資源簡(jiǎn)介 26.1 二次函數(shù)課時(shí)學(xué)習(xí)目標(biāo) 素養(yǎng)目標(biāo)達(dá)成1.了解二次函數(shù)的概念 模型觀念2.能在實(shí)際問題中列二次函數(shù)關(guān)系式 抽象能力、應(yīng)用意識(shí)、運(yùn)算能力基礎(chǔ)主干落實(shí) 夯基筑本 積厚成勢(shì)新知要點(diǎn) 對(duì)點(diǎn)小練1.二次函數(shù)的定義 形如 (a,b,c是常數(shù),a≠0)的函數(shù). 1.下列y關(guān)于x的函數(shù)中,屬于二次函數(shù)的是( ) A.y=2x2-x B.y=2x+1 C.y= D.y=x2.根據(jù)實(shí)際問題列二次函數(shù)關(guān)系式的一般步驟 (1)審題:仔細(xì)審題,分析數(shù)量之間的關(guān)系,將文字語言轉(zhuǎn)化為符號(hào)語言; (2)列式:根據(jù)實(shí)際問題中的等量關(guān)系,列二次函數(shù)關(guān)系式,并化成一般形式; (3)取值:聯(lián)系實(shí)際,確定自變量的取值范圍. 2.某玩具廠7月份生產(chǎn)玩具200萬只,9月份生產(chǎn)該玩具y(萬只).設(shè)該玩具的月平均增長(zhǎng)率為x,則y與x之間的函數(shù)關(guān)系式是 . 重點(diǎn)典例研析 縱橫捭闔 揮斥方遒重點(diǎn)1 二次函數(shù)的定義(模型觀念)【典例1】(2024·杭州期中)如果函數(shù)y=(m+1)是二次函數(shù),那么m的值是. 【舉一反三】1.(2024·南京期中)下列函數(shù)中,y一定是x的二次函數(shù)的是( )A.y=ax2+bx+c B.y=x(x2+1)C.y=x+1 D.y=-3x22.(2024·無錫期中)已知函數(shù)y=xm-1+2是關(guān)于x的二次函數(shù),則m的值為 . 【技法點(diǎn)撥】二次函數(shù)定義的兩個(gè)應(yīng)用1.已知各項(xiàng)系數(shù),判斷已知函數(shù)是否為二次函數(shù).2.已知是二次函數(shù),根據(jù)自變量的最高次冪是2且二次項(xiàng)系數(shù)不為0,列方程和不等式求出系數(shù)中字母的值.重點(diǎn)2 根據(jù)實(shí)際問題列二次函數(shù)關(guān)系式(模型觀念、應(yīng)用意識(shí))【典例2】(教材再開發(fā)·P3問題2拓展)“直播帶貨”已經(jīng)成為一種熱門的銷售方式,某直播代銷某一品牌的電子產(chǎn)品(這里代銷指廠家先免費(fèi)提供貨源,待貨物銷售后再進(jìn)行結(jié)算,未售出的由廠家負(fù)責(zé)處理).經(jīng)調(diào)查發(fā)現(xiàn)每件售價(jià)99元時(shí),日銷售量為300件,當(dāng)每件電子產(chǎn)品每下降1元時(shí),日銷售量會(huì)增加3件.已知每售出1件電子產(chǎn)品,該主播需支付廠家和其他費(fèi)用共50元,設(shè)每件電子產(chǎn)品售價(jià)為x(元),主播每天的利潤(rùn)為y(元),則y與x之間的函數(shù)表達(dá)式為( )A.y=(99-x)[300+3(x-50)]B.y=(x-50)[300+3(x-99)]C.y=(x-50)[300+3(99-x)]D.y=(x-50)[300-3(99-x)]【舉一反三】1.(2024·廣州期末)將商品按單件利潤(rùn)為20元售出時(shí),能賣出100個(gè).已知該商品單價(jià)每上漲1元,其銷售量就減少5個(gè).設(shè)這種商品的售價(jià)上漲x元時(shí),獲得的利潤(rùn)為y元,則下列關(guān)系式正確的是( )A.y=(20+x)(100-5x)B.y=(20-x)(100-5x)C.y=(20-x)(100+5x)D.y=(20+x)(100+5x)2.(2024·泰安期中)有一個(gè)矩形苗圃園,其中一邊靠墻,另外三邊用長(zhǎng)為20 m的籬笆圍成.