中文字幕精品无码一区二区,成全视频在线播放观看方法,大伊人青草狠狠久久,亚洲一区影音先锋色资源

20.1.1 平均數 學案(2課時,含答案)2024-2025學年數學人教版八年級下冊

資源下載
  1. 二一教育資源

20.1.1 平均數 學案(2課時,含答案)2024-2025學年數學人教版八年級下冊

資源簡介

20.1 數據的集中趨勢
20.1.1 平均數
第1課時
課時學習目標 素養目標達成
1.理解數據的權和加權平均數的概念,體會權的作用 抽象能力
2.明確加權平均數與算術平均數的關系,掌握加權平均數的計算方法 抽象能力、運算能力
3.能應用算術平均數和加權平均數解決簡單的數學問題 應用意識
基礎主干落實  筑牢根基 行穩致遠
新知要點
1.算術平均數
=
對點小練
1.已知一組數據:2,4,3,2,4.則這組數據的平均數是(B)
A.2 B.3 C.4 D.5
新知要點
2.加權平均數
(1)若n個數x1,x2,…,xn的權分別是w1,w2,…,wn,則 =
(2)在求n個數的平均數時,如果x1出現f1次,x2出現f2次,…,xk出現fk次(這里f1+f2+…+fk=n),則 =
對點小練
2.每年的12月4日是全國法治宣傳日,某校舉行了演講比賽,演講得分按“演講內容”占40%、“語言表達”占40%、“形象風度”占10%、“整體效果”占10%進行計算,張欣這四項的得分依次為85,88,90,94,則她的最終得分是(B)
A.89.6分 B.87.6分
C.89分 D.89.25分
重點典例研析  啟思凝智 教學相長
重點1平均數及其應用(抽象能力、推理能力、應用意識)
【典例1】(教材再開發·P121T3拓展)某班開展一次綜合與實踐活動,部分記載如下:
【活動主題】利用樹葉的特征對樹木進行分類.
【實踐過程】同學們隨機收集芒果樹、荔枝樹的樹葉各10片,通過測量得到這些樹葉的長y(單位:cm),寬x(單位:cm)的數據后,分別計算長寬比,整理數據如表:
項目 1 2 3 4 5 6 7 8 9 10
芒果 樹葉 的長 寬比 3.8 3.7 3.5 3.4 3.8 4.0 3.6 4.0 3.6 4.0
荔枝 樹葉 的長 寬比 2.0 2.0 2.0 2.4 1.8 1.9 1.8 2.0 1.3 1.9
【問題解決】
(1)同學們通過計算得到芒果樹葉的長寬比的平均數是3.74,請你繼續計算出荔枝樹葉的長寬比的平均數;
(2)從樹葉的長寬比的平均數來看,現有一片長13 cm,寬6.5 cm的樹葉,請判斷這片樹葉更可能來自于芒果、荔枝中的哪種樹 并給出你的理由.
【解析】(1)荔枝樹葉的長寬比的平均數為=1.91,
故荔枝樹葉的長寬比的平均數為1.91;
(2)芒果樹葉的長寬比的平均數為=3.74,
∵長13 cm,寬6.5 cm的樹葉,長寬比為=2,
∴這片樹葉更可能來自荔枝樹.
【舉一反三】
1.若一組數據x1,x2,x3,x4,x5的平均數為4,則x1+2,x2+2,x3+2,x4+2,x5+2的平均數為 6 .
2.(2024·南京期末)杭州亞運會射箭比賽中,某運動員6箭的成績(單位:環)依次是x1,x2,x3,x1+1,x2+2,x3+3.若前3箭的平均成績為7環,則這6箭的平均成績為 8 環.
【技法點撥】
計算平均數的三個步驟
第一步:計算所有數據的和;
第二步:確定數據的個數;
第三步:所有數據的和除以數據的個數.
