資源簡介 第三章 函數(shù)第09講 函數(shù)與平面直角坐標(biāo)系(思維導(dǎo)圖+3考點+3命題點13種題型(含3種解題技巧))試卷第1頁,共3頁01考情透視·目標(biāo)導(dǎo)航02知識導(dǎo)圖·思維引航03考點突破·考法探究考點一 函數(shù)考點二 平面直角坐標(biāo)系的相關(guān)概念考點三 點的坐標(biāo)的有關(guān)性質(zhì)04題型精研·考向洞悉命題點一 函數(shù) 題型01 函數(shù)的相關(guān)概念辨析 題型02 求自變量的取值范圍 題型03 函數(shù)圖象的識別 題型04 從函數(shù)圖象上獲取信息 題型05 根據(jù)實際問題列函數(shù)解析式 題型06 動點問題的函數(shù)圖象命題點二 坐標(biāo)系內(nèi)點的坐標(biāo)特征 題型01 根據(jù)坐標(biāo)系內(nèi)點的坐標(biāo)特征求解 題型02 坐標(biāo)與圖形變化 題型03 點坐標(biāo)規(guī)律的探索 題型04 求坐標(biāo)系中的圖形面積 題型05 與圖形面積有關(guān)的存在性問題命題點三 坐標(biāo)方法的簡單應(yīng)用 題型01 實際問題中用坐標(biāo)表示位置 題型02 用方向角和距離確定物體的位置01考情透視·目標(biāo)導(dǎo)航中考考點 考查頻率 新課標(biāo)要求函數(shù)自變量的取值范圍 ★★ 探索簡單實例中的數(shù)量關(guān)系和變化規(guī)律,了解常量、變量的意義; 了解函數(shù)的概念和表示法,能舉出函數(shù)的實例; 能確定簡單實際問題中函數(shù)自變量的取值范圍,會求函數(shù)值; 能用適當(dāng)?shù)暮瘮?shù)表示法刻畫簡單實際問題中變量之間的關(guān)系,理解函數(shù)值的意義; 結(jié)合對函數(shù)關(guān)系的分析,能對變量的變化情況進(jìn)行初步討論.函數(shù)解析式的確定 ★函數(shù)圖象的判斷 ★★★函數(shù)圖象的分析 ★★★點的坐標(biāo)特征 ★★ 理解平面直角坐標(biāo)系的有關(guān)概念,能畫出平面直角坐標(biāo)系; 在給定的平面直角坐標(biāo)系中,能根據(jù)坐標(biāo)描出點的位置,由點的位置寫出坐標(biāo); 在平面直角坐標(biāo)系中,以坐標(biāo)軸為對稱軸,能寫出一個已知頂點坐標(biāo)的多邊形的對稱圖形的頂點坐標(biāo),知道對應(yīng)頂點坐標(biāo)之間的關(guān)系; 能寫出一個已知頂點坐標(biāo)的多邊形沿坐標(biāo)軸方向平移一定距離后圖形的頂點坐標(biāo),知道對應(yīng)頂點坐標(biāo)之間的關(guān)系;點的坐標(biāo)變換 ★★坐標(biāo)與圖形 ★★坐標(biāo)方法的簡答應(yīng)用 ★ 在實際問題中,能建立適當(dāng)?shù)钠矫嬷苯亲鴺?biāo)系,描述物體的位置. 在平面上,運(yùn)用方位角和距離刻畫兩個物體的相對位置.【命題預(yù)測】該專題內(nèi)容是初中代數(shù)最重要的部分,是代數(shù)的基礎(chǔ),非常重要,年年都會考查,分值為10分左右.預(yù)計2025年各地中考還將出現(xiàn),在選擇、填空題中出現(xiàn)的可能性較大.02知識導(dǎo)圖·思維引航03考點突破·考法探究考點一 函數(shù)1.變量與常量變量:在一個變化過程中,數(shù)值發(fā)生變化的量稱為變量.常量:在一個變化過程中,數(shù)值始終不變的量稱為常量.【補(bǔ)充】變量和常量是相對而言的,判斷的前提是“在同一個變化過程中”.當(dāng)變化過程改變時,同一個量的身份也可能隨之改變.2.函數(shù)定義:一般的,在一個變化過程中,如果有兩個變量x和y,并且對于x的每一個確定的值,y都有唯一確定的值與其對應(yīng),那么我們就把x稱為自變量,把y稱為因變量,y是x的函數(shù).【注意】對于每個確定的自變量值,函數(shù)值是唯一的,但反過來,可以不唯一,即一個函數(shù)值對應(yīng)的自變量可以是多個,如函數(shù)y=|x|,當(dāng)x=±1時,y的值都是1.3.函數(shù)值函數(shù)值:如果在自變量取值范圍內(nèi)給定一個值a,函數(shù)對應(yīng)的值為b,那么b叫做當(dāng)自變量取值為a時的函數(shù)值.4.函數(shù)的表示方法表示法 定義 優(yōu)點 缺點列表法 把自變量x的一系列值和函數(shù)y的對應(yīng)值列成一個表,這種表示函數(shù)關(guān)系的方法叫做列表法 自變量和與它對應(yīng)的函數(shù)值數(shù)據(jù)一目了然 列出的對應(yīng)值是有限的,而且在表格中也不容易看出自變量與函數(shù)的變化規(guī)律解析法 兩個變量之間的函數(shù)關(guān)系可以用等式來表示,這種表示兩個變量之間函數(shù)關(guān)系的式子稱為函數(shù)解析式,用函數(shù)解析式表示函數(shù)的方法叫做解析法 能準(zhǔn)確地反映整個變化過程中自變量與函數(shù)的對應(yīng)關(guān)系 求對應(yīng)值時,往往要經(jīng)過比較復(fù)雜的計算,有些函數(shù)不能用解析式表示出來圖像法 用圖像來表示函數(shù)關(guān)系的方法叫做圖像法 形象的把自變量和函數(shù)值的關(guān)系表示出來 圖像中只能得到近似的數(shù)量關(guān)系【注意】并不是所有的函數(shù)都可以用這三種方法表示出來.例如氣溫與時間的函數(shù)關(guān)系,只能用列表法和圖像法表示,而不能用解析式法表示,1.(2024·江蘇徐州·中考真題)小明的速度與時間的函數(shù)關(guān)系如圖所示,下列情境與之較為相符的是( )A.小明坐在門口,然后跑去看鄰居家的小狗,隨后坐著逗小狗玩B.小明攀巖至高處,然后順著桿子滑下來,隨后躺在沙地上休息C.小明跑去接電話,然后坐下來電話聊天,隨后步行至另一個房間D.小明步行去朋友家,敲門發(fā)現(xiàn)朋友不在家,隨后步行回家2.(2024·四川廣元·中考真題)如圖①,在中,,點P從點A出發(fā)沿A→C→B以1的速度勻速運(yùn)動至點B,圖②是點P運(yùn)動時,的面積隨時間x(s)變化的函數(shù)圖象,則該三角形的斜邊的長為( )A.5 B.7 C. D.3.(2024·湖北·中考真題)鐵的密度約為,鐵的質(zhì)量與體積成正比例.一個體積為的鐵塊,它的質(zhì)量為 .4.(2024·山東東營·中考真題)在彈性限度內(nèi),彈簧的長度是所掛物體質(zhì)量的一次函數(shù).一根彈簧不掛物體時長12.5cm,當(dāng)所掛物體的質(zhì)量為2kg時,彈簧長13.5cm.當(dāng)所掛物體的質(zhì)量為5kg時,彈簧的長度為 cm,5.(2024·黑龍江大興安嶺地·中考真題)在函數(shù)中,自變量x的取值范圍是 .6.(2024·天津·中考真題)已知張華的家、畫社、文化廣場依次在同一條直線上,畫社離家,文化廣場離家.張華從家出發(fā),先勻速騎行了到畫社,在畫社停留了,之后勻速騎行了到文化廣場,在文化廣場停留后,再勻速步行了返回家.下面圖中表示時間,表示離家的距離.圖象反映了這個過程中張華離家的距離與時間之間的對應(yīng)關(guān)系.請根據(jù)相關(guān)信息,回答下列問題:(1)①填表:張華離開家的時間 1 4 13 30張華離家的距離②填空:張華從文化廣場返回家的速度為______;③當(dāng)時,請直接寫出張華離家的距離關(guān)于時間的函數(shù)解析式;(2)當(dāng)張華離開家時,他的爸爸也從家出發(fā)勻速步行了直接到達(dá)了文化廣場,那么從畫社到文化廣場的途中兩人相遇時離家的距離是多少?(直接寫出結(jié)果即可)考點二 平面直角坐標(biāo)系的相關(guān)概念1.有序數(shù)對定義:有順序的兩個數(shù)a與b組成的數(shù)對,叫做有序數(shù)對,記作(a,b).2.平面直角坐標(biāo)系平面直角坐標(biāo)系:在平面內(nèi)畫兩條互相垂直,并且原點重合的數(shù)軸,這樣就建立了平面直角坐標(biāo)系.x軸、y軸:水平的數(shù)軸叫做x軸或橫軸,通常取向右方向為正方向;豎直的數(shù)軸叫做y軸或縱軸,通常取向上方向為正方向.原點:兩坐標(biāo)軸交點為平面直角坐標(biāo)系原點.坐標(biāo)平面:坐標(biāo)系所在的平面叫做坐標(biāo)平面.象限:x軸和y軸把坐標(biāo)平面分成四部分,每個部分稱為象限.按逆時針順序依次叫第一象限、第二象限、第三象限、第四象限,坐標(biāo)軸上的點不屬于任何象限.【補(bǔ)充】1)兩條坐標(biāo)軸不屬于任何一個象限.2)平面直角坐標(biāo)系具有實際意義時,一般在橫軸、縱軸的字母附上單位3.點的坐標(biāo)點的坐標(biāo):對于坐標(biāo)軸內(nèi)任意一點A,過點A分別向x軸、y軸作垂線,垂足在x軸、y軸上的對應(yīng)的數(shù)a、b分別叫做點A的橫坐標(biāo)和縱坐標(biāo),有序數(shù)對A(a,b)叫做點A的坐標(biāo),記作A(a,b),如圖.【易錯點】1)坐標(biāo)平面內(nèi)點的坐標(biāo)是有序?qū)崝?shù)對,當(dāng)a≠b時,有序數(shù)對(a,b)和(b,a)表示的是不同點的坐標(biāo).2)對于坐標(biāo)平面內(nèi)任意一點都有唯一的一對有序數(shù)對(x,y)和它對應(yīng),反過來對于任意一對有序數(shù)對,在坐標(biāo)平面內(nèi)都有唯一的一點與它對應(yīng),即坐標(biāo)平面內(nèi)的點與有序數(shù)對是一一對應(yīng)的.1.(2024·甘肅·中考真題)敦煌文書是華夏民族引以為傲的藝術(shù)瑰寶,其中敦煌《算經(jīng)》中出現(xiàn)的《田積表》部分如圖1所示,它以表格形式將矩形土地的面積直觀展示,可迅速準(zhǔn)確地查出邊長10步到60步的矩形田地面積,極大地提高了農(nóng)田面積的測量效率.如圖2是復(fù)原的部分《田積表》,表中對田地的長和寬都用步來表示,A區(qū)域表示的是長15步,寬16步的田地面積為一畝,用有序數(shù)對記為,那么有序數(shù)對記為對應(yīng)的田地面積為( )A.一畝八十步 B.一畝二十步 C.半畝七十八步 D.半畝八十四步2.(2024·湖北宜昌·模擬預(yù)測)電影院中的第a排b號位,簡記為,那么( )A.表示排a號 B.表示第b排a號位C.表示b排或a號 D.與不可能代表同一個位置3.(2023·江蘇連云港·中考真題)畫一條水平數(shù)軸,以原點為圓心,過數(shù)軸上的每一刻度點畫同心圓,過原點按逆時針方向依次畫出與正半軸的角度分別為的射線,這樣就建立了“圓”坐標(biāo)系.如圖,在建立的“圓”坐標(biāo)系內(nèi),我們可以將點的坐標(biāo)分別表示為,則點的坐標(biāo)可以表示為 . 4.(2023·湖北黃岡·二模)將一組數(shù),2,,,,…按下列方式進(jìn)行排列:,2,,;,,,4;……若2的位置記為,的位置記為 ,則的位置記為 .考點三 點的坐標(biāo)的有關(guān)性質(zhì)1.點的坐標(biāo)特征點M(x,y)所處的位置 坐標(biāo)特征象限內(nèi)的點 點M在第一象限 M(正,正)點M在第二象限 M(負(fù),正)點M在第三象限 M(負(fù),負(fù))點M在第四象限 M(正,負(fù))坐標(biāo)軸上的點 點M在x軸上 在x軸正半軸上 M(正,0)在x軸負(fù)半軸上 M(負(fù),0)點M在y軸上 在y軸正半軸上 M(0,正)在y軸負(fù)半軸上 M(0,負(fù))點M在原點 M(0,0)象限角平分線上的點 點M在第一、三象限角平分線上 M(x,y)且x=y(tǒng)點M在第二、四象限角平分線上 M(x,y)且x=-y兩點連線與坐標(biāo)軸平行 MN∥x軸(或MN⊥y軸) M、N兩點縱坐標(biāo)相等且橫坐標(biāo)不相等MN∥y軸(或MN⊥x軸) M、N兩點橫坐標(biāo)相等且縱坐標(biāo)不相等2.點的坐標(biāo)變化對于平面直角坐標(biāo)系上任意一點P(x,y)變換方式 具體變換過程 變換后的坐標(biāo)平移變換 (a>0,b>0) 向左平移a個單位 (x-a,y)向右平移a個單位 (x+a,y)向上平移a個單位 (x,y+a)向下平移a個單位 (x,y-a)口訣:點的平移左減右加,上加下減.變換方式 具體變換過程 變換后的坐標(biāo)對稱變換 關(guān)于x軸對稱 (x,-y)關(guān)于y軸對稱 (-x,y)關(guān)于原點對稱 (-x,-y)口訣:關(guān)于誰對稱誰不變,關(guān)于原點對稱都改變.旋轉(zhuǎn)變換 繞原點順時針旋轉(zhuǎn)90° (y,-x)繞原點逆時針旋轉(zhuǎn)90° (-y,x)繞原點順/逆時針旋轉(zhuǎn)180° (-x,-y)3.