已知墻長(zhǎng)為15 m,若平行于墻的一邊長(zhǎng)不小于8 m,設(shè)這個(gè)苗圃園的寬AB為x,面積為S,則S與x之間的函數(shù)表達(dá)式為( )A.S=x(20-x),(8≤x≤15)B.S=x(20-2x),(2.5≤x≤6)C.S=x(20-x),(2.5≤x≤6)D.S=x(-2x+20),(x≥2.5)【技法點(diǎn)撥】由實(shí)際問題列二次函數(shù)關(guān)系式的三點(diǎn)注意1.認(rèn)真審題,找準(zhǔn)包含已知量和未知量的等量關(guān)系;2.得到關(guān)系式后,大多數(shù)要化成一般形式;3.自變量的取值范圍要使函數(shù)關(guān)系式有意義,并且使實(shí)際問題有意義.素養(yǎng)當(dāng)堂測(cè)評(píng) (10分鐘·20分)1.(3分·模型觀念)下列函數(shù)中,y是關(guān)于x的二次函數(shù)的是( )A.y=2x-1 B.y=C.y=-2x2+x D.y=2x3-12.(3分·模型觀念、應(yīng)用意識(shí))在一個(gè)邊長(zhǎng)為5的正方形中挖去一個(gè)邊長(zhǎng)為x(0A.y=x2 B.y=25-x2C.y=x2-25 D.y=25-2x3.(3分·模型觀念)如果函數(shù)y=mxm-2+x是關(guān)于x的二次函數(shù),那么m的值是 . 4.(3分·模型觀念、運(yùn)算能力)邊長(zhǎng)為2的正方形,如果邊長(zhǎng)增加x,則面積S與x之間的函數(shù)關(guān)系式是 . 5.(8分·模型觀念、運(yùn)算能力)某工廠的前年生產(chǎn)總值為10萬元,去年比前年的年增長(zhǎng)率為x,預(yù)計(jì)今年比去年的年增長(zhǎng)率仍為x,今年的總產(chǎn)值為y萬元.(1)求y關(guān)于x的函數(shù)關(guān)系式;(2)當(dāng)x=20%時(shí),今年的總產(chǎn)值為多少萬元 26.1 二次函數(shù)課時(shí)學(xué)習(xí)目標(biāo) 素養(yǎng)目標(biāo)達(dá)成1.了解二次函數(shù)的概念 模型觀念2.能在實(shí)際問題中列二次函數(shù)關(guān)系式 抽象能力、應(yīng)用意識(shí)、運(yùn)算能力基礎(chǔ)主干落實(shí) 夯基筑本 積厚成勢(shì)新知要點(diǎn) 對(duì)點(diǎn)小練1.二次函數(shù)的定義 形如 y=ax2+bx+c (a,b,c是常數(shù),a≠0)的函數(shù). 1.下列y關(guān)于x的函數(shù)中,屬于二次函數(shù)的是(A) A.y=2x2-x B.y=2x+1 C.y= D.y=x2.根據(jù)實(shí)際問題列二次函數(shù)關(guān)系式的一般步驟 (1)審題:仔細(xì)審題,分析數(shù)量之間的關(guān)系,將文字語言轉(zhuǎn)化為符號(hào)語言; (2)列式:根據(jù)實(shí)際問題中的等量關(guān)系,列二次函數(shù)關(guān)系式,并化成一般形式; (3)取值:聯(lián)系實(shí)際,確定自變量的取值范圍. 2.某玩具廠7月份生產(chǎn)玩具200萬只,9月份生產(chǎn)該玩具y(萬只).設(shè)該玩具的月平均增長(zhǎng)率為x,則y與x之間的函數(shù)關(guān)系式是 y=200(1+x)2 . 重點(diǎn)典例研析 縱橫捭闔 揮斥方遒重點(diǎn)1 二次函數(shù)的定義(模型觀念)【典例1】(2024·杭州期中)如果函數(shù)y=(m+1)是二次函數(shù),那么m的值是 3 . 【舉一反三】1.(2024·南京期中)下列函數(shù)中,y一定是x的二次函數(shù)的是(D)A.y=ax2+bx+c B.y=x(x2+1)C.y=x+1 D.y=-3x22.(2024·無錫期中)已知函數(shù)y=xm-1+2是關(guān)于x的二次函數(shù),則m的值為 3 . 【技法點(diǎn)撥】二次函數(shù)定義的兩個(gè)應(yīng)用1.已知各項(xiàng)系數(shù),判斷已知函數(shù)是否為二次函數(shù).2.已知是二次函數(shù),根據(jù)自變量的最高次冪是2且二次項(xiàng)系數(shù)不為0,列方程和不等式求出系數(shù)中字母的值.