重點2 加權平均數及其應用(抽象能力、推理能力、應用能力)
【典例2】(教材再開發·P112例1強化)學校團委組織了一次“中國夢·航天情”系列活動.下面是八年級甲、乙兩個班各項目的成績(單位:分):
班級 知識競賽 演講比賽 版面創作
甲 85 91 88
乙 90 84 87
(1)如果根據三項成績的平均分計算最后成績,請通過計算說明甲、乙兩班誰將獲勝;
(2)如果將知識競賽、演講比賽、版面創作按5∶3∶2的比例確定最后成績,請通過計算說明甲、乙兩班誰將獲勝.
【解析】(1)甲班的平均分為(85+91+88)÷3=88(分),
乙班的平均分為(90+84+87)÷3=87(分),
∵88>87,∴甲班將獲勝;
(2)由題意可得,
甲班的平均分為=87.4(分),
乙班的平均分為=87.6(分),
∵87.4<87.6,
∴乙班將獲勝.
【舉一反三】
1.某校體育課成績考核采取綜合評分法,由體育與健康行為、體能、知識與技能三個部分組成.已知某位同學的體育與健康行為92分、體能90分、知識與技能86分.按照如圖所示的成績考核權重,這位同學的最終成績為(C)
A.88分 B.89分
C.90分 D.91分
2.為了解一個路口某時段來往車輛的車速情況,交警隨機統計了該時段部分來往車輛的車速情況如圖,則該時段內來往車輛的平均車速為(C)
A.51.8 km/h B.52 km/h
C.52.2 km/h D.52.5 km/h
【技法點撥】
計算加權平均數的三個步驟
第一步:計算所有數據乘各自權重后的和;
第二步:確定數據的個數;
第三步:由第一步計算后所得和除以數據的個數.
素養當堂測評  (10分鐘·20分)
1.(4分·抽象能力、運算能力)在1,6,4,x,2中,平均數是3,則代數式x2-3的值是(B)
A.0 B.1 C.2 D.3
2.(4分·應用意識、運算能力)一直以來,青少年體質健康都備受關注,體育鍛煉是增強青少年體質最有效的手段.小紅在某一學期的體育成績分別為:平時成績90分,期中成績93分,期末成績95分.若學校規定:平時成績、期中成績、期末成績三項得分按3∶1∶6的比例確定最終成績,則小紅的最終成績為(D)
A.92.5 B.92.8 C.93.1 D.93.3
3.(4分·推理能力)如表是韓梅參加演講比賽的得分表,表格中“△”部分被污損,她的總得分是(A)
韓梅 演講內容 言語表達 形象風度
得分 80 95 80
權重 25% 40% △
A.86 B.85.5 C.86.5 D.88
4.(8分·推理能力、運算能力)某班抽查了10名同學的期中考試數學成績,以108分為基準,超出的記為正數,不足的記為負數,記錄的結果如下:+8,-3,+12,-7,-10,-3,-8,+1,0,+10.
(1)這10名同學中最高分比最低分多     分;
(2)10名同學中,不低于108分的人數所占的百分比是多少
(3)10名同學的數學平均成績是多少分
【解析】(1)12-(-10)=12+10=22(分),
即這10名同學中最高分比最低分多22分;
答案:22
(2)10名同學中,不低于108分的有5名同學,
×100%=50%,
答:10名同學中,不低于108分的人數所占的百分比是50%;
(3)108+(+8-3+12-7-10-3-8+1+0+10)
=108+0=108(分)
答:10名同學的數學平均成績是108分.20.1.1 平均數
第2課時
課時學習目標 素養目標達成
1.會求一組數據的組中值與平均數 推理能力、數據觀念
2.能利用樣本平均數估計總體平均數 數據觀念、模型觀念
3.能應用所學知識解決簡單的實際問題 應用意識
基礎主干落實  夯基筑本 積厚成勢
新知要點
1.組中值:兩個端點的數的平均數.
注意:把各組的 看作相應組中值的權.
2.用樣本平均數去估計總體平均數
當所要考察的對象 ,或者對考察對象 時,常通過用樣本估計總體的方法來獲得對總體的認識.