點到坐標(biāo)軸的距離在平面直角坐標(biāo)系中,已知點P,則1)點P到軸的距離為;2)點P到軸的距離為;3)點P到原點O的距離為P=.4、坐標(biāo)系內(nèi)點與點之間的距離坐標(biāo)系中有兩點M與點N,則M,N兩點之間的距離:若AB∥x軸,則的距離為;若AB∥y軸,則的距離為;【易錯易混】1)原點既是x軸上的點,又是y軸上的點.2)點的橫坐標(biāo)或縱坐標(biāo)為0,說明點在y軸上或在x軸上.3)已知點的坐標(biāo)可以求出點到x軸、y軸的距離,應(yīng)注意取相應(yīng)坐標(biāo)的絕對值.4)點到坐標(biāo)軸的距離與這個點的坐標(biāo)是有區(qū)別的,表現(xiàn)在兩方面:①到x軸的距離與縱坐標(biāo)有關(guān),到y(tǒng)軸的距離與橫坐標(biāo)有關(guān);②距離都是非負(fù)數(shù),而坐標(biāo)可以是負(fù)數(shù).5)因為橫軸向右為正,所以點向右平移時橫坐標(biāo)變大,向左平移時橫坐標(biāo)變小,同理向上平移時縱坐標(biāo)變大,向下平移縱坐標(biāo)變小.1.(2024·內(nèi)蒙古包頭·中考真題)如圖,在平面直角坐標(biāo)系中,四邊形各頂點的坐標(biāo)分別是,,,,則四邊形的面積為( )A.14 B.11 C.10 D.92.(2024·江蘇宿遷·中考真題)點在第 象限.3.(2024·黑龍江綏化·中考真題)如圖,已知,,,,,,,…,依此規(guī)律,則點的坐標(biāo)為 .4.(2021·湖南湘潭·中考真題)在平面直角坐標(biāo)系中,把點向右平移5個單位得到點,則點的坐標(biāo)為 .5.(2021·青海西寧·中考真題)在平面直角坐標(biāo)系中,點A的坐標(biāo)是,若軸,且,則點B的坐標(biāo)是 .04題型精研·考向洞悉命題點一 函數(shù) 題型01 函數(shù)的相關(guān)概念辨析1.(2024·江蘇泰州·一模)下列圖像不能反映y是x的函數(shù)的是( )A.B.C. D.2.(2024·內(nèi)蒙古呼和浩特·模擬預(yù)測)下列關(guān)于兩個變量關(guān)系的四種表達(dá)式中,正確的是( )①圓的周長C是半徑r的函數(shù);②表達(dá)式中,y是x的函數(shù);③下表中,n是m的函數(shù);m 1 2 3n 8 3 2④圖中,曲線表示y是x的函數(shù).A.①③ B.②④ C.①②③ D.①②③④3.(2022·廣東·中考真題)水中漣漪(圓形水波)不斷擴(kuò)大,記它的半徑為r,則圓周長C與r的關(guān)系式為.下列判斷正確的是( )A.2是變量 B.是變量 C.r是變量 D.C是常量4.(2021·浙江嘉興·中考真題)根據(jù)數(shù)學(xué)家凱勒的“百米賽跑數(shù)學(xué)模型”,前30米稱為“加速期”,30米~80米為“中途期”(m/s)與路程之間的觀測數(shù)據(jù)(1)是關(guān)于的函數(shù)嗎?為什么?(2)“加速期”結(jié)束時,小斌的速度為多少?(3)根據(jù)如圖提供的信息,給小斌提一條訓(xùn)練建議. 題型02 求自變量的取值范圍解題方法:類型 舉例 取值范圍整式型 全體實數(shù)分式型 分母不能為零二次根式型 開方式大于或等于零負(fù)整數(shù)(零)指數(shù)冪型 底數(shù)不能為零分式+根式型 開方式大于零 注意:分母不能為0【補(bǔ)充】實際問題中函數(shù)取值范圍要和實際情況相符合,使之有意義,一般要大于0.1.(2024·四川巴中·中考真題)函數(shù)自變量的取值范圍是( )A. B. C. D.2.(2023·湖北黃石·中考真題)函數(shù)的自變量x的取值范圍是( )A. B. C.且 D.3.(2024·黑龍江齊齊哈爾·中考真題)在函數(shù)中,自變量的取值范圍是 .4.(2024·上海·模擬預(yù)測)函數(shù)的定義域為 . 題型03 函數(shù)圖象的識別1.(2023·湖北·中考真題)如圖,長方體水池內(nèi)有一無蓋圓柱形鐵桶,現(xiàn)用水管往鐵桶中持續(xù)勻速注水,直到長方體水池有水溢出一會兒為止.設(shè)注水時間為(細(xì)實線)表示鐵桶中水面高度,(粗實線)表示水池中水面高度(鐵桶高度低于水池高度,鐵桶底面積小于水池底面積的一半,注水前鐵桶和水池內(nèi)均無水),則隨時間變化的函數(shù)圖象大致為( ) A.B.C.D.2.(2024·四川涼山·中考真題)勻速地向如圖所示的容器內(nèi)注水,直到把容器注滿.在注水過程中,容器內(nèi)水面高度隨時間變化的大致圖象是( )A. B. C. D.3.(2023·浙江嘉興·中考真題)下圖是底部放有一個實心鐵球的長方體水槽軸截面示意圖,現(xiàn)向水槽勻速注水,下列圖象中能大致反映水槽中水的深度(y)與注水時間(x)關(guān)系的是( ) A. B. C.D.4.(2023·山東濱州·中考真題)由化學(xué)知識可知,用表示溶液酸堿性的強(qiáng)弱程度,當(dāng)時溶液呈堿性,當(dāng)時溶液呈酸性.若將給定的溶液加水稀釋,那么在下列圖象中,能大致反映溶液的與所加水的體積之間對應(yīng)關(guān)系的是( )A. B. C. D. 題型04 從函數(shù)圖象上獲取信息根據(jù)圖像讀取信息時,要把握以下三個方面:1)橫、縱軸的意義,以及橫、縱軸分別表示的量;2)關(guān)于圖像上的某個點,可以過該點分別向橫縱軸作垂線來求得該點的坐標(biāo);3)在實際問題中,要注意圖像與橫、縱軸的交點代表的具體含義.1.(2024·山東淄博·中考真題)某日,甲、乙兩人相約在一條筆直的健身道路上鍛煉.兩人都從地勻速出發(fā),甲健步走向地.途中偶遇一位朋友,駐足交流后,繼續(xù)以原速步行前進(jìn);乙因故比甲晚出發(fā),跑步到達(dá)地后立刻以原速返回,在返回途中與甲第二次相遇.下圖表示甲、乙兩人之間的距離與甲出發(fā)的時間之間的函數(shù)關(guān)系.( )那么以下結(jié)論:①甲、乙兩人第一次相遇時,乙的鍛煉用時為;②甲出發(fā)時,甲、乙兩人之間的距離達(dá)到最大值;③甲、乙兩人第二次相遇的時間是在甲出發(fā)后;④,兩地之間的距離是.其中正確的結(jié)論有:A.①②③ B.①②④ C.①③④ D.②③④2.(2024·青海·中考真題)化學(xué)實驗小組查閱資料了解到:某種絮凝劑溶于水后能夠吸附水中懸浮物并發(fā)生沉降,從而達(dá)到凈水的目的.實驗得出加入絮凝劑的體積與凈水率之間的關(guān)系如圖所示,下列說法正確的是( )A.加入絮凝劑的體積越大,凈水率越高B.未加入絮凝劑時,凈水率為C.絮凝劑的體積每增加,凈水率的增加量相等D.加入絮凝劑的體積是時,凈水率達(dá)到3.(2024·河南·中考真題)把多個用電器連接在同一個插線板上,同時使用一段時間后,插線板的電源線會明顯發(fā)熱,存在安全隱患.?dāng)?shù)學(xué)興趣小組對這種現(xiàn)象進(jìn)行研究,得到時長一定時,插線板電源線中的電流I與使用電器的總功率P的函數(shù)圖象(如圖1),插線板電源線產(chǎn)生的熱量Q與I的函數(shù)圖象(如圖2).下列結(jié)論中錯誤的是( )A.當(dāng)時, B.Q隨I的增大而增大C.I每增加1A,Q的增加量相同 D.P越大,插線板電源線產(chǎn)生的熱量Q越多4.(2024·黑龍江大興安嶺地·中考真題)甲、乙兩貨車分別從相距的A、B兩地同時出發(fā),甲貨車從A地出發(fā)途經(jīng)配貨站時,停下來卸貨,半小時后繼續(xù)駛往B地,乙貨車沿同一條公路從B地駛往A地,但乙貨車到達(dá)配貨站時接到緊急任務(wù)立即原路原速返回B地,結(jié)果比甲貨車晚半小時到達(dá)B地.如圖是甲、乙兩貨車距A地的距離與行駛時間之間的函數(shù)圖象,結(jié)合圖象回答下列問題:(1)甲貨車到達(dá)配貨站之前的速度是 ,乙貨車的速度是 ;(2)求甲貨車在配貨站卸貨后駛往B地的過程中,甲貨車距A地的距離與行駛時間之間的函數(shù)解析式;(3)直接寫出甲、乙兩貨車在行駛的過程中,出發(fā)多長時間甲、乙兩貨車與配貨站的距離相等.5.(2023·湖南湘西·中考真題)如圖(1)所示,小明家、食堂、圖書館在同一條直線上食堂離小明家,圖書館離小明家.小明從家出發(fā),勻速步行了去食堂吃早餐;吃完早餐后接著勻速步行了去圖書館讀報;讀完報以后接著勻速步行了回到家圖()反映了這個過程中,小明離家的距離與時間之間的對應(yīng)關(guān)系. 請根據(jù)相關(guān)信息解答下列問題:(1)填空:①食堂離圖書館的距離為__________;②小明從圖書館回家的平均速度是__________;③小明讀報所用的時間為__________.④小明離開家的距離為時,小明離開家的時間為__________.(2)當(dāng)時,請直接寫出關(guān)于的函數(shù)解析式. 題型05 根據(jù)實際問題列函數(shù)解析式1.(2024·甘肅·中考真題)如圖1,“燕幾”即宴幾,是世界上最早的一套組合桌,由北宋進(jìn)士黃伯思設(shè)計.全套“燕幾”一共有七張桌子,包括兩張長桌、兩張中桌和三張小桌,每張桌面的寬都相等.七張桌面分開可組合成不同的圖形.如圖2給出了《燕幾圖》中名稱為“回文”的桌面拼合方式,若設(shè)每張桌面的寬為x尺,長桌的長為y尺,則y與x的關(guān)系可以表示為( )A. B. C. D.2.(2024·浙江·中考真題)有甲、乙兩只大小不同的水箱,容量分別為升、升,且已各裝有一些水,若將甲水箱中的水全倒入乙水箱,乙水箱只可再裝升的水;若將乙水箱中的水倒入甲水箱,裝滿甲水箱后,乙水箱還剩升的水.則與之間的數(shù)量關(guān)系是 .3.(2024·江蘇常州·中考真題)若等腰三角形的周長是10,則底邊長y與腰長x的函數(shù)表達(dá)式為 .4.(2022·內(nèi)蒙古呼和浩特·中考真題)某超市糯米的價格為5元/千克,端午節(jié)推出促銷活動:一次購買的數(shù)量不超過2千克時,按原價售出,超過2千克時,超過的部分打8折.若某人付款14元,則他購買了 千克糯米;設(shè)某人的付款金額為元,購買量為千克,則購買量關(guān)于付款金額的函數(shù)解析式為 . 題型06 動點問題的函數(shù)圖象1.(2024·黑龍江齊齊哈爾·中考真題)如圖,在等腰中,,,動點E,F(xiàn)同時從點A出發(fā),分別沿射線和射線的方向勻速運(yùn)動,且速度大小相同,當(dāng)點E停止運(yùn)動時,點F也隨之停止運(yùn)動,連接,以為邊向下做正方形,設(shè)點E運(yùn)動的路程為,正方形和等腰重合部分的面積為y,下列圖像能反映y與x之間函數(shù)關(guān)系的是( )A.B.C.D.3.(2024·甘肅臨夏·中考真題)如圖1,矩形中,為其對角線,一動點從出發(fā),沿著的路徑行進(jìn),過點作,垂足為.設(shè)點的運(yùn)動路程為,為,與的函數(shù)圖象如圖2,則的長為( )A. B. C. D.4.(2024·山東煙臺·中考真題)如圖,水平放置的矩形中,,,菱形的頂點,在同一水平線上,點與的中點重合,,,現(xiàn)將菱形以的速度沿方向勻速運(yùn)動,當(dāng)點運(yùn)動到上時停止,在這個運(yùn)動過程中,菱形與矩形重疊部分的面積與運(yùn)動時間之間的函數(shù)關(guān)系圖象大致是( )A. B.C. D.5.(2023·四川資陽·中考真題)如圖,在平行四邊形中,,厘米,厘米,點從點出發(fā)以每秒厘米的速度,沿在平行四邊形的邊上勻速運(yùn)動至點.設(shè)點的運(yùn)動時間為秒,的面積為平方厘米,下列圖中表示與之間函數(shù)關(guān)系的是( )A.B.C.D.命題點二 坐標(biāo)系內(nèi)點的坐標(biāo)特征 題型01 根據(jù)坐標(biāo)系內(nèi)點的坐標(biāo)特征求解1.(2020·山東濱州·中考真題)在平面直角坐標(biāo)系的第二象限內(nèi)有一點P,點P到x軸的距離為4,到y(tǒng)軸的距離為5,則點P的坐標(biāo)是( )A. B. C. D.2.(2024·四川廣元·中考真題)如果單項式與單項式的和仍是一個單項式,則在平面直角坐標(biāo)系中點在( )A.第一象限 B.第二象限 C.第三象限 D.第四象限3.(2023·浙江衢州·中考真題)在如圖所示的方格紙上建立適當(dāng)?shù)钠矫嬷苯亲鴺?biāo)系,若點A的坐標(biāo)為,點B的坐標(biāo)為,則點C的坐標(biāo)為 . 4.(2022·四川廣安·中考真題)若點P(m+1,m)在第四象限,則點Q(﹣3,m+2)在第 象限.5.(2023·山東日照·中考真題)若點在第四象限,則m的取值范圍是 .6.(2023·山東淄博·中考真題)若實數(shù),分別滿足下列條件:(1);(2).試判斷點所在的象限. 題型02 坐標(biāo)與圖形變化1.(2023·海南·中考真題)如圖,在平面直角坐標(biāo)系中,點A在y軸上,點B的坐標(biāo)為,將繞著點B順時針旋轉(zhuǎn),得到,則點C的坐標(biāo)是( ) A. B. C. D.2.(2024·山東淄博·中考真題)如圖,已知,兩點的坐標(biāo)分別為,,將線段平移得到線段.若點的對應(yīng)點是,則點的對應(yīng)點的坐標(biāo)是 .3.(2023·遼寧鞍山·中考真題)如圖,在平面直角坐標(biāo)系中,矩形的邊,分別在軸、軸正半軸上,點在邊上,將矩形沿折疊,點恰好落在邊上的點處.若,,則點的坐標(biāo)是 . 4.