重點(diǎn)2 根據(jù)實(shí)際問題列二次函數(shù)關(guān)系式(模型觀念、應(yīng)用意識(shí))【典例2】(教材再開發(fā)·P3問題2拓展)“直播帶貨”已經(jīng)成為一種熱門的銷售方式,某直播代銷某一品牌的電子產(chǎn)品(這里代銷指廠家先免費(fèi)提供貨源,待貨物銷售后再進(jìn)行結(jié)算,未售出的由廠家負(fù)責(zé)處理).經(jīng)調(diào)查發(fā)現(xiàn)每件售價(jià)99元時(shí),日銷售量為300件,當(dāng)每件電子產(chǎn)品每下降1元時(shí),日銷售量會(huì)增加3件.已知每售出1件電子產(chǎn)品,該主播需支付廠家和其他費(fèi)用共50元,設(shè)每件電子產(chǎn)品售價(jià)為x(元),主播每天的利潤(rùn)為y(元),則y與x之間的函數(shù)表達(dá)式為(C)A.y=(99-x)[300+3(x-50)]B.y=(x-50)[300+3(x-99)]C.y=(x-50)[300+3(99-x)]D.y=(x-50)[300-3(99-x)]【舉一反三】1.(2024·廣州期末)將商品按單件利潤(rùn)為20元售出時(shí),能賣出100個(gè).已知該商品單價(jià)每上漲1元,其銷售量就減少5個(gè).設(shè)這種商品的售價(jià)上漲x元時(shí),獲得的利潤(rùn)為y元,則下列關(guān)系式正確的是(A)A.y=(20+x)(100-5x)B.y=(20-x)(100-5x)C.y=(20-x)(100+5x)D.y=(20+x)(100+5x)2.(2024·泰安期中)有一個(gè)矩形苗圃園,其中一邊靠墻,另外三邊用長(zhǎng)為20 m的籬笆圍成.已知墻長(zhǎng)為15 m,若平行于墻的一邊長(zhǎng)不小于8 m,設(shè)這個(gè)苗圃園的寬AB為x,面積為S,則S與x之間的函數(shù)表達(dá)式為(B)A.S=x(20-x),(8≤x≤15)B.S=x(20-2x),(2.5≤x≤6)C.S=x(20-x),(2.5≤x≤6)D.S=x(-2x+20),(x≥2.5)【技法點(diǎn)撥】由實(shí)際問題列二次函數(shù)關(guān)系式的三點(diǎn)注意1.認(rèn)真審題,找準(zhǔn)包含已知量和未知量的等量關(guān)系;2.得到關(guān)系式后,大多數(shù)要化成一般形式;3.自變量的取值范圍要使函數(shù)關(guān)系式有意義,并且使實(shí)際問題有意義.素養(yǎng)當(dāng)堂測(cè)評(píng) (10分鐘·20分)1.(3分·模型觀念)下列函數(shù)中,y是關(guān)于x的二次函數(shù)的是(C)A.y=2x-1 B.y=C.y=-2x2+x D.y=2x3-12.(3分·模型觀念、應(yīng)用意識(shí))在一個(gè)邊長(zhǎng)為5的正方形中挖去一個(gè)邊長(zhǎng)為x(0A.y=x2 B.y=25-x2C.y=x2-25 D.y=25-2x3.(3分·模型觀念)如果函數(shù)y=mxm-2+x是關(guān)于x的二次函數(shù),那么m的值是 4 . 4.(3分·模型觀念、運(yùn)算能力)邊長(zhǎng)為2的正方形,如果邊長(zhǎng)增加x,則面積S與x之間的函數(shù)關(guān)系式是 S=x2+4x+4 . 5.(8分·模型觀念、運(yùn)算能力)某工廠的前年生產(chǎn)總值為10萬元,去年比前年的年增長(zhǎng)率為x,預(yù)計(jì)今年比去年的年增長(zhǎng)率仍為x,今年的總產(chǎn)值為y萬元.(1)求y關(guān)于x的函數(shù)關(guān)系式;(2)當(dāng)x=20%時(shí),今年的總產(chǎn)值為多少萬元 【解析】(1)依題意得:y=10(1+x)(1+x),即y=10(1+x)2.(2)當(dāng)x=20%時(shí),y=10×(1+20%)2=14.4.答:當(dāng)x=20%時(shí),今年的總產(chǎn)值為14.4萬元. 展開更多...... 收起↑ 資源列表 26.1 二次函數(shù) - 學(xué)生版.docx 26.1 二次函數(shù).docx 縮略圖、資源來源于二一教育資源庫