對點小練
某班為了解學生對“勾股定理”內容的掌握情況,進行了一次單元測試,并從中隨機抽取了10名學生的測試成績,對成績(用t表示,滿分100分)進行分組整理,繪制了下面的統計表,則這10名學生的樣本平均數是( )
分數段/分 50≤t<60 60≤t<70 70≤t<80 80≤t<90 90≤t≤100
組中值 55 65 75 85 95
頻數/人 1 2 3 2 2
A.76.5 B.77 C.77.5 D.78
重點典例研析  縱橫捭闔 揮斥方遒
重點1 一組數據的組中值與平均數(抽象能力、推理能力、應用能力)
【典例1】(教材再開發·P114“探究”補充例題)
一個班有50名學生,一次考試成績(單位:分)的分布情況如表所示:
成績 組中值 頻數(人數)
49.5~59.5 4
59.5~69.5 8
69.5~79.5 14
79.5~89.5 18
89.5~99.5 6
(1)填寫表中“組中值”一欄的空白;
(2)求該班本次考試的平均成績.
【舉一反三】
為了鑒定某種燈泡的質量,對其中20個燈泡的使用壽命進行測量,結果如表,請填上組中值,再求這些燈泡的平均使用壽命.
壽命/時 600≤x <1 000 1 000≤x <1 400 1 400≤x <1 800 1 800≤x <2 200
組中值
個數 4 3 8 5
【技法點撥】
1.數據分組后,一個小組的組中值是指:這個小組的兩個端點的數的平均數.
2.根據頻數分布表求加權平均數時,統計中常用各組的組中值代表各組的實際數據,把各組的頻數看作相應組中值的權.
重點2 利用樣本平均數估計總體平均數(抽象能力、推理能力、應用能力)
【典例2】(教材再開發·P115例3強化)
某校為了解九年級全體學生物理實驗操作的情況,隨機抽取了30名學生的物理實驗操作考核成績,并將數據進行整理,分析如下(說明:考核成績均取整數,A級:10分,B級:9分,C級:8分,D級:7分及以下):
收集數據:10,8,10,9,5,10,9,9,10,8,9,10,9,9,8,9,8,10,6,9,8,10,9,6,9,10,9,10,8,10
整理數據,并繪制統計表如下:
成績等級 A B C D
人數(名) 10 m n 3
根據表中信息,解析下列問題:
(1)m= ,n= ;
(2)計算這30名學生的平均成績;
(3)若成績不低于9分為優秀,該校九年級參加物理實驗操作考核成績達到優秀的有560名,試估計該校有多少名學生參加物理實驗操作.
【舉一反三】
2022年3月23日下午,“天宮課堂”第二課在中國空間站開講,神舟十三號乘組航天員翟志剛、王亞平、葉光富相互配合進行授課,這是中國空間站的第二次太空授課,被許多中小學生稱為“最牛網課”.某中學為了解學生對“航空航天知識”的掌握情況,隨機抽取50名學生進行測試,并對成績(百分制)進行整理,得到如表:
成績x (分) 50≤x <60 60≤x <70 70≤x <80 80≤x <90 90≤x ≤100
頻數 7 a 12 16 6
(1)求a的值;
(2)在這次測試中,成績不低于80分的人數占測試人數的百分比為 ;
(3)請對該校學生“航空航天知識”的掌握情況作出合理的評價.
【技法點撥】
樣本平均數估計總體平均數的應用
適用條件:用樣本估計總體是統計的一個重要方法,在總體信息不明確或總體的平均數較難求時,可考慮用總體的一個樣本平均數去估計總體平均數,樣本容量越大,估計越準確.
易錯警醒:用加權平均數時要分清數據和數據的權數.
素養當堂測評  (10分鐘·20分)
1.(3分·抽象能力、運算能力)一次數學測試,某班40名學生成績被分為5組,第1至4組的頻數分別為12,10,6,8,則第5組的頻數是( )
A.12 B.8 C.4 D.6
2.(3分·抽象能力)小明為了解所在小區居民各類生活垃圾的投放情況,隨機調查了該小區100戶家庭某一天各類生活垃圾的投放量,統計得出這100戶家庭各類生活垃圾的投放總量為250千克,各類生活垃圾投放量分布情況如圖所示.根據以上信息,估計該小區500戶家庭這一天投放的有害垃圾約為 千克.