(2023·內(nèi)蒙古·中考真題)如圖,在平面直角坐標(biāo)系中,點坐標(biāo),連接,將繞點逆時針旋轉(zhuǎn),得到,則點的坐標(biāo)為 . 題型03 點坐標(biāo)規(guī)律的探索1.(2024·河北·中考真題)平面直角坐標(biāo)系中,我們把橫、縱坐標(biāo)都是整數(shù),且橫、縱坐標(biāo)之和大于0的點稱為“和點”.將某“和點”平移,每次平移的方向取決于該點橫、縱坐標(biāo)之和除以3所得的余數(shù)(當(dāng)余數(shù)為0時,向右平移;當(dāng)余數(shù)為1時,向上平移;當(dāng)余數(shù)為2時,向左平移),每次平移1個單位長度.例:“和點”按上述規(guī)則連續(xù)平移3次后,到達(dá)點,其平移過程如下:若“和點”Q按上述規(guī)則連續(xù)平移16次后,到達(dá)點,則點Q的坐標(biāo)為( )A.或 B.或 C.或 D.或2.(2023·遼寧阜新·中考真題)如圖,四邊形是正方形,曲線叫作“正方形的漸開線”,其中,,,,…的圓心依次按O,A,B,循環(huán).當(dāng)時,點的坐標(biāo)是( ) A. B. C. D.3.(2023·山東日照·中考真題)數(shù)學(xué)家高斯推動了數(shù)學(xué)科學(xué)的發(fā)展,被數(shù)學(xué)界譽(yù)為“數(shù)學(xué)王子”,據(jù)傳,他在計算時,用到了一種方法,將首尾兩個數(shù)相加,進(jìn)而得到.人們借助于這樣的方法,得到(n是正整數(shù)).有下列問題,如圖,在平面直角坐標(biāo)系中的一系列格點,其中,且是整數(shù).記,如,即,即,即,以此類推.則下列結(jié)論正確的是( ) A. B. C. D.4.(2024·四川廣安·中考真題)已知,直線與軸相交于點,以為邊作等邊三角形,點在第一象限內(nèi),過點作軸的平行線與直線交于點,與軸交于點,以為邊作等邊三角形(點在點的上方),以同樣的方式依次作等邊三角形,等邊三角形,則點的橫坐標(biāo)為 .5.(2024·黑龍江大興安嶺地·中考真題)如圖,在平面直角坐標(biāo)系中,正方形頂點M的坐標(biāo)為,是等邊三角形,點B坐標(biāo)是,在正方形內(nèi)部緊靠正方形的邊(方向為)做無滑動滾動,第一次滾動后,點A的對應(yīng)點記為,的坐標(biāo)是;第二次滾動后,的對應(yīng)點記為,的坐標(biāo)是;第三次滾動后,的對應(yīng)點記為,的坐標(biāo)是;如此下去,……,則的坐標(biāo)是 .5.(2021·黑龍江牡丹江·中考真題)如圖,在平面直角坐標(biāo)系中A(﹣1,1)B(﹣1,﹣2),C(3,﹣2),D(3,1),一只瓢蟲從點A出發(fā)以2個單位長度/秒的速度沿A→B→C→D→A循環(huán)爬行,問第2021秒瓢蟲在( )處.A.(3,1) B.(﹣1,﹣2) C.(1,﹣2) D.(3,﹣2) 題型04 求坐標(biāo)系中的圖形面積1.(2024·安徽六安·模擬預(yù)測)如圖,在平面直角坐標(biāo)系中,每個小方格都是邊長為1的正方形,的頂點均在格點上.(1)作出關(guān)于y軸對稱的,并直接寫出點的坐標(biāo);(2)連接,,求四邊形的面積.2.(2024·安徽·中考真題)如圖,在由邊長為1個單位長度的小正方形組成的網(wǎng)格中建立平面直角坐標(biāo)系,格點(網(wǎng)格線的交點)A、B,C、D的坐標(biāo)分別為,,,. (1)以點D為旋轉(zhuǎn)中心,將旋轉(zhuǎn)得到,畫出;(2)直接寫出以B,,,C為頂點的四邊形的面積;(3)在所給的網(wǎng)格圖中確定一個格點E,使得射線平分,寫出點E的坐標(biāo).3.(22-23八年級上·湖北鄂州·期中)三個頂點均在平面直角坐標(biāo)系中網(wǎng)格的格點上,每一個小正方形的邊長均為1.按下列要求畫圖(畫圖只能借助無刻度的直尺,用虛線表示畫圖過程,實線表示畫圖結(jié)果)(1)把沿直線翻折,畫出翻折后的;(2)找出格點并畫出直線,使直線將分成面積相等的兩部分;(3)在軸上存在點,使的面積等于3,直接寫出點的坐標(biāo). 題型05 與圖形面積有關(guān)的存在性問題1.(2022·江蘇常州·模擬預(yù)測)如圖1,在平面直角坐標(biāo)系中,點A,B的坐標(biāo)分別為,,且a,b滿足,現(xiàn)將線段先向上平移4個單位長度,再向右平移6個單位長度得到線段,其中點A對應(yīng)點為C,點B對應(yīng)點為D,連接,.(1)請直接寫出A,B兩點的坐標(biāo);(2)如圖2,點M是線段上的一個動點,點N是線段的一個定點,連接,,當(dāng)點M在線段上移動時(不與A,C重合),探究,,之間的數(shù)量關(guān)系,并說明理由;(3)在坐標(biāo)軸上是否存在點P,使三角形的面積與三角形的面積相等?若存在,請求出點P的坐標(biāo);若不存在,試說明理由.2.(2024·寧夏銀川·二模)如圖,一次函數(shù)的圖象與y軸正半軸交于點C,與反比例函數(shù)的圖象交于A,B兩點,已知,點B的縱坐標(biāo)為3.(1)求反比例函數(shù)的表達(dá)式;(2)求的面積;(3)在x軸上是否存在一點E,使得的面積是面積的一半,如果存在請直接寫出點E的橫坐標(biāo).3.(2024銀川外國語二模)如圖,點,在反比例函數(shù)圖象上,軸于點D,軸于點C,,連接.(1)求出反比例函數(shù)的表達(dá)式及直線的函數(shù)表達(dá)式;(2)在線段上是否存在一點E,使的面積等于10?若存在,求出點E的坐標(biāo);若不存在,請說明理由.4.(2023·河北石家莊·模擬預(yù)測)如圖,在直角坐標(biāo)系中,已知、、三點,其中a、b,c滿足關(guān)系式. (1)求a、b、c的值;(2)如果在第二象限內(nèi)有一點,請用含m的式子表示四邊形的面積;(3)在(2)的條件下,是否存在點P,使四邊形的面積與的面積相等?若存在,求出點P的坐標(biāo),若不存在,請說明理由?5.(22-23七年級下·廣東廣州·期末)在平面直角坐標(biāo)系中,點且m,n滿足,, (1)直接寫出m,n的值;(2)求三角形的面積;(3)若點P從點A出發(fā)在射線上運(yùn)動(點P不與點A點B重合),①過點P作射線軸,且點E在點P的右側(cè),請直接寫出的數(shù)量關(guān)系_______;②若點P的速度為每秒3個單位,在點P運(yùn)動的同時,點Q從點O出發(fā),以每秒2個單位的速度沿x負(fù)半軸運(yùn)動,連接是否存在某一時刻t,使的面積是的面積的2倍.若存在,請求出t值,并寫出點Q的坐標(biāo);若不存在,請說明理由.命題點三 坐標(biāo)方法的簡單應(yīng)用 題型01 實際問題中用坐標(biāo)表示位置1.(2024·四川·中考真題)如圖,在一個平面區(qū)域內(nèi),一臺雷達(dá)探測器測得在點A,B,C處有目標(biāo)出現(xiàn).按某種規(guī)則,點A,B的位置可以分別表示為,則點C的位置可以表示為 .2.(2023·貴州·中考真題)如圖,是貴陽市城市軌道交通運(yùn)營部分示意圖,以噴水池為原點,分別以正東、正北方向為軸、軸的正方向建立平面直角坐標(biāo)系,若貴陽北站的坐標(biāo)是,則龍洞堡機(jī)場的坐標(biāo)是 . 3.(2022·江蘇泰州·中考真題)如圖所示的象棋盤中,各個小正方形的邊長均為1.“馬”從圖中的位置出發(fā),不走重復(fù)路線,按照“馬走日”的規(guī)則,走兩步后的落點與出發(fā)點間的最短距離為 .4.(2024·山西朔州·模擬預(yù)測)我國水墨畫發(fā)展有著悠遠(yuǎn)歷史,相傳始于唐代,成于五代,盛于宋元,明清及近代以來續(xù)有發(fā)展,重于意境優(yōu)美,圖為水墨畫“早有蜻蜓立上頭”,若將其放在平面直角坐標(biāo)系中,點,,則點C坐標(biāo)為 .5.(2024·吉林·二模)《聞王昌齡左遷龍標(biāo)遙有此寄》是唐代大詩人李白的詩作,笑笑默寫該詩如圖所示.如果用表示“楊”字的位置,那么圖中錯別字的位置表示為 .4 楊 花 落 盡 子 規(guī) 啼 ,3 聞 到 龍 標(biāo) 過 五 溪 .2 我 寄 愁 心 與 明 月 ,1 隨 君 直 到 夜 郎 西 .1 2 3 4 5 6 7 8 題型02 用方向角和距離確定物體的位置解題方法:在航海和地理測繪中,經(jīng)常用方向角和距離來刻畫平面內(nèi)兩個物體的相對位置1)通常以北偏東(西),或南偏東(西)來確定方向,用距離來確定兩個物體相距的路程.2)用方向角和距離表示平面內(nèi)物體的位置時,和地圖上的方向一致,按上北下南,,左西右東劃分.1.(2023·河北石家莊·二模)一艘海上搜救船在巡邏過程中發(fā)現(xiàn)點A處有一艘船發(fā)出求救信號,如圖是搜救船上顯示的雷達(dá)示意圖,圖上標(biāo)注了以搜救船為中心的等距線(圖中所示的同心圓,單位:海里)及角度,要讓搜救船在第一時間抵達(dá)故障船所在的位置,應(yīng)該將搜救船的航行方案調(diào)整為( ) A.向北偏西150°方向航行4海里 B.向南偏西120°方向航行3海里C.向北偏西60°方向航行4海里 D.向東偏北150°方向航行3海里2.(2022·河北石家莊·三模)某學(xué)校在某商城的南偏西方向上,且距離商城,則下列表示正確的是( )A.B.C.D.3.(2022·河北·二模)如圖,甲、乙二人同時從A地出發(fā),甲沿北偏東50°方向行走200m后到達(dá)B地,然后立即向正東方向行走200m,二人恰好在C地相遇,若乙中途未改變方向,則乙的行走方向為( )A.北偏東30° B.北偏東40° C.北偏東70° D.無法確定4.(2020·河北·中考真題)如圖,從筆直的公路旁一點出發(fā),向西走到達(dá);從出發(fā)向北走也到達(dá).下列說法錯誤的是( )A.從點向北偏西45°走到達(dá)B.公路的走向是南偏西45°C.公路的走向是北偏東45°D.從點向北走后,再向西走到達(dá)第三章 函數(shù)第09講 函數(shù)與平面直角坐標(biāo)系(思維導(dǎo)圖+3考點+3命題點13種題型(含3種解題技巧))試卷第1頁,共3頁01考情透視·目標(biāo)導(dǎo)航02知識導(dǎo)圖·思維引航03考點突破·考法探究考點一 函數(shù)考點二 平面直角坐標(biāo)系的相關(guān)概念考點三 點的坐標(biāo)的有關(guān)性質(zhì)04題型精研·考向洞悉命題點一 函數(shù) 題型01 函數(shù)的相關(guān)概念辨析 題型02 求自變量的取值范圍 題型03 函數(shù)圖象的識別 題型04 從函數(shù)圖象上獲取信息 題型05 根據(jù)實際問題列函數(shù)解析式 題型06 動點問題的函數(shù)圖象命題點二 坐標(biāo)系內(nèi)點的坐標(biāo)特征 題型01 根據(jù)坐標(biāo)系內(nèi)點的坐標(biāo)特征求解 題型02 坐標(biāo)與圖形變化 題型03 點坐標(biāo)規(guī)律的探索 題型04 求坐標(biāo)系中的圖形面積 題型05 與圖形面積有關(guān)的存在性問題命題點三 坐標(biāo)方法的簡單應(yīng)用 題型01 實際問題中用坐標(biāo)表示位置 題型02 用方向角和距離確定物體的位置01考情透視·目標(biāo)導(dǎo)航中考考點 考查頻率 新課標(biāo)要求函數(shù)自變量的取值范圍 ★★ 探索簡單實例中的數(shù)量關(guān)系和變化規(guī)律,了解常量、變量的意義; 了解函數(shù)的概念和表示法,能舉出函數(shù)的實例; 能確定簡單實際問題中函數(shù)自變量的取值范圍,會求函數(shù)值; 能用適當(dāng)?shù)暮瘮?shù)表示法刻畫簡單實際問題中變量之間的關(guān)系,理解函數(shù)值的意義; 結(jié)合對函數(shù)關(guān)系的分析,能對變量的變化情況進(jìn)行初步討論.函數(shù)解析式的確定 ★函數(shù)圖象的判斷 ★★★函數(shù)圖象的分析 ★★★點的坐標(biāo)特征 ★★ 理解平面直角坐標(biāo)系的有關(guān)概念,能畫出平面直角坐標(biāo)系; 在給定的平面直角坐標(biāo)系中,能根據(jù)坐標(biāo)描出點的位置,由點的位置寫出坐標(biāo); 在平面直角坐標(biāo)系中,以坐標(biāo)軸為對稱軸,能寫出一個已知頂點坐標(biāo)的多邊形的對稱圖形的頂點坐標(biāo),知道對應(yīng)頂點坐標(biāo)之間的關(guān)系; 能寫出一個已知頂點坐標(biāo)的多邊形沿坐標(biāo)軸方向平移一定距離后圖形的頂點坐標(biāo),知道對應(yīng)頂點坐標(biāo)之間的關(guān)系;點的坐標(biāo)變換 ★★坐標(biāo)與圖形 ★★坐標(biāo)方法的簡答應(yīng)用 ★ 在實際問題中,能建立適當(dāng)?shù)钠矫嬷苯亲鴺?biāo)系,描述物體的位置. 在平面上,運(yùn)用方位角和距離刻畫兩個物體的相對位置.【命題預(yù)測】該專題內(nèi)容是初中代數(shù)最重要的部分,是代數(shù)的基礎(chǔ),非常重要,年年都會考查,分值為10分左右.預(yù)計2025年各地中考還將出現(xiàn),在選擇、填空題中出現(xiàn)的可能性較大.02知識導(dǎo)圖·思維引航03考點突破·考法探究考點一 函數(shù)1.