資源簡(jiǎn)介 中小學(xué)教育資源及組卷應(yīng)用平臺(tái)2025年九年級(jí)數(shù)學(xué)中考三輪沖刺練習(xí)四邊形與三角函數(shù)綜合問(wèn)題訓(xùn)練1.如圖,在四邊形ABCD中,E是AB的中點(diǎn),DB,CE交于點(diǎn)F,DF=FB,AF∥DC.(1)求證:四邊形AFCD為平行四邊形;(2)若∠EFB=90°,tan∠FEB=3,EF=1,求BC的長(zhǎng).2.如圖,在 ABCD中,點(diǎn)E,F(xiàn)分別在BC,AD上,BE=DF,AC=EF.(1)求證:四邊形AECF是矩形;(2)若AE=BE,AB=2,tan∠ACB,求BC的長(zhǎng).3.如圖,在四邊形ABCD中,∠ACB=∠CAD=90°,點(diǎn)E在BC上,AE∥DC,EF⊥AB,垂足為F.(1)求證:四邊形AECD是平行四邊形;(2)若AE平分∠BAC,BE=5,cosB,求BF和AD的長(zhǎng).4.如圖,在 ABCD中,AE平分∠BAD,交BC于點(diǎn)E,BF平分∠ABC,交AD于點(diǎn)F,AE與BF交于點(diǎn)P,連接EF,PD.(1)求證:四邊形ABEF是菱形;(2)若AB=4,AD=6,∠ABC=60°,求tan∠ADP的值.5.如圖,在直角梯形ABCD中,AB∥DC,∠DAB=90°,AB=8,CD=5,BC=3.(1)求梯形ABCD的面積;(2)連接BD,求∠DBC的正切值.6.如圖,在梯形ABCD中,AD∥BC,CA平分∠BCD,DE∥AC,交BC的延長(zhǎng)線(xiàn)于點(diǎn)E,∠B=2∠E.(1)求證:AB=DC;(2)若tanB=2,AB,求邊BC的長(zhǎng).7.如圖,四邊形ABCD中,∠B=∠D=90°,過(guò)點(diǎn)C作AD的平行線(xiàn)交AB于點(diǎn)E,在AD上取點(diǎn)F,使DF=CE,連接EF.(1)求證:四邊形CDFE是矩形;(2)若CE=5,CD=2BE,,求AD的長(zhǎng).8.如圖1,在矩形ABCD中,BD為對(duì)角線(xiàn),BD的垂直平分線(xiàn)分別交AD,BD,BC于點(diǎn)E,O,F(xiàn),連接BE,DF.(1)求證:四邊形BEDF是菱形.(2)如圖2,連接CO,若AE=2,AD=6,求cos∠BCO的值.9.如圖,在 ABCD中,過(guò)點(diǎn)A作AE⊥DC交DC的延長(zhǎng)線(xiàn)于點(diǎn)E,過(guò)點(diǎn)D作DF∥EA交BA的延長(zhǎng)線(xiàn)于點(diǎn)F.(1)求證:四邊形AEDF是矩形;(2)連接BD,若AB=AE=2,tan∠ADF=2,求BD的長(zhǎng).10.如圖,在四邊形ABCD中,E是AB中點(diǎn),DB、CE交于點(diǎn)F,DF=FB,AF∥DC.(1)求證:四邊形AFCD是平行四邊形.(2)若∠ADB=120°,,AD=4.求BE的長(zhǎng).11.如圖,在 ABCD中,AE⊥BC于點(diǎn)E,點(diǎn)F在BC的延長(zhǎng)線(xiàn)上,且CF=BE,連接DF.(1)求證:四邊形AEFD是矩形;(2)連接DE,若tan∠ABC=2,BE=1,AD=4,求DE的長(zhǎng).12.