3.(3分·推理能力)為探究浸種處理對花生種子萌發率的影響,九年級的生物小組同學取1 000粒花生種子完成實驗.同學們將1 000粒花生種子平均分成五組,獲得如下花生種子萌發量數據,如表格.
組別 處理 花生種子萌發量(單位:粒)
第1組 第2組 第3組 第4組 第5組
浸種24 小時、 25℃ 186 180 180 176 178
在溫度25℃的條件下,將5 000粒種子浸種24小時,萌發量大致為 粒.
4.(3分·推理能力、運算能力)小江為了估計某山區羊群里羊的數量,先捕捉45只羊給它們分別作上標記,然后放回,過段時間后再捕捉150只羊,發現其中5只有標記,那么該山區羊群里的羊約有 只.
5.(8分·抽象能力、推理能力、運算能力)某學校為響應“雙減”政策,向學生提供晚餐服務,已知該校共有500名學生,為了做好學生們的取餐、用餐工作,學校首先調查了全體學生的晚餐意向,調查結果如圖1所示.為避免就餐擁堵,隨機邀請了100名有意向在食堂就餐的學生進行了用餐模擬演練,用餐時間(含用餐與回收餐具)如圖2所示.
(1)食堂每天需要準備多少份晚餐
(2)請你根據圖2,估計該校學生就餐時間不超過17分鐘的人數;
(3)根據抽取100名學生用餐時間統計圖,請你估計該校學生在食堂就餐的平均用餐時間.20.1.1 平均數
第2課時
課時學習目標 素養目標達成
1.會求一組數據的組中值與平均數 推理能力、數據觀念
2.能利用樣本平均數估計總體平均數 數據觀念、模型觀念
3.能應用所學知識解決簡單的實際問題 應用意識
基礎主干落實  夯基筑本 積厚成勢
新知要點
1.組中值:兩個端點的數的平均數.
注意:把各組的 頻數 看作相應組中值的權.
2.用樣本平均數去估計總體平均數
當所要考察的對象 很多 ,或者對考察對象 帶有破壞性 時,常通過用樣本估計總體的方法來獲得對總體的認識.
對點小練
某班為了解學生對“勾股定理”內容的掌握情況,進行了一次單元測試,并從中隨機抽取了10名學生的測試成績,對成績(用t表示,滿分100分)進行分組整理,繪制了下面的統計表,則這10名學生的樣本平均數是(B)
分數段/分 50≤t<60 60≤t<70 70≤t<80 80≤t<90 90≤t≤100
組中值 55 65 75 85 95
頻數/人 1 2 3 2 2
A.76.5 B.77 C.77.5 D.78
重點典例研析  縱橫捭闔 揮斥方遒
重點1 一組數據的組中值與平均數(抽象能力、推理能力、應用能力)
【典例1】(教材再開發·P114“探究”補充例題)
一個班有50名學生,一次考試成績(單位:分)的分布情況如表所示:
成績 組中值 頻數(人數)
49.5~59.5    4
59.5~69.5    8
69.5~79.5    14
79.5~89.5    18
89.5~99.5    6
(1)填寫表中“組中值”一欄的空白;
(2)求該班本次考試的平均成績.
【解析】(1)×(49.5+59.5)=54.5,
×(59.5+69.5)=64.5,
×(69.5+79.5)=74.5,
×(79.5+89.5)=84.5,
×(89.5+99.5)=94.5.
答案:54.5 64.5 74.5 84.5 94.5
(2)總成績為54.5×4+64.5×8+74.5×14+84.5×18+94.5×6=3 865(分),
3 865÷(4+8+14+18+6)=77.3(分).
答:本次考試的平均成績是77.3分.
【舉一反三】
為了鑒定某種燈泡的質量,對其中20個燈泡的使用壽命進行測量,結果如表,請填上組中值,再求這些燈泡的平均使用壽命.
壽命/時 600≤x <1 000 1 000≤x <1 400 1 400≤x <1 800 1 800≤x <2 200
組中值            
個數 4 3 8 5
【解析】組中值分別為800,1 200,1 600,2 000,
這些燈泡的平均使用壽命為=1 480(時).