變量與常量變量:在一個變化過程中,數(shù)值發(fā)生變化的量稱為變量.常量:在一個變化過程中,數(shù)值始終不變的量稱為常量.【補(bǔ)充】變量和常量是相對而言的,判斷的前提是“在同一個變化過程中”.當(dāng)變化過程改變時,同一個量的身份也可能隨之改變.2.函數(shù)定義:一般的,在一個變化過程中,如果有兩個變量x和y,并且對于x的每一個確定的值,y都有唯一確定的值與其對應(yīng),那么我們就把x稱為自變量,把y稱為因變量,y是x的函數(shù).【注意】對于每個確定的自變量值,函數(shù)值是唯一的,但反過來,可以不唯一,即一個函數(shù)值對應(yīng)的自變量可以是多個,如函數(shù)y=|x|,當(dāng)x=±1時,y的值都是1.3.函數(shù)值函數(shù)值:如果在自變量取值范圍內(nèi)給定一個值a,函數(shù)對應(yīng)的值為b,那么b叫做當(dāng)自變量取值為a時的函數(shù)值.4.函數(shù)的表示方法表示法 定義 優(yōu)點 缺點列表法 把自變量x的一系列值和函數(shù)y的對應(yīng)值列成一個表,這種表示函數(shù)關(guān)系的方法叫做列表法 自變量和與它對應(yīng)的函數(shù)值數(shù)據(jù)一目了然 列出的對應(yīng)值是有限的,而且在表格中也不容易看出自變量與函數(shù)的變化規(guī)律解析法 兩個變量之間的函數(shù)關(guān)系可以用等式來表示,這種表示兩個變量之間函數(shù)關(guān)系的式子稱為函數(shù)解析式,用函數(shù)解析式表示函數(shù)的方法叫做解析法 能準(zhǔn)確地反映整個變化過程中自變量與函數(shù)的對應(yīng)關(guān)系 求對應(yīng)值時,往往要經(jīng)過比較復(fù)雜的計算,有些函數(shù)不能用解析式表示出來圖像法 用圖像來表示函數(shù)關(guān)系的方法叫做圖像法 形象的把自變量和函數(shù)值的關(guān)系表示出來 圖像中只能得到近似的數(shù)量關(guān)系【注意】并不是所有的函數(shù)都可以用這三種方法表示出來.例如氣溫與時間的函數(shù)關(guān)系,只能用列表法和圖像法表示,而不能用解析式法表示,1.(2024·江蘇徐州·中考真題)小明的速度與時間的函數(shù)關(guān)系如圖所示,下列情境與之較為相符的是( )A.小明坐在門口,然后跑去看鄰居家的小狗,隨后坐著逗小狗玩B.小明攀巖至高處,然后順著桿子滑下來,隨后躺在沙地上休息C.小明跑去接電話,然后坐下來電話聊天,隨后步行至另一個房間D.小明步行去朋友家,敲門發(fā)現(xiàn)朋友不在家,隨后步行回家【答案】C【分析】本題考查了函數(shù)圖象,讀懂函數(shù)圖象,從圖象中獲取必要的信息是解決本題的關(guān)鍵.根據(jù)函數(shù)圖象分析即可.【詳解】解:由圖象可知速度先隨時間的增大而增大,然后直接降為0,過段時間速度增大,然后勻速運(yùn)動,則小明跑去接電話,然后坐下來電話聊天,隨后步行至另一個房間,符合題意.故選:C.2.(2024·四川廣元·中考真題)如圖①,在中,,點P從點A出發(fā)沿A→C→B以1的速度勻速運(yùn)動至點B,圖②是點P運(yùn)動時,的面積隨時間x(s)變化的函數(shù)圖象,則該三角形的斜邊的長為( )A.5 B.7 C. D.【答案】A【分析】本題考查根據(jù)函數(shù)圖象獲取信息,完全平方公式,勾股定理,由圖象可知,面積最大值為6,此時當(dāng)點P運(yùn)動到點C,得到,由圖象可知, 根據(jù)勾股定理,結(jié)合完全平方公式即可求解.【詳解】解:由圖象可知,面積最大值為6由題意可得,當(dāng)點P運(yùn)動到點C時,的面積最大,∴,即,由圖象可知,當(dāng)時,,此時點P運(yùn)動到點B,∴,∵,∴,∴.故選:A3.(2024·湖北·中考真題)鐵的密度約為,鐵的質(zhì)量與體積成正比例.一個體積為的鐵塊,它的質(zhì)量為 .【答案】79【分析】本題考查了正比例函數(shù)的應(yīng)用.根據(jù)鐵的質(zhì)量與體積成正比例,列式計算即可求解.【詳解】解:∵鐵的質(zhì)量與體積成正比例,∴m關(guān)于V的函數(shù)解析式為,當(dāng)時,,故答案為:79.4.(2024·山東東營·中考真題)在彈性限度內(nèi),彈簧的長度是所掛物體質(zhì)量的一次函數(shù).一根彈簧不掛物體時長12.5cm,當(dāng)所掛物體的質(zhì)量為2kg時,彈簧長13.5cm.當(dāng)所掛物體的質(zhì)量為5kg時,彈簧的長度為 cm,【答案】【分析】本題考查了用待定系數(shù)法求一次函數(shù)的解析式、由自變量求函數(shù)值的知識點,解答時求出函數(shù)的解析式是關(guān)鍵.設(shè)與的函數(shù)關(guān)系式為,由待定系數(shù)法求出解析式,并把代入解析式求出對應(yīng)的值即可.【詳解】解:設(shè)與的函數(shù)關(guān)系式為,由題意,得,解得:,故與之間的關(guān)系式為:,當(dāng)時,.故答案為:.5.(2024·黑龍江大興安嶺地·中考真題)在函數(shù)中,自變量x的取值范圍是 .【答案】/【分析】本題主要考查函數(shù)自變量取值范圍,分別根據(jù)二次根式有意義的條件和分式有意義的條件列出不等式求解即可.【詳解】解:根據(jù)題意得,,且,解得,,故答案為:.6.(2024·天津·中考真題)已知張華的家、畫社、文化廣場依次在同一條直線上,畫社離家,文化廣場離家.張華從家出發(fā),先勻速騎行了到畫社,在畫社停留了,之后勻速騎行了到文化廣場,在文化廣場停留后,再勻速步行了返回家.下面圖中表示時間,表示離家的距離.圖象反映了這個過程中張華離家的距離與時間之間的對應(yīng)關(guān)系.請根據(jù)相關(guān)信息,回答下列問題:(1)①填表:張華離開家的時間 1 4 13 30張華離家的距離②填空:張華從文化廣場返回家的速度為______;③當(dāng)時,請直接寫出張華離家的距離關(guān)于時間的函數(shù)解析式;(2)當(dāng)張華離開家時,他的爸爸也從家出發(fā)勻速步行了直接到達(dá)了文化廣場,那么從畫社到文化廣場的途中兩人相遇時離家的距離是多少?(直接寫出結(jié)果即可)【答案】(1)①;②0.075;③當(dāng)時,;當(dāng)時,;當(dāng)時,(2)【分析】本題考查了從函數(shù)圖象獲取信息,求函數(shù)的解析式,列一元一次方程解決實際問題,準(zhǔn)確理解題意,熟練掌握知識點是解題的關(guān)鍵.(1)①根據(jù)圖象作答即可;②根據(jù)圖象,由張華從文化廣場返回家的距離除以時間求解即可;③分段求解,,可得出,當(dāng)時,;當(dāng)時,設(shè)一次函數(shù)解析式為:,把,代入,用待定系數(shù)法求解即可.(2)先求出張華爸爸的速度,設(shè)張華爸爸距家,則,當(dāng)兩人相遇時有,列一元一次方程求解即可進(jìn)一步得出答案.【詳解】(1)解:①畫社離家,張華從家出發(fā),先勻速騎行了到畫社,∴張華的騎行速度為,∴張華離家時,張華離家,張華離家時,還在畫社,故此時張華離家還是,張華離家時,在文化廣場,故此時張華離家還是.故答案為:.②,故答案為:.③當(dāng)時,張華的勻速騎行速度為,∴;當(dāng)時,;當(dāng)時,設(shè)一次函數(shù)解析式為:,把,代入,可得出:,解得:,∴,綜上:當(dāng)時,,當(dāng)時,,當(dāng)時,.(2)張華爸爸的速度為:,設(shè)張華爸爸距家,則,當(dāng)兩人從畫社到文化廣場的途中兩人相遇時,有,解得:,∴,故從畫社到文化廣場的途中兩人相遇時離家的距離是.考點二 平面直角坐標(biāo)系的相關(guān)概念1.有序數(shù)對定義:有順序的兩個數(shù)a與b組成的數(shù)對,叫做有序數(shù)對,記作(a,b).2.平面直角坐標(biāo)系平面直角坐標(biāo)系:在平面內(nèi)畫兩條互相垂直,并且原點重合的數(shù)軸,這樣就建立了平面直角坐標(biāo)系.x軸、y軸:水平的數(shù)軸叫做x軸或橫軸,通常取向右方向為正方向;豎直的數(shù)軸叫做y軸或縱軸,通常取向上方向為正方向.原點:兩坐標(biāo)軸交點為平面直角坐標(biāo)系原點.坐標(biāo)平面:坐標(biāo)系所在的平面叫做坐標(biāo)平面.象限:x軸和y軸把坐標(biāo)平面分成四部分,每個部分稱為象限.按逆時針順序依次叫第一象限、第二象限、第三象限、第四象限,坐標(biāo)軸上的點不屬于任何象限.【補(bǔ)充】1)兩條坐標(biāo)軸不屬于任何一個象限.2)平面直角坐標(biāo)系具有實際意義時,一般在橫軸、縱軸的字母附上單位3.點的坐標(biāo)點的坐標(biāo):對于坐標(biāo)軸內(nèi)任意一點A,過點A分別向x軸、y軸作垂線,垂足在x軸、y軸上的對應(yīng)的數(shù)a、b分別叫做點A的橫坐標(biāo)和縱坐標(biāo),有序數(shù)對A(a,b)叫做點A的坐標(biāo),記作A(a,b),如圖.【易錯點】1)坐標(biāo)平面內(nèi)點的坐標(biāo)是有序?qū)崝?shù)對,當(dāng)a≠b時,有序數(shù)對(a,b)和(b,a)表示的是不同點的坐標(biāo).2)對于坐標(biāo)平面內(nèi)任意一點都有唯一的一對有序數(shù)對(x,y)和它對應(yīng),反過來對于任意一對有序數(shù)對,在坐標(biāo)平面內(nèi)都有唯一的一點與它對應(yīng),即坐標(biāo)平面內(nèi)的點與有序數(shù)對是一一對應(yīng)的.1.(2024·甘肅·中考真題)敦煌文書是華夏民族引以為傲的藝術(shù)瑰寶,其中敦煌《算經(jīng)》中出現(xiàn)的《田積表》部分如圖1所示,它以表格形式將矩形土地的面積直觀展示,可迅速準(zhǔn)確地查出邊長10步到60步的矩形田地面積,極大地提高了農(nóng)田面積的測量效率.如圖2是復(fù)原的部分《田積表》,表中對田地的長和寬都用步來表示,A區(qū)域表示的是長15步,寬16步的田地面積為一畝,用有序數(shù)對記為,那么有序數(shù)對記為對應(yīng)的田地面積為( )A.一畝八十步 B.一畝二十步 C.半畝七十八步 D.半畝八十四步【答案】D【分析】根據(jù)可得,橫從上面從右向左看,縱從右邊自下而上看,解答即可.本題考查了坐標(biāo)與位置的應(yīng)用,熟練掌握坐標(biāo)與位置的應(yīng)用是解題的關(guān)鍵.【詳解】根據(jù)可得,橫從上面從右向左看,縱從右邊自下而上看,故對應(yīng)的是半畝八十四步,故選D.2.(2024·湖北宜昌·模擬預(yù)測)電影院中的第a排b號位,簡記為,那么( )A.表示排a號B.表示第b排a號位C.表示b排或a號D.與不可能代表同一個位置【答案】B【分析】本題考查了用有序數(shù)對表示位置,根據(jù)題意進(jìn)行解答即可.【詳解】解:∵電影院中的第a排b號位,簡記為,∴表示第b排a號位,故選:B.3.(2023·江蘇連云港·中考真題)畫一條水平數(shù)軸,以原點為圓心,過數(shù)軸上的每一刻度點畫同心圓,過原點按逆時針方向依次畫出與正半軸的角度分別為的射線,這樣就建立了“圓”坐標(biāo)系.如圖,在建立的“圓”坐標(biāo)系內(nèi),我們可以將點的坐標(biāo)分別表示為,則點的坐標(biāo)可以表示為 . 【答案】【分析】根據(jù)題意,可得在第三個圓上,與正半軸的角度,進(jìn)而即可求解.【詳解】解:根據(jù)圖形可得在第三個圓上,與正半軸的角度,∴點的坐標(biāo)可以表示為故答案為:.【點睛】本題考查了有序?qū)崝?shù)對表示位置,數(shù)形結(jié)合,理解題意是解題的關(guān)鍵.4.(2023·湖北黃岡·二模)將一組數(shù),2,,,,…按下列方式進(jìn)行排列:,2,,;,,,4;……若2的位置記為,的位置記為 ,則的位置記為 .【答案】【分析】先找出被開方數(shù)的規(guī)律,然后再求得的位置即可.【詳解】解:數(shù)字可以化成:,,,;,,,;……∴規(guī)律為:被開方數(shù)為從2開始的偶數(shù),每一行4個數(shù),∵,是第個偶數(shù),而∴的位置記為故答案為:【點睛】本題考查了二次根式的規(guī)律問題,熟練掌握二次根式的運(yùn)算法則是關(guān)鍵.考點三 點的坐標(biāo)的有關(guān)性質(zhì)1.點的坐標(biāo)特征點M(x,y)所處的位置 坐標(biāo)特征象限內(nèi)的點 點M在第一象限 M(正,正)點M在第二象限 M(負(fù),正)點M在第三象限 M(負(fù),負(fù))點M在第四象限 M(正,負(fù))坐標(biāo)軸上的點 點M在x軸上 在x軸正半軸上 M(正,0)在x軸負(fù)半軸上 M(負(fù),0)點M在y軸上 在y軸正半軸上 M(0,正)在y軸負(fù)半軸上 M(0,負(fù))點M在原點 M(0,0)象限角平分線上的點 點M在第一、三象限角平分線上 M(x,y)且x=y(tǒng)點M在第二、四象限角平分線上 M(x,y)且x=-y兩點連線與坐標(biāo)軸平行 MN∥x軸(或MN⊥y軸) M、N兩點縱坐標(biāo)相等且橫坐標(biāo)不相等MN∥y軸(或MN⊥x軸) M、N兩點橫坐標(biāo)相等且縱坐標(biāo)不相等2.