如圖,在四邊形ABCD中,AB∥CD,AB=AD,對(duì)角線(xiàn)AC,BD交于O,AC平分∠BAD.(1)求證:四邊形ABCD是菱形;(2)過(guò)點(diǎn)C作AB的垂線(xiàn)交其延長(zhǎng)線(xiàn)于點(diǎn)E,若BD=6,,求CE的長(zhǎng).13.如圖,點(diǎn)E在 ABCD的對(duì)角線(xiàn)DB的延長(zhǎng)線(xiàn)上,AE=AD,AF⊥BD于點(diǎn)F,EG∥BC交AF的延長(zhǎng)線(xiàn)于點(diǎn)G,連接DG.(1)求證:四邊形AEGD是菱形;(2)若AF=BF,tan∠AEF,AB=4,求菱形AEGD的面積.14.如圖,在Rt△ABC中,∠ACB=90°,D為AB的中點(diǎn),連接CD,過(guò)點(diǎn)A作AG∥DC,過(guò)點(diǎn)C作CG∥DA,AG與CG相交于點(diǎn)G.(1)求證:四邊形ADCG是菱形;(2)若AB=10,tan∠CAG,求BC的長(zhǎng).15.如圖,在 ABCD中,AC,BD交于點(diǎn)O,且AO=BO.(1)求證:四邊形ABCD是矩形;(2)∠ADB的角平分線(xiàn)DE交AB于點(diǎn)E,當(dāng)AD=6,tan∠CAB時(shí),求AE的長(zhǎng).參考答案1.【解答】(1)證明:∵E是AB的中點(diǎn),∴AE=BE,∵DF=BF,∴EF是△ABD的中位線(xiàn),∴EF∥AD,∴CF∥AD,∵AF∥CD,∴四邊形AFCD為平行四邊形;(2)解:由(1)知,EF是△ABD的中位線(xiàn),∴AD=2EF=2,∵∠EFB=90°,tan∠FEB=3,∴BF=3EF=3,∵DF=FB,∴DF=BF=3,∵AD∥CE,∴∠ADF=∠EFB=90°,∴AF,∵四邊形AFCD為平行四邊形,∴CD=AF,∵DF=BF,CE⊥BD,∴BC=CD.2.【解答】(1)證明:∵四邊形ABCD是平行四邊形,∴AD=BC,AD∥BC,∵BE=DF,∴AD﹣DF=BC﹣BE,即AF=EC,∴四邊形AECF是平行四邊形,∵AC=EF,∴平行四邊形AECF是矩形;(2)解:∵四邊形AECF是矩形,∴∠AEC=∠AEB=90°,∵AE=BE,AB=2,∴△ABE是等腰直角三角形,∴AE=BEAB,∵tan∠ACB,∴EC=2AE=2,∴BC=BE+EC23,即BC的長(zhǎng)為3.3.【解答】(1)證明:∵∠ACB=∠CAD=90°,∴AD∥CE,∵AE∥DC,∴四邊形AECD是平行四邊形;(2)解:∵EF⊥AB,∴∠BFE=90°,∵cosB,BE=5,∴BFBE5=4,∴EF3,∵AE平分∠BAC,EF⊥AB,∠ACE=90°,∴EC=EF=3,由(1)得:四邊形AECD是平行四邊形,∴AD=EC=3.4.【解答】(1)證明:∵四邊形ABCD是平行四邊形,∴AD∥BC.∴∠DAE=∠AEB.∵AE是角平分線(xiàn),∴∠DAE=∠BAE.∴∠BAE=∠AEB.∴AB=BE.同理AB=AF.∴AF=BE.∴四邊形ABEF是平行四邊形.∵AB=BE,∴四邊形ABEF是菱形.(2)解:作PH⊥AD于H,∵四邊形ABEF是菱形,∠ABC=60°,AB=4,∴AB=AF=4,∠ABF=∠AFB=30°,AP⊥BF,∴APAB=2,∴PH,AH=1,∴DH=5,∴tan∠ADP.5.