答案:800 1 200 1 600 2 000
【技法點撥】
1.數據分組后,一個小組的組中值是指:這個小組的兩個端點的數的平均數.
2.根據頻數分布表求加權平均數時,統計中常用各組的組中值代表各組的實際數據,把各組的頻數看作相應組中值的權.
重點2 利用樣本平均數估計總體平均數(抽象能力、推理能力、應用能力)
【典例2】(教材再開發·P115例3強化)
某校為了解九年級全體學生物理實驗操作的情況,隨機抽取了30名學生的物理實驗操作考核成績,并將數據進行整理,分析如下(說明:考核成績均取整數,A級:10分,B級:9分,C級:8分,D級:7分及以下):
收集數據:10,8,10,9,5,10,9,9,10,8,9,10,9,9,8,9,8,10,6,9,8,10,9,6,9,10,9,10,8,10
整理數據,并繪制統計表如下:
成績等級 A B C D
人數(名) 10 m n 3
根據表中信息,解析下列問題:
(1)m=    ,n=    ;
(2)計算這30名學生的平均成績;
(3)若成績不低于9分為優秀,該校九年級參加物理實驗操作考核成績達到優秀的有560名,試估計該校有多少名學生參加物理實驗操作.
【解析】(1)由收集的數據可知,m=11,n=6;
答案:11 6
(2)這30名學生的平均成績為
=8.8(分);
(3)設該校有x名學生參加物理實驗操作,由題意,得x·=560,
解得x=800;
答:估計該校有800名學生參加物理實驗操作.
【舉一反三】
2022年3月23日下午,“天宮課堂”第二課在中國空間站開講,神舟十三號乘組航天員翟志剛、王亞平、葉光富相互配合進行授課,這是中國空間站的第二次太空授課,被許多中小學生稱為“最牛網課”.某中學為了解學生對“航空航天知識”的掌握情況,隨機抽取50名學生進行測試,并對成績(百分制)進行整理,得到如表:
成績x (分) 50≤x <60 60≤x <70 70≤x <80 80≤x <90 90≤x ≤100
頻數 7 a 12 16 6
(1)求a的值;
(2)在這次測試中,成績不低于80分的人數占測試人數的百分比為    ;
(3)請對該校學生“航空航天知識”的掌握情況作出合理的評價.
【解析】(1)a=50-7-12-16-6=9,
∴a的值為9;
(2)成績不低于80分的人數占測試人數的百分比為×100%=44%;
答案:44%
(3)測試成績不低于80分的人數占測試人數的44%,說明該校學生對“航空航天知識”的掌握情況較好.(答案不唯一,合理即可)
【技法點撥】
樣本平均數估計總體平均數的應用
適用條件:用樣本估計總體是統計的一個重要方法,在總體信息不明確或總體的平均數較難求時,可考慮用總體的一個樣本平均數去估計總體平均數,樣本容量越大,估計越準確.
易錯警醒:用加權平均數時要分清數據和數據的權數.
素養當堂測評  (10分鐘·20分)
1.(3分·抽象能力、運算能力)一次數學測試,某班40名學生成績被分為5組,第1至4組的頻數分別為12,10,6,8,則第5組的頻數是(C)
A.12 B.8 C.4 D.6
2.(3分·抽象能力)小明為了解所在小區居民各類生活垃圾的投放情況,隨機調查了該小區100戶家庭某一天各類生活垃圾的投放量,統計得出這100戶家庭各類生活垃圾的投放總量為250千克,各類生活垃圾投放量分布情況如圖所示.根據以上信息,估計該小區500戶家庭這一天投放的有害垃圾約為 62.5 千克.
3.(3分·推理能力)為探究浸種處理對花生種子萌發率的影響,九年級的生物小組同學取1 000粒花生種子完成實驗.同學們將1 000粒花生種子平均分成五組,獲得如下花生種子萌發量數據,如表格.
組別 處理 花生種子萌發量(單位:粒)
第1組 第2組 第3組 第4組 第5組
浸種24 小時、 25℃ 186 180 180 176 178
在溫度25℃的條件下,將5 000粒種子浸種24小時,萌發量大致為 4 500 粒.