點的坐標(biāo)變化對于平面直角坐標(biāo)系上任意一點P(x,y)變換方式 具體變換過程 變換后的坐標(biāo)平移變換 (a>0,b>0) 向左平移a個單位 (x-a,y)向右平移a個單位 (x+a,y)向上平移a個單位 (x,y+a)向下平移a個單位 (x,y-a)口訣:點的平移左減右加,上加下減.變換方式 具體變換過程 變換后的坐標(biāo)對稱變換 關(guān)于x軸對稱 (x,-y)關(guān)于y軸對稱 (-x,y)關(guān)于原點對稱 (-x,-y)口訣:關(guān)于誰對稱誰不變,關(guān)于原點對稱都改變.旋轉(zhuǎn)變換 繞原點順時針旋轉(zhuǎn)90° (y,-x)繞原點逆時針旋轉(zhuǎn)90° (-y,x)繞原點順/逆時針旋轉(zhuǎn)180° (-x,-y)3.點到坐標(biāo)軸的距離在平面直角坐標(biāo)系中,已知點P,則1)點P到軸的距離為;2)點P到軸的距離為;3)點P到原點O的距離為P=.4、坐標(biāo)系內(nèi)點與點之間的距離坐標(biāo)系中有兩點M與點N,則M,N兩點之間的距離:若AB∥x軸,則的距離為;若AB∥y軸,則的距離為;【易錯易混】1)原點既是x軸上的點,又是y軸上的點.2)點的橫坐標(biāo)或縱坐標(biāo)為0,說明點在y軸上或在x軸上.3)已知點的坐標(biāo)可以求出點到x軸、y軸的距離,應(yīng)注意取相應(yīng)坐標(biāo)的絕對值.4)點到坐標(biāo)軸的距離與這個點的坐標(biāo)是有區(qū)別的,表現(xiàn)在兩方面:①到x軸的距離與縱坐標(biāo)有關(guān),到y(tǒng)軸的距離與橫坐標(biāo)有關(guān);②距離都是非負(fù)數(shù),而坐標(biāo)可以是負(fù)數(shù).5)因為橫軸向右為正,所以點向右平移時橫坐標(biāo)變大,向左平移時橫坐標(biāo)變小,同理向上平移時縱坐標(biāo)變大,向下平移縱坐標(biāo)變小.1.(2024·內(nèi)蒙古包頭·中考真題)如圖,在平面直角坐標(biāo)系中,四邊形各頂點的坐標(biāo)分別是,,,,則四邊形的面積為( )A.14 B.11 C.10 D.9【答案】D【分析】本題考查了坐標(biāo)與圖形,過A作于M,過B作于N,根據(jù)A、B、C的坐標(biāo)可求出,,,,,然后根據(jù)求解即可.【詳解】解∶過A作于M,過B作于N,∵,,,,∴,,,,∴,,∴四邊形的面積為,故選:D.2.(2024·江蘇宿遷·中考真題)點在第 象限.【答案】四【分析】本題考查了各象限內(nèi)點的坐標(biāo)的符號特征,記住各象限內(nèi)點的坐標(biāo)的符號是解決的關(guān)鍵,四個象限的符號特點分別是:第一象限;第二象限;第三象限;第四象限.根據(jù)各象限內(nèi)點的坐標(biāo)特征解答即可.【詳解】解:點的橫坐標(biāo),縱坐標(biāo),點在第四象限.故答案為:四.3.(2024·黑龍江綏化·中考真題)如圖,已知,,,,,,,…,依此規(guī)律,則點的坐標(biāo)為 .【答案】【分析】本題考查了點坐標(biāo)的規(guī)律探究.解題的關(guān)鍵在于根據(jù)題意推導(dǎo)出一般性規(guī)律.根據(jù)題意可知個點坐標(biāo)的縱坐標(biāo)為一個循環(huán),的坐標(biāo)為,據(jù)此可求得的坐標(biāo).【詳解】解:∵,,,,,,,…,,∴可知個點坐標(biāo)的縱坐標(biāo)為一個循環(huán),的坐標(biāo)為,∵,∴的坐標(biāo)為.∴的坐標(biāo)為故答案為:.4.(2021·湖南湘潭·中考真題)在平面直角坐標(biāo)系中,把點向右平移5個單位得到點,則點的坐標(biāo)為 .【答案】【分析】把點向右平移5個單位,縱坐標(biāo)不變,橫坐標(biāo)增加5,據(jù)此解題.【詳解】解:把點向右平移5個單位得到點,則點的坐標(biāo)為,即,故答案為:.【點睛】本題考查平面直角坐標(biāo)系與點的坐標(biāo),涉及平移等知識,是基礎(chǔ)考點,難度較易,掌握相關(guān)知識是解題關(guān)鍵.5.(2021·青海西寧·中考真題)在平面直角坐標(biāo)系中,點A的坐標(biāo)是,若軸,且,則點B的坐標(biāo)是 .【答案】或【分析】由題意,設(shè)點B的坐標(biāo)為(-2,y),則由AB=9可得,解方程即可求得y的值,從而可得點B的坐標(biāo).【詳解】∵軸∴設(shè)點B的坐標(biāo)為(-2,y)∵AB=9∴解得:y=8或y=-10∴點B的坐標(biāo)為或故答案為:或【點睛】本題考查了平面直角坐標(biāo)系求點的坐標(biāo),解含絕對值方程,關(guān)鍵是抓住平行于坐標(biāo)軸的線段長度只與兩點的橫坐標(biāo)或縱坐標(biāo)有關(guān),易錯點則是考慮不周,忽略其中一種情況.04題型精研·考向洞悉命題點一 函數(shù) 題型01 函數(shù)的相關(guān)概念辨析1.(2024·江蘇泰州·一模)下列圖像不能反映y是x的函數(shù)的是( )A.B.C. D.【答案】C【分析】此題考查函數(shù)的概念和圖象,關(guān)鍵是根據(jù)當(dāng)x取一值時,y有唯一與它對應(yīng)的值判斷.根據(jù)函數(shù)的概念解答即可.【詳解】解:A、當(dāng)x取一值時,y有唯一與它對應(yīng)的值,y是x的函數(shù),故本選項不符合題意;B、當(dāng)x取一值時,y有唯一與它對應(yīng)的值,y是x的函數(shù),故本選項不符合題意;C、當(dāng)x取一值時,y有兩個值與其對應(yīng),y不是x的函數(shù),故本選項符合題意;D、當(dāng)x取一值時,y有唯一與它對應(yīng)的值,y是x的函數(shù),故本選項不符合題意.故選:C.2.(2024·內(nèi)蒙古呼和浩特·模擬預(yù)測)下列關(guān)于兩個變量關(guān)系的四種表達(dá)式中,正確的是( )①圓的周長C是半徑r的函數(shù);②表達(dá)式中,y是x的函數(shù);③下表中,n是m的函數(shù);m 1 2 3n 8 3 2④圖中,曲線表示y是x的函數(shù).A.①③ B.②④ C.①②③ D.①②③④【答案】C【分析】本題主要考查了函數(shù)的概念,對于函數(shù)概念需要理解:①有兩個變量;②一個變量的數(shù)值隨著另一個變量的數(shù)值的變化而發(fā)生變化;③對于自變量的每一個確定的值,函數(shù)值有且只有一個值與之對應(yīng),即單對應(yīng).根據(jù)函數(shù)的定義分別判斷即可.【詳解】解:①∵,∴圓的周長是半徑的函數(shù),正確;②表達(dá)式中,對于的每一個取值,都有唯一確定的值與之對應(yīng),是的函數(shù),正確;③是的函數(shù),正確;④如圖中,對于的每一個取值,有不唯一確定的值與之對應(yīng),不是的函數(shù).故選:C.3.(2022·廣東·中考真題)水中漣漪(圓形水波)不斷擴(kuò)大,記它的半徑為r,則圓周長C與r的關(guān)系式為.下列判斷正確的是( )A.2是變量 B.是變量 C.r是變量 D.C是常量【答案】C【分析】根據(jù)變量與常量的定義分別判斷,并選擇正確的選項即可.【詳解】解:2與π為常量,C與r為變量,故選:C.【點睛】本題考查變量與常量的概念,能夠熟練掌握變量與常量的概念為解決本題的關(guān)鍵.4.(2021·浙江嘉興·中考真題)根據(jù)數(shù)學(xué)家凱勒的“百米賽跑數(shù)學(xué)模型”,前30米稱為“加速期”,30米~80米為“中途期”(m/s)與路程之間的觀測數(shù)據(jù)(1)是關(guān)于的函數(shù)嗎?為什么?(2)“加速期”結(jié)束時,小斌的速度為多少?(3)根據(jù)如圖提供的信息,給小斌提一條訓(xùn)練建議.【答案】(1)是的函數(shù),理由見解析;(2)“加速期”結(jié)束時,小斌的速度為10.4m/s;(3)答案不唯一.例如:根據(jù)圖象信息,小斌在80米左右時速度下降明顯,建議增加耐力訓(xùn)練,提高成績.【分析】(1)根據(jù)函數(shù)的概念進(jìn)行解答;(2)通過識圖讀取相關(guān)信息;(3)根據(jù)圖像信息進(jìn)行解答.【詳解】解:(1)是的函數(shù).在這個變化過程中,對于的每一個確定的值,都有唯一確定的值與之對應(yīng).(2)“加速期”結(jié)束時,小斌的速度為10.4m/s.(3)答案不唯一.例如:根據(jù)圖象信息,小斌在80米左右時速度下降明顯,建議增加耐力訓(xùn)練,提高成績.【點睛】本題考查通過函數(shù)圖像讀取信息,理解函數(shù)的概念,準(zhǔn)確識圖是解題關(guān)鍵. 題型02 求自變量的取值范圍解題方法:類型 舉例 取值范圍整式型 全體實數(shù)分式型 分母不能為零二次根式型 開方式大于或等于零負(fù)整數(shù)(零)指數(shù)冪型 底數(shù)不能為零分式+根式型 開方式大于零 注意:分母不能為0【補(bǔ)充】實際問題中函數(shù)取值范圍要和實際情況相符合,使之有意義,一般要大于0.1.(2024·四川巴中·中考真題)函數(shù)自變量的取值范圍是( )A. B. C. D.【答案】C【分析】本題考查了求函數(shù)自變量的取值范圍、二次根式的定義,熟練掌握二次根式的有意義的條件是解題關(guān)鍵.根據(jù)二次根式的有意義的條件建立不等式求解即可解題.【詳解】解:由題知,,解得,故答案為:C.2.(2023·湖北黃石·中考真題)函數(shù)的自變量x的取值范圍是( )A. B. C.且 D.【答案】C【分析】本題考查了自變量的取值范圍,根據(jù)分式有意義的條件,二次根式有意義的條件,列式解答即可.【詳解】解:由題意可得且,解得:且,故選:C.3.(2024·黑龍江齊齊哈爾·中考真題)在函數(shù)中,自變量的取值范圍是 .【答案】且【分析】本題考查了求自變量的取值范圍,根據(jù)二次根式有意義的條件和分式有意義的條件列出不等式組解答即可求解,掌握二次根式有意義的條件和分式有意義的條件是解題的關(guān)鍵.【詳解】解:由題意可得,,解得且,故答案為:且.4.(2024·上海·模擬預(yù)測)函數(shù)的定義域為 .【答案】且【分析】本題考查求自變量的取值范圍,根據(jù),二次根式有意義以及分式有意義的條件,進(jìn)行求解即可.【詳解】解:由題意,得:,解得:且;故答案為:且. 題型03 函數(shù)圖象的識別1.(2023·湖北·中考真題)如圖,長方體水池內(nèi)有一無蓋圓柱形鐵桶,現(xiàn)用水管往鐵桶中持續(xù)勻速注水,直到長方體水池有水溢出一會兒為止.設(shè)注水時間為(細(xì)實線)表示鐵桶中水面高度,(粗實線)表示水池中水面高度(鐵桶高度低于水池高度,鐵桶底面積小于水池底面積的一半,注水前鐵桶和水池內(nèi)均無水),則隨時間變化的函數(shù)圖象大致為( ) A.B.C.D.【答案】C【分析】根據(jù)特殊點的實際意義即可求出答案.【詳解】解:根據(jù)圖象知,時,鐵桶注滿了水,,是一條斜線段,,是一條水平線段,當(dāng)時,長方體水池開始注入水;當(dāng)時,長方體水池中的水沒過鐵桶,水池中水面高度比之開始變得平緩;當(dāng)時,長方體水池滿了水,∴開始是一段陡線段,后變緩,最后是一條水平線段,觀察函數(shù)圖象,選項C符合題意,故選:C.【點睛】本題主要考查了函數(shù)圖象的讀圖能力.要能根據(jù)函數(shù)圖象的性質(zhì)和圖象上的數(shù)據(jù)分析得出函數(shù)的類型和所需要的條件,結(jié)合實際意義得到正確的結(jié)論.2.(2024·四川涼山·中考真題)勻速地向如圖所示的容器內(nèi)注水,直到把容器注滿.在注水過程中,容器內(nèi)水面高度隨時間變化的大致圖象是( )A. B. C. D.【答案】C【分析】本題考查了函數(shù)圖象,根據(jù)容器最下面圓柱底面積最小,中間圓柱底面積最大,最上面圓柱底面積最較大即可判斷求解,正確識圖是解題的關(guān)鍵.【詳解】解:由容器可知,最下面圓柱底面積最小,中間圓柱底面積最大,最上面圓柱底面積最較大,所以一開始水面高度上升的很快,然后很慢,最后又上升的更快點,故選:.3.(2023·浙江嘉興·中考真題)下圖是底部放有一個實心鐵球的長方體水槽軸截面示意圖,現(xiàn)向水槽勻速注水,下列圖象中能大致反映水槽中水的深度(y)與注水時間(x)關(guān)系的是( ) A. B. C.D.【答案】D【分析】根據(jù)蓄水池的橫斷面示意圖,可知水的深度增長的速度由慢到快,然后再由快到慢,最后不變,進(jìn)而求解即可.【詳解】解:由蓄水池的橫斷面示意圖可得,水的深度增長的速度由慢到快,然后再由快到慢,最后不變,故選:D.【點睛】主要考查了函數(shù)圖象的讀圖能力和函數(shù)與實際問題結(jié)合的應(yīng)用.要能根據(jù)函數(shù)圖象的性質(zhì)和圖象上的數(shù)據(jù)分析得出函數(shù)的類型和所需要的條件,結(jié)合實際意義得到正確的結(jié)論.4.