【解答】解:(1)過(guò)C作CE⊥AB于E,∵AB∥DC,∠DAB=90°,∴∠ADC=90°,∴∠A=∠ADC=∠AEC=90°,∴四邊形ADCE是矩形,∴AD=CE,AE=CD=5,∴BE=AB﹣AE=3,∵BC=3,∴CE6,∴梯形ABCD的面積(5+8)×6=39;(2)過(guò)C作CH⊥BD于H,∵CD∥AB,∴∠CDB=∠ABD,∵∠CHD=∠A=90°,∴△CDH∽△DBA,∴,∵BD10,∴,∴CH=3,∴BH6,∴∠DBC的正切值.6.【解答】(1)證明:∵DE∥AC,∴∠BCA=∠E.(1分)∵CA平分∠BCD,∴∠BCD=2∠BCA,(1分)∴∠BCD=2∠E,(1分)又∵∠B=2∠E,∴∠B=∠BCD.(1分)∴梯形ABCD是等腰梯形,即AB=DC.(2分)(2)解:如圖,作AF⊥BC,DG⊥BC,垂足分別為F,G,則AF∥DG.在Rt△AFB中,tanB=2,∴AF=2BF.(1分)又∵AB,且AB2=AF2+BF2,∴5=4BF2+BF2,得BF=1.(1分)同理可知,在Rt△DGC中,CG=1.(1分)∵AD∥BC,∴∠DAC=∠ACB.又∵∠ACB=∠ACD,∴∠DAC=∠ACD,∴AD=DC.∵DC=AB,∴AD.(1分)∵AD∥BC,AF∥DG,∴四邊形AFGD是平行四邊形,∴FG=AD.(1分)∴BC=BF+FG+GC=2.(1分)7.【解答】(1)證明:∵CE∥AD,DF=CE,∴四邊形CDFE是平行四邊形,∵∠D=90°,∴平行四邊形CDFE是矩形;(2)解:∵CE∥AD,∴∠CEB=∠A,∵tanA=4/3,∴tan∠CEB=tanA,∵∠B=90°,∴△CBE是直角三角形,在Rt△CBE中,tan∠CEB,∴設(shè)BC=4a,BE=3a,由勾股定理得:CE5a,∵CE=5,∴5a=5,解得:a=1,∴BE=3a=3,∴CD=2BE=6,由(1)可知:四邊形CDFE是矩形,∴DF=CE=5,EF=CD=6,∠EFD=90°,∴△AEF是直角三角形,在Rt△AEF中,tanA,∴,∴AF=4.5,∴AD=AF+DF=4.5+5=9.5.8.【解答】(1)證明:∵四邊形ABCD是矩形,∴AD∥BC,AB=CD,∴∠EDO=∠FBO,DE∥BF,∵EF是BD的垂直平分線(xiàn),∴OB=OD,BE=DE,∴∠BDF=∠DBF,在△DOE和△BOF中,,∴△DOE≌△BOF(ASA),∴DE=BF,∴四邊形BEDF是平行四邊形,∵EF⊥BD,∴四邊形BEDF是菱形;(2)解:∵四邊形ABCD是矩形,∴∠A=90°,∵EF是BD的垂直平分線(xiàn),∴BE=DE=AD﹣AE=6﹣2=4,∴AB2,∴BD4∵OB=OD,∠BCD=90°,∴OB=OC,∴∠BCO=∠CBD=∠ADB,∴cos∠BCO=cos∠ADB.9.【解答】(1)證明:∵四邊形ABCD是平行四邊形,∴AB∥DC,∵DF∥EA,∴四邊形AEDF是平行四邊形,∵AE⊥DE,∴∠E=90°,∴四邊形AEDF是矩形;(2)解:如圖,∵四邊形AEDF是矩形,∴AE=DF=2,∠F=90°,∴,∴AF=2DF=4,∴BF=AB+AF=6,∴在Rt△BDF中,.10.【解答】(1)證明:∵DB、CE交于點(diǎn)F,DF=FB,∴F是DB的中點(diǎn),∵E是AB的中點(diǎn),∴EF∥AD,∴CF∥AD,∵AF∥DC,∴四邊形AFCD是平行四邊形.