4.(3分·推理能力、運算能力)小江為了估計某山區羊群里羊的數量,先捕捉45只羊給它們分別作上標記,然后放回,過段時間后再捕捉150只羊,發現其中5只有標記,那么該山區羊群里的羊約有 1 350 只.
5.(8分·抽象能力、推理能力、運算能力)某學校為響應“雙減”政策,向學生提供晚餐服務,已知該校共有500名學生,為了做好學生們的取餐、用餐工作,學校首先調查了全體學生的晚餐意向,調查結果如圖1所示.為避免就餐擁堵,隨機邀請了100名有意向在食堂就餐的學生進行了用餐模擬演練,用餐時間(含用餐與回收餐具)如圖2所示.
(1)食堂每天需要準備多少份晚餐
(2)請你根據圖2,估計該校學生就餐時間不超過17分鐘的人數;
(3)根據抽取100名學生用餐時間統計圖,請你估計該校學生在食堂就餐的平均用餐時間.
【解析】(1)500×62%=310(份),
答:食堂每天需要準備310份晚餐;
(2)500×=300(人),
答:估計該校學生就餐時間不超過17分鐘的有300人;
(3)=17(min),
答:估計該校學生在食堂就餐的平均用餐時間為17min.20.1 數據的集中趨勢
20.1.1 平均數
第1課時
課時學習目標 素養目標達成
1.理解數據的權和加權平均數的概念,體會權的作用 抽象能力
2.明確加權平均數與算術平均數的關系,掌握加權平均數的計算方法 抽象能力、運算能力
3.能應用算術平均數和加權平均數解決簡單的數學問題 應用意識
基礎主干落實  筑牢根基 行穩致遠
新知要點
1.算術平均數
=
對點小練
1.已知一組數據:2,4,3,2,4.則這組數據的平均數是( )
A.2 B.3 C.4 D.5
新知要點
2.加權平均數
(1)若n個數x1,x2,…,xn的權分別是w1,w2,…,wn,則
(2)在求n個數的平均數時,如果x1出現f1次,x2出現f2次,…,xk出現fk次(這里f1+f2+…+fk=n),則 對點小練
2.每年的12月4日是全國法治宣傳日,某校舉行了演講比賽,演講得分按“演講內容”占40%、“語言表達”占40%、“形象風度”占10%、“整體效果”占10%進行計算,張欣這四項的得分依次為85,88,90,94,則她的最終得分是( )
A.89.6分 B.87.6分
C.89分 D.89.25分
重點典例研析  啟思凝智 教學相長
重點1平均數及其應用(抽象能力、推理能力、應用意識)
【典例1】(教材再開發·P121T3拓展)某班開展一次綜合與實踐活動,部分記載如下:
【活動主題】利用樹葉的特征對樹木進行分類.
【實踐過程】同學們隨機收集芒果樹、荔枝樹的樹葉各10片,通過測量得到這些樹葉的長y(單位:cm),寬x(單位:cm)的數據后,分別計算長寬比,整理數據如表:
項目 1 2 3 4 5 6 7 8 9 10
芒果 樹葉 的長 寬比 3.8 3.7 3.5 3.4 3.8 4.0 3.6 4.0 3.6 4.0
荔枝 樹葉 的長 寬比 2.0 2.0 2.0 2.4 1.8 1.9 1.8 2.0 1.3 1.9
【問題解決】
(1)同學們通過計算得到芒果樹葉的長寬比的平均數是3.74,請你繼續計算出荔枝樹葉的長寬比的平均數;
(2)從樹葉的長寬比的平均數來看,現有一片長13 cm,寬6.5 cm的樹葉,請判斷這片樹葉更可能來自于芒果、荔枝中的哪種樹 并給出你的理由.
【舉一反三】
1.若一組數據x1,x2,x3,x4,x5的平均數為4,則x1+2,x2+2,x3+2,x4+2,x5+2的平均數為 .
