資源簡介 (共66張PPT)6.3 向心加速度高一年級 物理目標:研究做勻速圓周運動的物體,它的加速度有什么特點。問題1.在平直路面上,質量為1000 kg的汽車起步加速時牽引力為2000N。假定汽車受到的阻力大小為500N,汽車產生的加速度大小是多少?問題1.在平直路面上,質量為1000 kg的汽車起步加速時牽引力為2000N。假定汽車受到的阻力大小為500N,汽車產生的加速度大小是多少?解題思路:根據牛頓第二定律F=maF牽F阻GF支問題2.一個物體在水平面上向東運動,某時刻速度大小為4m/s,然后開始減速,2s后該物體的速度減小為0。求物體的加速度大小及方向。問題2.一個物體在水平面上向東運動,某時刻速度大小為4m/s,然后開始減速,2s后該物體的速度減小為0。求物體的加速度大小及方向。解題思路:根據加速度的定義研究加速度的思路研究加速度的思路1. 牛頓第二定律:F=ma動力學研究加速度的思路1. 牛頓第二定律:F=ma動力學2. 加速度的定義:運動學思路一:F=ma思路一:F=ma做勻速圓周運動的物體所受合力有什么特點?做勻速圓周運動的物體所受合力有什么特點?方向:時刻指向圓心—向心力思路一:F=maFn做勻速圓周運動的物體所受合力有什么特點?方向:時刻指向圓心—向心力思路一:F=ma大小:Fn思路一:F=ma勻速圓周運動的加速度的特點:思路一:F=ma勻速圓周運動的加速度的特點:方向:時刻指向圓心—向心加速度Oav思路一:F=ma勻速圓周運動的加速度的特點:方向:時刻指向圓心—向心加速度勻速圓周運動是變加速曲線運動Oav思路一:F=ma勻速圓周運動的加速度的特點:方向:時刻指向圓心—向心加速度大?。?br/>勻速圓周運動是變加速曲線運動Oav思路一:F=ma勻速圓周運動的加速度的特點:方向:時刻指向圓心—向心加速度大小:勻速圓周運動是變加速曲線運動牛頓第二定律對曲線運動同樣適用Oav天宮二號空間實驗室在軌飛行時,可 認為它繞地球做勻速圓周運動。盡管線速度 大小不變,但方向卻時刻變化,因此,它 運動的加速度一定不為0。那么,該如何確 定它在軌飛行時加速度的方向和大小呢?問題?*思路二:*思路二:做勻速圓周運動的物體的速度變化量如何計算?*思路二:ABO做勻速圓周運動的物體的速度變化量如何計算?*思路二:ABvAvBO做勻速圓周運動的物體的速度變化量如何計算?*思路二:AΔvBvAvBvA=vB=vΔv=2vO做勻速圓周運動的物體的速度變化量如何計算?*思路二:AΔvBvAvBvA=vB=vΔv=2vOC做勻速圓周運動的物體的速度變化量如何計算?*思路二:AΔvBvAvBvCvA=vB=vΔv=2vOC做勻速圓周運動的物體的速度變化量如何計算?*思路二:AΔvBvAvBvCvA=vB=vΔv=2vOCA→BA→C速度變化量不為零AΔvBvBvCΔv=2vOC*思路二:平均速度瞬時速度極限的思想平均速度瞬時速度極限的思想瞬時加速度Δt非常小平均加速度*思路二:OAvAvBBΔv*思路二:OAvAvBBΔθΔθΔv*思路二:OAvAvBBΔθΔθΔt極短,Δθ非常小。Δv*思路二:OAvAvBBΔt趨于零時,速度的變化量指向圓心。ΔvΔt極短,Δθ非常小。ΔvvCvDCD*思路二:Δt趨于零時,速度的變化量指向圓心。OAvAvBBΔvΔt極短,Δθ非常小。ΔvvDCD*思路二:Δt趨于零時,速度的變化量指向圓心。物體做勻速圓周運動時,加速度時刻指向圓心。OAvAvBBΔvvCΔt極短,Δθ非常小。*思路二:向心加速度的大小如何計算?*思路二:向心加速度的大小如何計算?OABΔθ當Δθ非常小時,ΔsΔlrOAvAvBBΔvΔθΔθ*思路二:OAvAvBBΔvΔθΔθ*思路二:OAvAvBBΔvΔθΔθ①②*思路二:OAvAvBBΔvΔθΔθ③①②*思路二:OAvAvBBΔvΔθΔθ③①②*思路二:天宮二號空間實驗室在軌飛行時為什么會有加速度?該如何確定它加速度的方向和大小呢?問題?1. 牛頓第二定律:F=ma加速度時刻指向圓心,稱為向心加速度。勻速圓周運動2. 加速度的定義:思考與討論哪兩點向心加速度的關系適用于“向心加速度與半徑成正比”,哪兩點適用于“向心加速度與半徑成反比”?A、B的線速度大小相同,向心加速度與半徑成反比。A、B的線速度大小相同,向心加速度與半徑成反比。A、B的線速度大小相同,向心加速度與半徑成反比。B、C的角速度大小相同,向心加速度與半徑成正比。如圖所示,在長為l的細繩下端拴一個質量為m的小球,捏住繩子的上端,使小球在水平面內做圓周運動,細繩就沿圓錐面旋轉,這樣就成了一個圓錐擺。 當繩子跟豎直方向的夾角為θ時,小球運動的向心加速度 an 的大小為多少?通過計算說明:要增大夾角θ,應該增大小球運動的角速度ω。【例題】GFFnθθθ①θGFFnθ①②③θGFFnθ當ω增大,θ增大①②③θGFFnθθ受力分析F=ma加速度運動情況GFFn練習與應用甲、乙兩物體都在做勻速圓周運動,關于以下兩種情況各舉一個實際的例子。在這兩種情況下,哪個物體的向心加速度比較大?(1)它們的角速度相等,乙的線速度小。練習與應用甲、乙兩物體都在做勻速圓周運動,關于以下兩種情況各舉一個實際的例子。在這兩種情況下,哪個物體的向心加速度比較大?(1)它們的角速度相等,乙的線速度小。甲乙甲的向心加速度大練習與應用甲、乙兩物體都在做勻速圓周運動,關于以下兩種情況各舉一個實際的例子。在這兩種情況下,哪個物體的向心加速度比較大?(1)它們的角速度相等,乙的線速度小。練習與應用甲、乙兩物體都在做勻速圓周運動,關于以下兩種情況各舉一個實際的例子。在這兩種情況下,哪個物體的向心加速度比較大?(2)它們的線速度大小相等,在相同時間內甲與圓心的連線掃過的角度比乙的大。練習與應用甲、乙兩物體都在做勻速圓周運動,關于以下兩種情況各舉一個實際的例子。在這兩種情況下,哪個物體的向心加速度比較大?(2)它們的線速度大小相等,在相同時間內甲與圓心的連線掃過的角度比乙的大。甲的向心加速度大練習與應用甲、乙兩物體都在做勻速圓周運動,關于以下兩種情況各舉一個實際的例子。在這兩種情況下,哪個物體的向心加速度比較大?(2)它們的線速度大小相等,在相同時間內甲與圓心的連線掃過的角度比乙的大。甲乙課堂小結課堂小結研究方法1. 牛頓第二定律:F=ma2. 加速度的定義:極限的思想課堂小結研究方法1. 牛頓第二定律:F=ma2. 加速度的定義:研究結論加速度時刻指向圓心,稱為向心加速度。勻速圓周運動極限的思想再見! 展開更多...... 收起↑ 資源預覽 縮略圖、資源來源于二一教育資源庫