(2)解:作AH⊥BD交BD的延長(zhǎng)線(xiàn)于點(diǎn)H,則∠H=90°,∵∠ADB=120°,AD=4,∴∠ADH=90°﹣∠ADB=60°,∴sin60°,∴AHAD4=2,∵tan∠FBE,∴BH=3AH=3×26,∴AB2,∴BEAB2,∴BE的長(zhǎng)是.11.【解答】(1)證明:∵四邊形ABCD是平行四邊形,∴AD∥BC,AD=BC,∵CF=BE,∴CF+EC=BE+EC,即BC=EF,∴AD=EF且AD∥EF,∴四邊形AEFD是平行四邊形,∵AE⊥BC,∴∠AEF=90°,∴四邊形AEFD是矩形.(2)解:連接DE,在Rt△ABE中,∠AEB=90°,BE=1,∵,∴AE=2BE=2,在Rt△ADE中,∠DAE=90°,AD=4,∴.12.【解答】(1)證明:∵AB∥CD,∴∠CAB=∠DCA,∵AC為∠DAB的平分線(xiàn),∴∠CAB=∠DAC,∴∠DCA=∠DAC,∴AD=CD,∵AB=AD,∴AB=CD,∵AB∥CD,∴四邊形ABCD是平行四邊形,又∵AB=AD,∴平行四邊形ABCD是菱形;(2)解:∵四邊形ABCD是菱形,BD=6,∴OA=OC,OB=ODBD=3,BD⊥AC,∴∠AOB=90°,∴tan∠OAB,∴OAOB3=4,∴AC=2OA=8,AB5,∵CE⊥AB,∴S菱形ABCD=AB CEAC BD8×6=24,即5CE=24,∴CE,即CE的長(zhǎng)為.13.【解答】(1)證明:∵AE=AD,AF⊥BD,∴EF=DF,∵四邊形ABCD是平行四邊形,∴AD∥BC,∵EG∥BC,∴AD∥EG,∴∠GEF=∠ADF,在△GEF和△ADF中,,∴△GEF≌△ADF(ASA),∴GF=AF,∵EF=DF,∴四邊形AEGD是平行四邊形,∵AE=AD,∴四邊形AEGD是菱形;(2)解:∵AF⊥BD,AF=BF,∴△AFB是等腰直角三角形,∵AB=4,∴由勾股定理得,,∵tan∠AEF,∴,即,∴EF,∵四邊形AEGD是菱形,∴AG=2AF,ED=2EF,∴菱形AEGD的面積.14.【解答】(1)證明:∵AG∥DC,CG∥DA,∴四邊形ADCG是平行四邊形,∵在Rt△ABC中,∠ACB=90°,D為AB邊的中點(diǎn),∴AD=CDAB,∴四邊形ADCG是菱形;(2)解:∵CG∥DA,∴∠BAC=∠ACG,∴tan∠CAG=tan∠BAC,∴設(shè)BC=3x,AC=4x,∴AB=5x=10,∴x=2,∴BC=3x=6.15.【解答】(1)證明:∵四邊形ABCD是平行四邊形,∴AC=2AO,BD=2BO,∵AO=BO,∴AC=BD,∴ ABCD為矩形;(2)解:過(guò)點(diǎn)E作EG⊥BD于點(diǎn)G,如圖所示:∵四邊形ABCD是矩形,∴∠DAB=90°,∴EA⊥AD,∵DE為∠ADB的角平分線(xiàn),∴EG=EA,∵AO=BO,∴∠CAB=∠ABD,∵AD=6,tan∠CAB,∴tan∠CAB=tan∠ABD,∴ABAD=8,∴BD10,sin∠CAB=sin∠ABD,設(shè)AE=EG=x,則BE=8﹣x,在△BEG中,∠BGE=90°,∴sin∠ABD,∴,解得:x=3,∴AE=3.21世紀(jì)教育網(wǎng)(www.21cnjy.com) 展開(kāi)更多...... 收起↑ 資源預(yù)覽 縮略圖、資源來(lái)源于二一教育資源庫(kù)