資源簡介 第十章 二元一次方程組10.2 消元解二元一次方程組—加減法【學習目標】1. 掌握用加減法解二元一次方程.2. 使學生理解加減消元法所體現的“化未知為已知”的化歸思想方法.【學習重點】如何用加減法解二元一次方程組.【學習難點】如何運用加減法進行消元.【自主學習】用代入消元的方法解出以下兩個二元一次方程組.(1) (2)【合作探究】探究點一、同一未知數的系數相同或者互為相反數(1) (2)問題1:方程組 (1) 的兩個方程中,y的系數有什么關系 問題2:方程組 (2) 的兩個方程中,x的系數有什么關系 問題 3:(2x+y)-(x+y)=7-(-4) 這個等式成立嗎 問題4:化簡問題 3 中的等式,你得到了一個什么方程 思考:按照上述思路,你能消去一個未知數嗎?歸納總結:當二元一次方程組的兩個方程中同一未知數的系數_______或____時,把這兩個方程的兩邊分別__________就能消去這個未知數,得到一個一元一次方程,進而求得二元一次方程的解.這種解二元一次方程組的方法叫作加減消元法,簡稱加減法.1、對于加減消元法,應該如何確定使用加法還是減法進行消元?2、使用加減消元法時有哪些需要注意事項?【典型例題】例1 解方程組:例2 用加減法解方程組【練一練】1. 請用加減法解二元一次方程組:探究點二、同一未知數的系數絕對值不相同請觀察方程組:問題1:直接加減是否可以消去一個未知數 為什么 問題 2:能否對方程變形,使得兩個方程中某個未知數的系數相反或相同 歸納總結:【練一練】2. 用加減法解方程組:探究點三、根據方程組的特點選擇合適的方法思考: 下面的方程組選擇哪一種消元的辦法更簡便.(1) (2)(3) (4)觀察方程組:討論1:觀察方程組中各未知數系數的特點,能直接用加減法消去一個未知數嗎 討論 2:分別用代入法和加減法解上面的方程組,討論什么樣的方程適合用代入法,什么樣方程組適合用加減法.方法歸納:解二元一次方程組的方法選擇:1. 優先代入法:任意一個未知數系數為 1 或 -1 時;2. 優先加減法:同一個未知數系數系數相等(或相為相反數)或成整數倍.【典型例題】例3 我國古代數學著作《九章算術》中記載了這樣一道題:今有牛五、羊二,直金十兩;牛二、羊五,直金八兩. 問牛、羊各直金幾何 意思是:假設 5 頭牛、2 只羊,共值金 10 兩;2 頭牛、5 只羊,共值金 8 兩. 那么每頭牛、每只羊分別值金多少兩 課堂檢測1. 方程組 由 ②-①,得正確的方程是( )A. 3x=10 B. x=5 C. 3x=-5 D. x=-52. 已知關于x,y的方程組 則y是( )A. 5 B. 2a-5 C. a-5 D. 2a3. 已知a,b滿足方程組 則3a+b的值為( )A. 8 B. 4 C. -4 D.-84. 方程組 既可用__________消去未知數y;也可用________消去未知數x.5. 方程組的解是_________.6. 解方程組:(1) (2) (3)參考答案【自主學習】【合作探究】探究點一、同一未知數的系數相同或者互為相反數問題1 y的系數相同 問題2 x 的系數互為相反數. 問題3 成立. 根據等式的性質,在等式的兩邊同時加上或減去一個相等的式子,等式仍成立.問題4 一元一次方程 思考 可以消去一個未知數 總結 相反數 相等 相加或者相減 合作探究 1.答:觀察同一個未知數的系數,系數相同的采用減法,互為相反數則使用加法. 2.① 對 x 和 y 中系數絕對值較小的使用加減消元法能夠減小計算量.② 需要注意計算時的符號,必要時可以使用添括號法則.【典型例題】 例1 例2 【練一練】1.探究點二、同一未知數的系數絕對值不相同問題1 同一未知數的系數絕對值不相同無法通過直接加減消去未知數問題2 根據等式的性質,在等式的兩邊同時乘以一個相同的數,等式仍成立【練一練】2.探究點三、根據方程組的特點選擇合適的方法(1) 代入消元法(2)加減消元法 (3)加減消元法 (4)加減消元法討論1 不能直接加減消去,因為系數不同而且不互為相反數討論2 可以根據同一個未知數的系數情況來判斷【典型例題】例3 答:每頭牛和每只羊分別值金 34/21 兩和 20/21 兩.課堂檢測1.B 2.A 3.A 4. ①+② ②-①5.(2 ) (2) (3) 展開更多...... 收起↑ 資源預覽 縮略圖、資源來源于二一教育資源庫