(2023·山東濱州·中考真題)由化學(xué)知識可知,用表示溶液酸堿性的強(qiáng)弱程度,當(dāng)時溶液呈堿性,當(dāng)時溶液呈酸性.若將給定的溶液加水稀釋,那么在下列圖象中,能大致反映溶液的與所加水的體積之間對應(yīng)關(guān)系的是( )A. B. C. D. 【答案】B【分析】根據(jù)題意,溶液呈堿性,隨著加入水的體積的增加,溶液的濃度越來越低,的值則接近7,據(jù)此即可求解.【詳解】解:∵溶液呈堿性,則,隨著加入水的體積的增加,溶液的濃度越來越低,的值則接近7,故選:B.【點睛】本題考查了函數(shù)的圖象,數(shù)形結(jié)合是解題的關(guān)鍵. 題型04 從函數(shù)圖象上獲取信息根據(jù)圖像讀取信息時,要把握以下三個方面:1)橫、縱軸的意義,以及橫、縱軸分別表示的量;2)關(guān)于圖像上的某個點,可以過該點分別向橫縱軸作垂線來求得該點的坐標(biāo);3)在實際問題中,要注意圖像與橫、縱軸的交點代表的具體含義.1.(2024·山東淄博·中考真題)某日,甲、乙兩人相約在一條筆直的健身道路上鍛煉.兩人都從地勻速出發(fā),甲健步走向地.途中偶遇一位朋友,駐足交流后,繼續(xù)以原速步行前進(jìn);乙因故比甲晚出發(fā),跑步到達(dá)地后立刻以原速返回,在返回途中與甲第二次相遇.下圖表示甲、乙兩人之間的距離與甲出發(fā)的時間之間的函數(shù)關(guān)系.( )那么以下結(jié)論:①甲、乙兩人第一次相遇時,乙的鍛煉用時為;②甲出發(fā)時,甲、乙兩人之間的距離達(dá)到最大值;③甲、乙兩人第二次相遇的時間是在甲出發(fā)后;④,兩地之間的距離是.其中正確的結(jié)論有:A.①②③ B.①②④ C.①③④ D.②③④【答案】B【分析】本題考查了函數(shù)圖象以及二元一次方程組的應(yīng)用;①由乙比甲晚出發(fā)及當(dāng)時第一次為,可得出乙出發(fā)時兩人第一次相遇,進(jìn)而可得出結(jié)論①正確;②觀察函數(shù)圖象,可得出當(dāng)時,取得最大值,最大值為,進(jìn)而可得出結(jié)論②正確;③設(shè)甲的速度為 ,乙的速度為,利用路程速度時間,可列出關(guān)于,的二元一次方程組,解之可得出,的之,將其代入中,可得出甲、乙兩人第二次相遇的時間是在甲出發(fā)后,進(jìn)而可得出結(jié)論③錯誤;④利用路程速度時間,即可求出,兩地之間的距離是.【詳解】解:①乙比甲晚出發(fā),且當(dāng)時,,乙出發(fā)時,兩人第一次相遇,既甲、乙兩人第一次相遇時,乙的鍛煉用時為,結(jié)論①正確;②觀察函數(shù)圖象,可知:當(dāng)時,取得最大值,最大值為,甲出發(fā)時,甲、乙兩人之間的距離達(dá)到最大值,結(jié)論②正確;③設(shè)甲的速度為,乙的速度為,根據(jù)題意得:,解得:,∴,甲、乙兩人第二次相遇的時間是在甲出發(fā)后,結(jié)論③錯誤;④,,兩地之間的距離是,結(jié)論④正確.綜上所述,正確的結(jié)論有①②④.故選:B.2.(2024·青海·中考真題)化學(xué)實驗小組查閱資料了解到:某種絮凝劑溶于水后能夠吸附水中懸浮物并發(fā)生沉降,從而達(dá)到凈水的目的.實驗得出加入絮凝劑的體積與凈水率之間的關(guān)系如圖所示,下列說法正確的是( )A.加入絮凝劑的體積越大,凈水率越高B.未加入絮凝劑時,凈水率為C.絮凝劑的體積每增加,凈水率的增加量相等D.加入絮凝劑的體積是時,凈水率達(dá)到【答案】D【分析】本題考查從圖像上獲取信息,能從圖像上獲得信息是解題的關(guān)鍵,根據(jù)圖像信息對選項進(jìn)行判斷即可【詳解】A、從圖像上可以看到,加入絮凝劑的體積在達(dá)到最大凈水率,之后凈水率開始降低,不符合題意,選項錯誤;B、未加入絮凝劑時,凈水率為,故不符合題意,選項錯誤;C、當(dāng)絮凝劑的體積為時,凈水率增加量為,絮凝劑的體積為時,凈水率增加量為;故絮凝劑的體積每增加,凈水率的增加量不相等,不符合題意,選項錯誤;D、根據(jù)圖像可得,加入絮凝劑的體積是時,凈水率達(dá)到,符合題意,選項正確;故選:D3.(2024·河南·中考真題)把多個用電器連接在同一個插線板上,同時使用一段時間后,插線板的電源線會明顯發(fā)熱,存在安全隱患.?dāng)?shù)學(xué)興趣小組對這種現(xiàn)象進(jìn)行研究,得到時長一定時,插線板電源線中的電流I與使用電器的總功率P的函數(shù)圖象(如圖1),插線板電源線產(chǎn)生的熱量Q與I的函數(shù)圖象(如圖2).下列結(jié)論中錯誤的是( )A.當(dāng)時, B.Q隨I的增大而增大C.I每增加1A,Q的增加量相同 D.P越大,插線板電源線產(chǎn)生的熱量Q越多【答案】C【分析】本題考查了函數(shù)的圖象,準(zhǔn)確從圖中獲取信息,并逐項判定即可.【詳解】解∶根據(jù)圖1知:當(dāng)時,,故選項A正確,但不符合題意;根據(jù)圖2知:Q隨I的增大而增大,故選項B正確,但不符合題意;根據(jù)圖2知:Q隨I的增大而增大,但前小半段增加的幅度小,后面增加的幅度大,故選項C錯誤,符合題意;根據(jù)圖1知:I隨P的增大而增大,又Q隨I的增大而增大,則P越大,插線板電源線產(chǎn)生的熱量Q越多,故選項D正確,但不符合題意;故選:C.4.(2024·黑龍江大興安嶺地·中考真題)甲、乙兩貨車分別從相距的A、B兩地同時出發(fā),甲貨車從A地出發(fā)途經(jīng)配貨站時,停下來卸貨,半小時后繼續(xù)駛往B地,乙貨車沿同一條公路從B地駛往A地,但乙貨車到達(dá)配貨站時接到緊急任務(wù)立即原路原速返回B地,結(jié)果比甲貨車晚半小時到達(dá)B地.如圖是甲、乙兩貨車距A地的距離與行駛時間之間的函數(shù)圖象,結(jié)合圖象回答下列問題:(1)甲貨車到達(dá)配貨站之前的速度是 ,乙貨車的速度是 ;(2)求甲貨車在配貨站卸貨后駛往B地的過程中,甲貨車距A地的距離與行駛時間之間的函數(shù)解析式;(3)直接寫出甲、乙兩貨車在行駛的過程中,出發(fā)多長時間甲、乙兩貨車與配貨站的距離相等.【答案】(1)30,40(2)的函數(shù)解析式是(3)經(jīng)過1.5h或或5h甲、乙兩貨車與配貨站的距離相等【分析】本題考查一次函數(shù)的應(yīng)用,待定系數(shù)法求一次函數(shù)解析式的運(yùn)用,認(rèn)真分析函數(shù)圖象,讀懂函數(shù)圖象表示的意義是解題關(guān)鍵.(1)由圖象可知甲貨車到達(dá)配貨站路程為,所用時間為,乙貨車到達(dá)配貨站路程為,到達(dá)后返回,所用時間為,根據(jù)速度=距離÷時間即可得;(2)甲貨車從A地出發(fā)途經(jīng)配貨站時,停下來卸貨,半小時后繼續(xù)駛往B地,由圖象結(jié)合已知條件可知和點,再利用待定系數(shù)法求出y與x的關(guān)系式即可得答案;(3)分兩車到達(dá)配貨站之前和乙貨車到達(dá)配貨站時接到緊急任務(wù)立即原路原速返回B地后、甲貨車卸貨,半小時后繼續(xù)駛往B地,三種情況與配貨站的距離相等,分別列方程求出x的值即可得答案.【詳解】(1)解:由圖象可知甲貨車到達(dá)配貨站路程為105km,所用時間為3.5h,所以甲貨車到達(dá)配貨站之前的速度是()∴乙貨車到達(dá)配貨站路程為,到達(dá)配貨站時接到緊急任務(wù)立即原路原速返回B地,總路程為240km,總時間是6h,∴乙貨車速度,故答案為:30;40(2)甲貨車從A地出發(fā)途經(jīng)配貨站時,停下來卸貨,半小時后繼續(xù)駛往B地,由圖象可知和點設(shè)∴解得:,∴甲貨車距A地的距離與行駛時間之間的函數(shù)解析式(3)設(shè)甲貨車出發(fā),甲、乙兩貨車與配貨站的距離相等,①兩車到達(dá)配貨站之前:,解得:,②乙貨車到達(dá)配貨站時開始返回,甲貨車未到達(dá)配貨站:,解得:,③甲貨車在配貨站卸貨后駛往B地時:,解得:,答:經(jīng)過或或甲、乙兩貨車與配貨站的距離相等.5.(2023·湖南湘西·中考真題)如圖(1)所示,小明家、食堂、圖書館在同一條直線上食堂離小明家,圖書館離小明家.小明從家出發(fā),勻速步行了去食堂吃早餐;吃完早餐后接著勻速步行了去圖書館讀報;讀完報以后接著勻速步行了回到家圖()反映了這個過程中,小明離家的距離與時間之間的對應(yīng)關(guān)系. 請根據(jù)相關(guān)信息解答下列問題:(1)填空:①食堂離圖書館的距離為__________;②小明從圖書館回家的平均速度是__________;③小明讀報所用的時間為__________.④小明離開家的距離為時,小明離開家的時間為__________.(2)當(dāng)時,請直接寫出關(guān)于的函數(shù)解析式.【答案】(1)①;②;③;④或.(2)【分析】(1)①由圖象中的數(shù)據(jù),可以直接寫出食堂離小明家的距離和小明從家到食堂用的時間;②根據(jù)圖象中的數(shù)據(jù),用路程除以時間即可得解;③用減去即可得解;④設(shè)小明離開家的距離為時,小明離開家的時間為,分小明去時和小明返回時兩種情況構(gòu)造一元一次方程求解即可;(2)根據(jù)圖象中的數(shù)據(jù),利用待定系數(shù)法分別求出當(dāng)、和時三段對應(yīng)的函數(shù)解析式即可.【詳解】(1)解:①,∴小食堂離圖書館的距離為,故答案為∶;②根據(jù)題意,∴小明從圖書館回家的平均速度是,故答案為:;③,故答案為:;④設(shè)小明離開家的距離為時,小明離開家的時間為,當(dāng)去時,小明離開家的距離為時,∵,∴小明到食堂時,小明離開家的距離為不足,由題意得,解得,當(dāng)返回時,離家的距離為時,根據(jù)題意,得,解得;故答案為:或.(2)解:設(shè)時,∵過,∴,解得,∴時 ,由圖可知,當(dāng)時,設(shè)時,,∵過,,∴,解得,∴,綜上所述,當(dāng)時,關(guān)于的函數(shù)解析式為.【點睛】本題考查函數(shù)的圖象、一元一次方程的應(yīng)用以及待定系數(shù)法求一次函數(shù)的解析式,解答本題的關(guān)鍵是明確題意,利用數(shù)形結(jié)合的思想解答. 題型05 根據(jù)實際問題列函數(shù)解析式1.(2024·甘肅·中考真題)如圖1,“燕幾”即宴幾,是世界上最早的一套組合桌,由北宋進(jìn)士黃伯思設(shè)計.全套“燕幾”一共有七張桌子,包括兩張長桌、兩張中桌和三張小桌,每張桌面的寬都相等.七張桌面分開可組合成不同的圖形.如圖2給出了《燕幾圖》中名稱為“回文”的桌面拼合方式,若設(shè)每張桌面的寬為x尺,長桌的長為y尺,則y與x的關(guān)系可以表示為( )A. B. C. D.【答案】B【分析】本題主要考查了列函數(shù)關(guān)系式,觀察可知,小桌的長是小桌寬的兩倍,則小桌的長是,再根據(jù)長桌的長等于小桌的長加上2倍的小桌的寬列出對應(yīng)的函數(shù)關(guān)系式即可.【詳解】解:由題意可得,小桌的長是小桌寬的兩倍,則小桌的長是,∴,故選:B.2.(2024·浙江·中考真題)有甲、乙兩只大小不同的水箱,容量分別為升、升,且已各裝有一些水,若將甲水箱中的水全倒入乙水箱,乙水箱只可再裝升的水;若將乙水箱中的水倒入甲水箱,裝滿甲水箱后,乙水箱還剩升的水.則與之間的數(shù)量關(guān)系是 .【答案】【分析】本題主要考查了列函數(shù)關(guān)系式,設(shè)甲、乙兩個水桶中已各裝了公升水,根據(jù)題意可得,,然后即可求解,熟練掌握知識點的應(yīng)用是解題的關(guān)鍵.【詳解】解:設(shè)甲、乙兩個水桶中已各裝了公升水,由甲中的水全倒入乙后,乙只可再裝公升的水得:;由乙中的水倒入甲,裝滿甲水桶后,乙還剩公升的水得:;得:,∴,故答案為:.3.(2024·江蘇常州·中考真題)若等腰三角形的周長是10,則底邊長y與腰長x的函數(shù)表達(dá)式為 .【答案】【分析】本題考查列函數(shù)解析式,根據(jù)三角形的周長等于三邊之和,等腰三角形的兩腰相等,列出函數(shù)關(guān)系式,即可.【詳解】解:由題意,得:;故答案為:.4.(2022·內(nèi)蒙古呼和浩特·中考真題)某超市糯米的價格為5元/千克,端午節(jié)推出促銷活動:一次購買的數(shù)量不超過2千克時,按原價售出,超過2千克時,超過的部分打8折.若某人付款14元,則他購買了 千克糯米;設(shè)某人的付款金額為元,購買量為千克,則購買量關(guān)于付款金額的函數(shù)解析式為 .【答案】 3 /【分析】根據(jù)題意列出一元一次方程,函數(shù)解析式即可求解.【詳解】解:,超過2千克,設(shè)購買了千克,則,解得,設(shè)某人的付款金額為元,購買量為千克,則購買量關(guān)于付款金額的函數(shù)解析式為:,∴故答案為:3,.【點睛】本題考查了一元一次方程的應(yīng)用,列函數(shù)解析式,根據(jù)題意列出方程或函數(shù)關(guān)系式是解題的關(guān)鍵. 題型06 動點問題的函數(shù)圖象1.(2024·黑龍江齊齊哈爾·中考真題)如圖,在等腰中,,,動點E,F(xiàn)同時從點A出發(fā),分別沿射線和射線的方向勻速運(yùn)動,且速度大小相同,當(dāng)點E停止運(yùn)動時,點F也隨之停止運(yùn)動,連接,以為邊向下做正方形,設(shè)點E運(yùn)動的路程為,正方形和等腰重合部分的面積為y,下列圖像能反映y與x之間函數(shù)關(guān)系的是( )A.B.C.D.