(shù),討論的單調(diào)性當(dāng)時(shí),恒成立,求的取值范圍.13.已知函數(shù),其中.討論的單調(diào)性;設(shè),若不等式對(duì)恒成立,求的取值范圍.14.函數(shù).討論的單調(diào)性若函數(shù)有兩個(gè)極值點(diǎn),,曲線上兩點(diǎn),連線斜率記為,求證:盒子中有編號(hào)為的個(gè)小球除編號(hào)外無區(qū)別,有放回的隨機(jī)抽取個(gè)小球,記抽取的個(gè)小球編號(hào)各不相同的概率為,求證:.考點(diǎn)四:已知函數(shù)在區(qū)間上遞增(遞減)求參數(shù)1.若函數(shù)f(x)=kx-ln x在區(qū)間(1,+∞)上單調(diào)遞增,則k的取值范圍是( )A.(-∞,-2] B.(-∞,-1] C.[2,+∞) D.[1,+∞)2.若函數(shù)f(x)=ex+ax-x2存在單調(diào)遞減區(qū)間,則實(shí)數(shù)a的取值范圍是 .3.函數(shù)g(x)=2x+ln x-在區(qū)間[1,2]上不單調(diào),則實(shí)數(shù)a的取值范圍為 .4.(2023·新高考Ⅱ卷6題)已知函數(shù)f(x)=aex-ln x在區(qū)間(1,2)上單調(diào)遞增,則實(shí)數(shù)a的最小值為( )A.e2 B.e C.e-1 D.e-21.若函數(shù)的單調(diào)遞增區(qū)間是,則( )A. B. C. D.22.已知函數(shù)在上單調(diào)遞增,則實(shí)數(shù)的取值范圍是( )A. B. C. D.3.已知函數(shù)在區(qū)間[1,2]上單調(diào)遞增,則實(shí)數(shù)a的最大值是( )A.1 B. C. D.4.已知函數(shù)在上單調(diào)遞增,則的最大值為( )A.3 B. C. D.5.已知函數(shù)為定義域上的減函數(shù),則的取值范圍是( )A. B. C. D.6.若對(duì)任意的,且,,則的最大值是 .7.若函數(shù)在上單調(diào)遞增,則實(shí)數(shù)的取值范圍為 .考點(diǎn)五:已知函數(shù)存在單調(diào)區(qū)間或在區(qū)間上不單調(diào)求參數(shù),已知函數(shù)在區(qū)間上不單調(diào),使得(且是變號(hào)零點(diǎn))1.已知函數(shù)在區(qū)間上不單調(diào),則m的取值范圍是 .2.函數(shù)在上不單調(diào)的一個(gè)充分不必要條件是( )A. B. C. D.3.已知函數(shù)在區(qū)間上不單調(diào),則實(shí)數(shù)的取值范圍是( )A. B. C. D.4.已知函數(shù)在區(qū)間上不單調(diào),則實(shí)數(shù)a的取值范圍為( )A. B. C. D.5.已知函數(shù)在上不單調(diào),則實(shí)數(shù)a的取值范圍是( )A. B. C. D.6.已知函數(shù)在上不單調(diào),則a的取值范圍是( )A. B. C. D.7.已知在上不單調(diào),則實(shí)數(shù)的取值范圍是( )A. B. C. D.8.已知函數(shù)在上不單調(diào),則實(shí)數(shù)a的取值范圍是( )A. B. C. D.9.已知函數(shù)在處取得極大值,且極大值為3.(1)求的值:(2)求在區(qū)間上不單調(diào),求的取值范圍.考點(diǎn)六:導(dǎo)函數(shù)圖像與原函數(shù)圖像的關(guān)系1.如圖是函數(shù)y=f(x)的導(dǎo)函數(shù)y=f'(x)的圖象,則下列判斷正確的是( )A.在區(qū)間(-2,1)上f(x)單調(diào)遞增 B.在區(qū)間(1,3)上f(x)單調(diào)遞減C.在區(qū)間(4,5)上f(x)單調(diào)遞增 D.在區(qū)間(3,5)上f(x)單調(diào)遞增2.已知定義在R上的函數(shù)f(x),其導(dǎo)函數(shù)f'(x)的大致圖象如圖所示,則下列結(jié)論正確的是( )A.f(b)>f(c)>f(a) B.f(b)>f(c)=f(e)C.f(c)>f(b)>f(a) D.f(e)>f(d)>f(c).3.函數(shù)y=f(x)的導(dǎo)函數(shù)y=f'(x)的圖象如圖所示,則函數(shù)y=f(x)的圖象可能是( )1.已知函數(shù)的導(dǎo)函數(shù)為,定義域?yàn)椋液瘮?shù)的圖象如圖所示,則下列說法中正確的是( ) A.有極小值,極大值B.僅有極小值,極大值C.有極小值和,極大值和D.僅有極小值,極大值2.已知函數(shù),其導(dǎo)數(shù)的圖象如下圖所示,則( )A.在上為增函數(shù) B.在處取得極小值C.在處取得極大值 D.在上為增函數(shù)3.已知定義域?yàn)榈暮瘮?shù)的導(dǎo)函數(shù)為,,且的圖象如圖所示,則的值域?yàn)椋? )A. B. C. D.4.已知函數(shù)的導(dǎo)函數(shù)圖象如圖所示,則下列說法正確的是( )A. B.是極大值點(diǎn)C.的圖象在點(diǎn)處的切線的斜率等于0D.在區(qū)間內(nèi)一定有2個(gè)極值點(diǎn)5.已知函數(shù)的導(dǎo)函數(shù)的圖象如圖所示,則的圖象可能是( )A. B.C. D.6.函數(shù)的圖象如圖所示,為函數(shù)的導(dǎo)函數(shù),則不等式的解集為( )A. B.C. D.7.已知函數(shù)的圖象如圖所示,則不等式的解集為( )A. B. C. D.8.已知定義在上的函數(shù)的導(dǎo)函數(shù)為,且在上的圖象如圖所示,則( ) A.1是的極小值點(diǎn) B.1是的極大值點(diǎn)C.是的極小值點(diǎn) D.是的極大值點(diǎn)考點(diǎn)七:比較大小或解不等式1.已知a=,b=,c=e,則下列大小關(guān)系正確的是( )A.a<b<c B.a<c<b C.c<b<a D.c<a<b2.函數(shù)f(x)=ex-e-x+sin x,則不等式f(x)>0的解集是( )A.(0,+∞) B.(-∞,0) C.(0,π) D.(-π,0)3.設(shè)函數(shù)f(x)為奇函數(shù),且當(dāng)x≥0時(shí),f(x)=ex-cos x,則不等式f(2x-1)+f(x-2)>0的解集為( )A.(-∞,1) B.(-∞,) C.(,+∞) D.(1,+∞)4.(2024·邯鄲一模)已知函數(shù)f(x)=3x+2cos x.若a=f(3),b=f(2),c=f(log27),則a,b,c的大小關(guān)系是( )A.a<b<c B.c<b<a C.b<a<c D.b<c<a5.已知函數(shù)y=f(x)(x∈R)的圖象如圖所示,則不等式xf'(x)≥0的解集為 . 展開更多...... 收起↑ 資源列表 第3章第2節(jié)導(dǎo)數(shù)與函數(shù)的單調(diào)性專題.docx 第3章第2節(jié)導(dǎo)數(shù)與函數(shù)的單調(diào)性專題解析版.docx 縮略圖、資源來源于二一教育資源庫