2.(2024·南京期末)杭州亞運會射箭比賽中,某運動員6箭的成績(單位:環)依次是x1,x2,x3,x1+1,x2+2,x3+3.若前3箭的平均成績為7環,則這6箭的平均成績為 環.
【技法點撥】
計算平均數的三個步驟
第一步:計算所有數據的和;
第二步:確定數據的個數;
第三步:所有數據的和除以數據的個數.
重點2 加權平均數及其應用(抽象能力、推理能力、應用能力)
【典例2】(教材再開發·P112例1強化)學校團委組織了一次“中國夢·航天情”系列活動.下面是八年級甲、乙兩個班各項目的成績(單位:分):
班級 知識競賽 演講比賽 版面創作
甲 85 91 88
乙 90 84 87
(1)如果根據三項成績的平均分計算最后成績,請通過計算說明甲、乙兩班誰將獲勝;
(2)如果將知識競賽、演講比賽、版面創作按5∶3∶2的比例確定最后成績,請通過計算說明甲、乙兩班誰將獲勝.
【舉一反三】
1.某校體育課成績考核采取綜合評分法,由體育與健康行為、體能、知識與技能三個部分組成.已知某位同學的體育與健康行為92分、體能90分、知識與技能86分.按照如圖所示的成績考核權重,這位同學的最終成績為( )
A.88分 B.89分
C.90分 D.91分
2.為了解一個路口某時段來往車輛的車速情況,交警隨機統計了該時段部分來往車輛的車速情況如圖,則該時段內來往車輛的平均車速為( )
A.51.8 km/h B.52 km/h
C.52.2 km/h D.52.5 km/h
【技法點撥】
計算加權平均數的三個步驟
第一步:計算所有數據乘各自權重后的和;
第二步:確定數據的個數;
第三步:由第一步計算后所得和除以數據的個數.
素養當堂測評  (10分鐘·20分)
1.(4分·抽象能力、運算能力)在1,6,4,x,2中,平均數是3,則代數式x2-3的值是( )
A.0 B.1 C.2 D.3
2.(4分·應用意識、運算能力)一直以來,青少年體質健康都備受關注,體育鍛煉是增強青少年體質最有效的手段.小紅在某一學期的體育成績分別為:平時成績90分,期中成績93分,期末成績95分.若學校規定:平時成績、期中成績、期末成績三項得分按3∶1∶6的比例確定最終成績,則小紅的最終成績為( )
A.92.5 B.92.8 C.93.1 D.93.3
3.(4分·推理能力)如表是韓梅參加演講比賽的得分表,表格中“△”部分被污損,她的總得分是( )
韓梅 演講內容 言語表達 形象風度
得分 80 95 80
權重 25% 40% △
A.86 B.85.5 C.86.5 D.88
4.(8分·推理能力、運算能力)某班抽查了10名同學的期中考試數學成績,以108分為基準,超出的記為正數,不足的記為負數,記錄的結果如下:+8,-3,+12,-7,-10,-3,-8,+1,0,+10.
(1)這10名同學中最高分比最低分多 分;
(2)10名同學中,不低于108分的人數所占的百分比是多少
(3)10名同學的數學平均成績是多少分

展開更多......

收起↑

資源列表

<pre id="tfb94"><li id="tfb94"></li></pre>

<bdo id="tfb94"><rt id="tfb94"></rt></bdo>
  • <menu id="tfb94"><dl id="tfb94"></dl></menu><i id="tfb94"><acronym id="tfb94"><sub id="tfb94"></sub></acronym></i>

    1. 主站蜘蛛池模板: 铜山县| 嘉鱼县| 从江县| 大方县| 石林| 海城市| 龙胜| 镇平县| 那曲县| 分宜县| 寿宁县| 宕昌县| 定陶县| 保山市| 上虞市| 仁寿县| 陈巴尔虎旗| 宜兰县| 铁岭市| 青岛市| 天峨县| 兴业县| 涪陵区| 高州市| 沂水县| 张家港市| 闽侯县| 海宁市| 芮城县| 白城市| 五指山市| 阳新县| 东城区| 商南县| 莒南县| 志丹县| 高平市| 涡阳县| 慈利县| 乐昌市| 东兰县|