【答案】A【分析】本題考查動態(tài)問題與函數(shù)圖象,能夠明確y與x分別表示的意義,并找到幾何圖形與函數(shù)圖象之間的關(guān)系,以及對應(yīng)點是解題的關(guān)鍵,根據(jù)題意并結(jié)合選項分析當(dāng)與重合時,及當(dāng)時圖象的走勢,和當(dāng)時圖象的走勢即可得到答案.【詳解】解:當(dāng)與重合時,設(shè),由題可得:∴,,在中,由勾股定理可得:,∴,∴,∴當(dāng)時,,∵,∴圖象為開口向上的拋物線的一部分,當(dāng)在下方時,設(shè),由題可得:∴,,∵,,∴,∴,∴,∴,∴當(dāng)時,,∵,∴圖象為開口向下的拋物線的一部分,綜上所述:A正確,故選:A.3.(2024·甘肅臨夏·中考真題)如圖1,矩形中,為其對角線,一動點從出發(fā),沿著的路徑行進(jìn),過點作,垂足為.設(shè)點的運(yùn)動路程為,為,與的函數(shù)圖象如圖2,則的長為( )A. B. C. D.【答案】B【分析】本題考查了動點問題的函數(shù)圖象,根據(jù)圖象得出信息是解題的關(guān)鍵.根據(jù)函數(shù)的圖象與坐標(biāo)的關(guān)系確定的長,再根據(jù)矩形性質(zhì)及勾股定理列方程求解.【詳解】解:由圖象得:,當(dāng)時,,此時點P在邊上,設(shè)此時,則,,在中,,即:,解得:,,故選:B.4.(2024·山東煙臺·中考真題)如圖,水平放置的矩形中,,,菱形的頂點,在同一水平線上,點與的中點重合,,,現(xiàn)將菱形以的速度沿方向勻速運(yùn)動,當(dāng)點運(yùn)動到上時停止,在這個運(yùn)動過程中,菱形與矩形重疊部分的面積與運(yùn)動時間之間的函數(shù)關(guān)系圖象大致是( )A. B.C. D.【答案】D【分析】本題考查了解直角三角形的應(yīng)用,菱形的性質(zhì),動點問題的函數(shù)圖象,二次函數(shù)的圖象的性質(zhì),先求得菱形的面積為,進(jìn)而分三種情形討論,重合部分為三角形,重合部分為五邊形,重合部分為菱形,分別求得面積與運(yùn)動時間的函數(shù)關(guān)系式,結(jié)合選項,即可求解.【詳解】解:如圖所示,設(shè)交于點,∵菱形,,∴又∵,∴是等邊三角形,∵,,∴∴∴當(dāng)時,重合部分為,如圖所示,依題意,為等邊三角形,運(yùn)動時間為,則,∴當(dāng)時,如圖所示,依題意,,則∴∴∵∴當(dāng)時,當(dāng)時,同理可得,當(dāng)時,同理可得,綜上所述,當(dāng)時,函數(shù)圖象為開口向上的一段拋物線,當(dāng)時,函數(shù)圖象為開口向下的一段拋物線,當(dāng)時,函數(shù)圖象為一條線段,當(dāng)時,函數(shù)圖象為開口向下的一段拋物線,當(dāng)時,函數(shù)圖象為開口向上的一段拋物線;故選:D.5.(2023·四川資陽·中考真題)如圖,在平行四邊形中,,厘米,厘米,點從點出發(fā)以每秒厘米的速度,沿在平行四邊形的邊上勻速運(yùn)動至點.設(shè)點的運(yùn)動時間為秒,的面積為平方厘米,下列圖中表示與之間函數(shù)關(guān)系的是( )A.B.C.D.【答案】B【分析】本題考查了動點問題的函數(shù)圖象問題,涉及平行四邊形性質(zhì)、三角形外角性質(zhì)、三角形面積公式等知識.由平行四邊形性質(zhì)得到厘米,點速度為每秒厘米,則點在上時,時間滿足的取值范圍為,觀察符合題意的、、的圖象,即點在處時,的面積各不相同,求得此時的面積,即可找到正確選項.判斷出點運(yùn)動到點時的時間及此時的面積是解決本題的關(guān)鍵.【詳解】解:四邊形是平行四邊形,厘米,厘米,點從點出發(fā)以每秒厘米的速度,點走完所用的時間為:秒,當(dāng)點在上時,;故排除;當(dāng)時,點在點處,過點作于點,如圖所示:,,,厘米,厘米,厘米,平方厘米,故選:B.命題點二 坐標(biāo)系內(nèi)點的坐標(biāo)特征 題型01 根據(jù)坐標(biāo)系內(nèi)點的坐標(biāo)特征求解1.(2020·山東濱州·中考真題)在平面直角坐標(biāo)系的第二象限內(nèi)有一點P,點P到x軸的距離為4,到y(tǒng)軸的距離為5,則點P的坐標(biāo)是( )A. B. C. D.【答案】D【分析】設(shè)點坐標(biāo)為,根據(jù)第二象限點的橫縱坐標(biāo)的符號,求解即可.【詳解】解:設(shè)點坐標(biāo)為,∵點在第二象限內(nèi),∴,,∵點P到x軸的距離為4,到y(tǒng)軸的距離為5,∴,,∴,,即點坐標(biāo)為,故選:D【點睛】本題考查了點的坐標(biāo),熟記點到x軸的距離等于縱坐標(biāo)的絕對值,到y(tǒng)軸的距離等于橫坐標(biāo)的絕對值是解題的關(guān)鍵.2.(2024·四川廣元·中考真題)如果單項式與單項式的和仍是一個單項式,則在平面直角坐標(biāo)系中點在( )A.第一象限 B.第二象限 C.第三象限 D.第四象限【答案】D【分析】本題主要考查同類項和確定點的坐標(biāo),根據(jù)同類項的性質(zhì)求出的值,再確定點的位置即可【詳解】解:∵單項式與單項式的和仍是一個單項式,∴單項式與單項式是同類項,∴,解得,,∴點在第四象限,故選:D3.(2023·浙江衢州·中考真題)在如圖所示的方格紙上建立適當(dāng)?shù)钠矫嬷苯亲鴺?biāo)系,若點A的坐標(biāo)為,點B的坐標(biāo)為,則點C的坐標(biāo)為 . 【答案】作圖見解析,【分析】根據(jù)點A、B的坐標(biāo)可確定原點的位置,再作平面直角坐標(biāo)系即可,從而可確定點C的坐標(biāo).【詳解】解:建立平面直角坐標(biāo)系如圖所示: ∴點C的坐標(biāo)為,故答案為:.【點睛】本題考查平面直角坐標(biāo)系、在坐標(biāo)系中確定點的坐標(biāo),根據(jù)點A、B的坐標(biāo)確定原點的位置是解題的關(guān)鍵.4.(2022·四川廣安·中考真題)若點P(m+1,m)在第四象限,則點Q(﹣3,m+2)在第 象限.【答案】二【分析】根據(jù)點P(m+1,m)在第四象限,可得到,從而得到,即可求解.【詳解】解:∵點P(m+1,m)在第四象限,∴,解得:,∴,∴點Q(﹣3,m+2)在第二象限.故答案為:二【點睛】本題主要考查了平面直角坐標(biāo)系中各個象限的點的坐標(biāo)的符號特點,熟練掌握四個象限的符號特點分別是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-)是解題的關(guān)鍵.5.(2023·山東日照·中考真題)若點在第四象限,則m的取值范圍是 .【答案】/【分析】根據(jù)第四象限的點橫坐標(biāo)為正,縱坐標(biāo)為負(fù)進(jìn)行求解即可。【詳解】解:∵點在第四象限,∴,解得,故答案為:。【點睛】本題主要考查了根據(jù)點所在的象限求參數(shù),解一元一次不等式組,熟知第四象限內(nèi)點的符號特點是解題的關(guān)鍵。6.(2023·山東淄博·中考真題)若實數(shù),分別滿足下列條件:(1);(2).試判斷點所在的象限.【答案】點在第一象限或點在第二象限【分析】運(yùn)用直接開平方法解一元二次方程即可;解不等式求出解題,在分情況確定,的符號確定點所在象限解題即可.【詳解】解:或,;,解得:;∴當(dāng),時,,,點在第一象限;當(dāng),時,,,點在第二象限;【點睛】本題考查點在平面直角系的坐標(biāo)特征,解不等式,平方根的意義,利用不等式的性質(zhì)判斷點的坐標(biāo)特征是解題的關(guān)鍵. 題型02 坐標(biāo)與圖形變化1.(2023·海南·中考真題)如圖,在平面直角坐標(biāo)系中,點A在y軸上,點B的坐標(biāo)為,將繞著點B順時針旋轉(zhuǎn),得到,則點C的坐標(biāo)是( ) A. B. C. D.【答案】B【分析】過點作,由題意可得:,,再利用含30度直角三角形的性質(zhì),求解即可.【詳解】解:過點作,如下圖: 則由題意可得:,,∴,∴,∴,,∴點的坐標(biāo)為,故選:B【點睛】此題考查了旋轉(zhuǎn)的性質(zhì),坐標(biāo)與圖形,含30度直角三角形的性質(zhì),以及勾股定理,解題的關(guān)鍵是作輔助線,構(gòu)造出直角三角形,熟練掌握相關(guān)基礎(chǔ)性質(zhì).2.(2024·山東淄博·中考真題)如圖,已知,兩點的坐標(biāo)分別為,,將線段平移得到線段.若點的對應(yīng)點是,則點的對應(yīng)點的坐標(biāo)是 .【答案】【分析】此題主要考查了點的平移規(guī)律與圖形的平移,關(guān)鍵是掌握平移規(guī)律,左右移,縱不變,橫減加,上下移,橫不變,縱加減.根據(jù)平移的性質(zhì),結(jié)合已知點,的坐標(biāo),知點的橫坐標(biāo)加上了1,縱坐標(biāo)加1,則的坐標(biāo)的變化規(guī)律與點相同,即可得到答案.【詳解】解:平移后對應(yīng)點C的坐標(biāo)為,點的橫坐標(biāo)加上了4,縱坐標(biāo)加1,,點坐標(biāo)為,即,故答案為:.3.(2023·遼寧鞍山·中考真題)如圖,在平面直角坐標(biāo)系中,矩形的邊,分別在軸、軸正半軸上,點在邊上,將矩形沿折疊,點恰好落在邊上的點處.若,,則點的坐標(biāo)是 . 【答案】【分析】根據(jù)折疊的性質(zhì)得出,在中,勾股定理求得,進(jìn)而得出,在中,勾股定理建立方程,求得的長,即可求解.【詳解】解:∵四邊形是矩形,∴,∵折疊,∴,在中,∴,∴設(shè),則,∵折疊,∴,在中,,∴,解得:,∴,∴的坐標(biāo)為,故答案為:.【點睛】本題考查了矩形與折疊,勾股定理,坐標(biāo)與圖形,熟練掌握折疊的性質(zhì)以及勾股定理是解題的關(guān)鍵.4.(2023·內(nèi)蒙古·中考真題)如圖,在平面直角坐標(biāo)系中,點坐標(biāo),連接,將繞點逆時針旋轉(zhuǎn),得到,則點的坐標(biāo)為 .【答案】【分析】過點作軸于點A,過點作軸于點C,易證,即得出,,即.【詳解】解:如圖,過點作軸于點A,過點作軸于點C,∵將繞點逆時針旋轉(zhuǎn),得到,∴,,∴. ∵,∴.又∵,∴,∴,,∴.故答案為:.【點睛】本題考查坐標(biāo)與圖形,三角形全等的判定和性質(zhì).正確作出輔助線構(gòu)造全等三角形是解題關(guān)鍵. 題型03 點坐標(biāo)規(guī)律的探索1.(2024·河北·中考真題)平面直角坐標(biāo)系中,我們把橫、縱坐標(biāo)都是整數(shù),且橫、縱坐標(biāo)之和大于0的點稱為“和點”.將某“和點”平移,每次平移的方向取決于該點橫、縱坐標(biāo)之和除以3所得的余數(shù)(當(dāng)余數(shù)為0時,向右平移;當(dāng)余數(shù)為1時,向上平移;當(dāng)余數(shù)為2時,向左平移),每次平移1個單位長度.例:“和點”按上述規(guī)則連續(xù)平移3次后,到達(dá)點,其平移過程如下:若“和點”Q按上述規(guī)則連續(xù)平移16次后,到達(dá)點,則點Q的坐標(biāo)為( )A.或 B.或 C.或 D.或【答案】D【分析】本題考查了坐標(biāo)內(nèi)點的平移運(yùn)動,熟練掌握知識點,利用反向運(yùn)動理解是解決本題的關(guān)鍵.先找出規(guī)律若“和點”橫、縱坐標(biāo)之和除以3所得的余數(shù)為0時,先向右平移1個單位,之后按照向上、向左,向上、向左不斷重復(fù)的規(guī)律平移,按照的反向運(yùn)動理解去分類討論:①先向右1個單位,不符合題意;②先向下1個單位,再向右平移,當(dāng)平移到第15次時,共計向下平移了8次,向右平移了7次,此時坐標(biāo)為,那么最后一次若向右平移則為,若向左平移則為.【詳解】解:由點可知橫、縱坐標(biāo)之和除以3所得的余數(shù)為1,繼而向上平移1個單位得到,此時橫、縱坐標(biāo)之和除以3所得的余數(shù)為2,繼而向左平移1個單位得到,此時橫、縱坐標(biāo)之和除以3所得的余數(shù)為1,又要向上平移1個單位,因此發(fā)現(xiàn)規(guī)律為若“和點”橫、縱坐標(biāo)之和除以3所得的余數(shù)為0時,先向右平移1個單位,之后按照向上、向左,向上、向左不斷重復(fù)的規(guī)律平移,若“和點”Q按上述規(guī)則連續(xù)平移16次后,到達(dá)點,則按照“和點”反向運(yùn)動16次求點Q坐標(biāo)理解,可以分為兩種情況:①先向右1個單位得到,此時橫、縱坐標(biāo)之和除以3所得的余數(shù)為0,應(yīng)該是向右平移1個單位得到,故矛盾,不成立;②先向下1個單位得到,此時橫、縱坐標(biāo)之和除以3所得的余數(shù)為1,則應(yīng)該向上平移1個單位得到,故符合題意,那么點先向下平移,再向右平移,當(dāng)平移到第15次時,共計向下平移了8次,向右平移了7次,此時坐標(biāo)為,即,那么最后一次若向右平移則為,若向左平移則為,故選:D.2.(2023·遼寧阜新·中考真題)如圖,四邊形是正方形,曲線叫作“正方形的漸開線”,其中,,,,…的圓心依次按O,A,B,循環(huán).當(dāng)時,點的坐標(biāo)是( ) A. B. C. D.【答案】A【分析】由題得點的位置每4個一循環(huán),經(jīng)計算得出在第三象限,與,,,…符合同一規(guī)律,探究出,,,...的規(guī)律即可.【詳解】解:由圖得,,…點C的位置每4個一循環(huán),,∴在第三象限,與,,,…符合規(guī)律,∴坐標(biāo)為.故選:A.【點睛】本題考查了點的坐標(biāo)的規(guī)律的探究,理解題意求出坐標(biāo)是解題關(guān)鍵.3.(2023·山東日照·中考真題)數(shù)學(xué)家高斯推動了數(shù)學(xué)科學(xué)的發(fā)展,被數(shù)學(xué)界譽(yù)為“數(shù)學(xué)王子”,據(jù)傳,他在計算時,用到了一種方法,將首尾兩個數(shù)相加,進(jìn)而得到.人們借助于這樣的方法,得到(n是正整數(shù)).有下列問題,如圖,在平面直角坐標(biāo)系中的一系列格點,其中,且是整數(shù).記,如,即,即,即,以此類推.則下列結(jié)論正確的是( ) A. B. C. D.【答案】B【分析】利用圖形尋找規(guī)律,再利用規(guī)律解題即可.【詳解】解:第1圈有1個點,即,這時;第2圈有8個點,即到;第3圈有16個點,即到,;依次類推,第n圈,;由規(guī)律可知:是在第23圈上,且,則即,故A選項不正確;是在第23圈上,且,即,故B選項正確;第n圈,,所以,故C、D選項不正確;故選B.【點睛】本題考查圖形與規(guī)律,利用所給的圖形找到規(guī)律是解題的關(guān)鍵.4.(2024·四川廣安·中考真題)已知,直線與軸相交于點,以為邊作等邊三角形,點在第一象限內(nèi),過點作軸的平行線與直線交于點,與軸交于點,以為邊作等邊三角形(點在點的上方),以同樣的方式依次作等邊三角形,等邊三角形,則點的橫坐標(biāo)為 .【答案】【分析】直線直線可知,點坐標(biāo)為,可得,由于是等邊三角形,可得點,把代入直線解析式即可求得的橫坐標(biāo),可得,由于是等邊三角形,可得點;同理,,發(fā)現(xiàn)規(guī)律即可得解,準(zhǔn)確發(fā)現(xiàn)坐標(biāo)與字母的序號之間的規(guī)律是解題的關(guān)鍵.【詳解】解:∵直線l:與x軸負(fù)半軸交于點,∴點坐標(biāo)為,∴,過,,作軸交x軸于點M,軸交于點D,交x軸于點N, ∵為等邊三角形,∴∴,∴∴,當(dāng)時,,解得:,∴,,∴,∴,∴,∴當(dāng)時,,解得:,∴;而,同理可得:的橫坐標(biāo)為,∴點的橫坐標(biāo)為,故答案為:.【點睛】本題主要考查了一次函數(shù)圖象上點的坐標(biāo)的特征,勾股定理的應(yīng)用,等邊三角形的性質(zhì),特殊圖形點的坐標(biāo)的規(guī)律,掌握探究的方法是解本題的關(guān)鍵.5.(2024·黑龍江大興安嶺地·中考真題)如圖,在平面直角坐標(biāo)系中,正方形頂點M的坐標(biāo)為,是等邊三角形,點B坐標(biāo)是,在正方形內(nèi)部緊靠正方形的邊(方向為)做無滑動滾動,第一次滾動后,點A的對應(yīng)點記為,的坐標(biāo)是;第二次滾動后,的對應(yīng)點記為,的坐標(biāo)是;第三次滾動后,的對應(yīng)點記為,的坐標(biāo)是;如此下去,……,則的坐標(biāo)是 .【答案】【分析】本題考查了點的坐標(biāo)變化規(guī)律,正方形性質(zhì),等邊三角形性質(zhì),根據(jù)三角形的運(yùn)動方式,依次求出點A的對應(yīng)點,,,的坐標(biāo),發(fā)現(xiàn)規(guī)律即可解決問題.【詳解】解:正方形頂點M的坐標(biāo)為,,是等邊三角形,點B坐標(biāo)是,等邊三角形高為,由題知,的坐標(biāo)是;的坐標(biāo)是;的坐標(biāo)是;繼續(xù)滾動有,的坐標(biāo)是;的坐標(biāo)是;的坐標(biāo)是;的坐標(biāo)是;的坐標(biāo)是;的坐標(biāo)是;的坐標(biāo)是;的坐標(biāo)是;的坐標(biāo)是;的坐標(biāo)是;不斷循環(huán),循環(huán)規(guī)律為以,,,,12個為一組,,的坐標(biāo)與的坐標(biāo)一樣為,故答案為:.5.(2021·黑龍江牡丹江·中考真題)如圖,在平面直角坐標(biāo)系中A(﹣1,1)B(﹣1,﹣2),C(3,﹣2),D(3,1),一只瓢蟲從點A出發(fā)以2個單位長度/秒的速度沿A→B→C→D→A循環(huán)爬行,問第2021秒瓢蟲在( )處.A.(3,1) B.(﹣1,﹣2) C.(1,﹣2) D.(3,﹣2)【答案】A【分析】根據(jù)點的坐標(biāo)求出四邊形ABCD的周長,然后求出第2021秒是爬了第幾圈后的第幾個單位長度,從而確定答案.【詳解】 A(﹣1,1)B(﹣1,﹣2),C(3,﹣2),D(3,1)四邊形ABCD是矩形瓢蟲轉(zhuǎn)一周,需要的時間是 秒,按A→B→C→D→A順序循環(huán)爬行,第2021秒相當(dāng)于從A點出發(fā)爬了5秒,路程是:個單位,10=3+4+3,所以在D點 .故答案為:A【點睛】本題考查了點的變化規(guī)律,根據(jù)點的坐標(biāo)求出四邊形ABCD一周的長度,從而確定2021秒瓢蟲爬完了多少個整圈的矩形,不成一圈的路程在第幾圈第幾個單位長度的位置是解題的關(guān)鍵. 題型04 求坐標(biāo)系中的圖形面積1.(2024·安徽六安·模擬預(yù)測)如圖,在平面直角坐標(biāo)系中,每個小方格都是邊長為1的正方形,的頂點均在格點上.(1)作出關(guān)于y軸對稱的,并直接寫出點的坐標(biāo);(2)連接,,求四邊形的面積.【答案】(1)圖見解析,(2)12【分析】此題考查軸對稱的作圖、點的坐標(biāo)、利用網(wǎng)格面積等知識.(1)找到關(guān)于y軸的對稱點,順次連接得到,再寫出點的坐標(biāo)即可;(2)利用梯形面積公式計算即可.【詳解】(1)解:如圖所示,即為所求.則點的坐標(biāo)為.(2)解:四邊形的面積2.(2024·安徽·中考真題)如圖,在由邊長為1個單位長度的小正方形組成的網(wǎng)格中建立平面直角坐標(biāo)系,格點(網(wǎng)格線的交點)A、B,C、D的坐標(biāo)分別為,,,. (1)以點D為旋轉(zhuǎn)中心,將旋轉(zhuǎn)得到,畫出;(2)直接寫出以B,,,C為頂點的四邊形的面積;(3)在所給的網(wǎng)格圖中確定一個格點E,使得射線平分,寫出點E的坐標(biāo).【答案】(1)見詳解(2)40(3)(答案不唯一)【分析】本題主要考查了畫旋轉(zhuǎn)圖形,平行四邊形的判定以及性質(zhì),等腰三角形的判定以及性質(zhì)等知識,結(jié)合網(wǎng)格解題是解題的關(guān)鍵.(1)將點A,B,C分別繞點D旋轉(zhuǎn)得到對應(yīng)點,即可得出.(2)連接,,證明四邊形是平行四邊形,利用平行四邊形的性質(zhì)以及網(wǎng)格求出面積即可.(3)根據(jù)網(wǎng)格信息可得出,,即可得出是等腰三角形,根據(jù)三線合一的性質(zhì)即可求出點E的坐標(biāo).【詳解】(1)解:如下圖所示: (2)連接,,∵點B與,點C與分別關(guān)于點D成中心對稱,∴,,∴四邊形是平行四邊形,∴.(3)∵根據(jù)網(wǎng)格信息可得出,,∴是等腰三角形,∴也是線段的垂直平分線,∵B,C的坐標(biāo)分別為,,∴點,即.(答案不唯一)3.(22-23八年級上·湖北鄂州·期中)三個頂點均在平面直角坐標(biāo)系中網(wǎng)格的格點上,每一個小正方形的邊長均為1.按下列要求畫圖(畫圖只能借助無刻度的直尺,用虛線表示畫圖過程,實線表示畫圖結(jié)果)(1)把沿直線翻折,畫出翻折后的;(2)找出格點并畫出直線,使直線將分成面積相等的兩部分;(3)在軸上存在點,使的面積等于3,直接寫出點的坐標(biāo).【答案】(1)見解析(2)見解析(3)或【分析】(1)找到點關(guān)于的對稱點,連接、即可;(2)過點作的平行線,取,作直線,由全等三角形的性質(zhì)可知直線經(jīng)過中點,將分成面積相等的兩部分;(3)設(shè)交軸于點,點為軸上一點,則有,根據(jù)面積公式計算可得,結(jié)合點坐標(biāo)確定點的坐標(biāo)即可.【詳解】(1)解:如圖,找到點關(guān)于的對稱點,連接、即可;(2)如圖,過點作的平行線,取,作直線,則直線將分成面積相等的兩部分;(3)如圖,設(shè)交軸于點,由圖可知點,設(shè)點到軸的距離為,點到軸的距離為,由圖可知,,則∵的面積等于3,即,解得,∴點的坐標(biāo)為或.【點睛】本題主要考查了坐標(biāo)與圖形、基本作圖、軸對稱、三角形面積等知識,熟練掌握基本作圖方法及相關(guān)知識是解題關(guān)鍵. 題型05 與圖形面積有關(guān)的存在性問題1.(2022·江蘇常州·模擬預(yù)測)如圖1,在平面直角坐標(biāo)系中,點A,B的坐標(biāo)分別為,,且a,b滿足,現(xiàn)將線段先向上平移4個單位長度,再向右平移6個單位長度得到線段,其中點A對應(yīng)點為C,點B對應(yīng)點為D,連接,.(1)請直接寫出A,B兩點的坐標(biāo);(2)如圖2,點M是線段上的一個動點,點N是線段的一個定點,連接,,當(dāng)點M在線段上移動時(不與A,C重合),探究,,之間的數(shù)量關(guān)系,并說明理由;(3)在坐標(biāo)軸上是否存在點P,使三角形的面積與三角形的面積相等?若存在,請求出點P的坐標(biāo);若不存在,試說明理由.【答案】(1),;(2),理由見解析(3)存在點P,使三角形PBC的面積與三角形的面積相等,點P的坐標(biāo)為或或或.【分析】()根據(jù)非負(fù)數(shù)的性質(zhì)求出,,即可求出答案;()過點作直線,則,再判斷出,即可得出結(jié)論;()先求出的面積,再分點在軸和軸上兩種情況,根據(jù)三角形面積公式建立方程求解,即可得出答案.【詳解】(1)∵,∴,,∴,,∴,;(2),理由:如圖,過點作直線,,線段由線段平移得到,,,,,,,∴;(3)如圖,依題意可得,,,,,,,,當(dāng)點在軸上時,設(shè)點,則,,,或;②當(dāng)點在軸上時,設(shè)點,則,,,或,綜上所述,存在點,使三角形的面積與三角形的面積相等,點的坐標(biāo)為或或或.【點睛】此題考查了非負(fù)數(shù)的性質(zhì),平行線的性質(zhì),三角形的面積公式,坐標(biāo)兩點的距離公式,坐標(biāo)平移的特征,用分類討論的思想解決問題是解題的關(guān)鍵.2.(2024·寧夏銀川·二模)如圖,一次函數(shù)的圖象與y軸正半軸交于點C,與反比例函數(shù)的圖象交于A,B兩點,已知,點B的縱坐標(biāo)為3.(1)求反比例函數(shù)的表達(dá)式;(2)求的面積;(3)在x軸上是否存在一點E,使得的面積是面積的一半,如果存在請直接寫出點E的橫坐標(biāo).【答案】(1)反比例函數(shù)的表達(dá)式為:y=(2)(3)存在,點E的橫坐標(biāo)或【分析】(1)由,得,再將代入,得,可得出點B的坐標(biāo),代入即可得出反比例函數(shù)解析式;(2)求出點A的坐標(biāo),再由即可求出的面積;(3)先求出點D坐標(biāo),再算出面積,設(shè)點,根據(jù)列出方程,求出點E坐標(biāo)即可.【詳解】(1)∵點C在y軸正半軸,,即,把代入表達(dá)式,∴,∴一次函數(shù)解析式為.將代入,得,∴.將點代入,得,∴,∴反比例函數(shù)的解析式為.(2)將代入,得,∴點D的坐標(biāo)是,∴.將代入,得,解得,.當(dāng)時,,∴點A的坐標(biāo)是,∵點B的縱坐標(biāo)為3,∴.(3)在直線中,當(dāng)時,,∴根據(jù)題意可知,設(shè)點,,解得或,∴點E的橫坐標(biāo)或.【點睛】本題考查了一次函數(shù)與反比例函數(shù)綜合,數(shù)形結(jié)合是解答本題的關(guān)鍵.3.(2024銀川外國語二模)如圖,點,在反比例函數(shù)圖象上,軸于點D,軸于點C,,連接.(1)求出反比例函數(shù)的表達(dá)式及直線的函數(shù)表達(dá)式;(2)在線段上是否存在一點E,使的面積等于10?若存在,求出點E的坐標(biāo);若不存在,請說明理由.【答案】(1),(2)存在,點E的坐標(biāo)為【分析】(1)由題意可求出,設(shè)反比例函數(shù)的表達(dá)式為,將,代入,即可求出m和k的值,即得出反比例函數(shù)的表達(dá)式和點A、點B的坐標(biāo);再利用待定系數(shù)法求出一次函數(shù)解析式即可;(2)設(shè),則根據(jù),結(jié)合三角形面積公式和梯形面積公式,可列出關(guān)于 t的方程,求出t的值即可.【詳解】(1)解:∵,,∴,.∵,∴,∴.設(shè)反比例函數(shù)的表達(dá)式為,∴,解得:,∴反比例函數(shù)的表達(dá)式為,,.設(shè)直線的函數(shù)表達(dá)式為,∴,解得:,∴直線的函數(shù)表達(dá)式為;(2)解:設(shè),∵,,∴,,,,∴,,.∵,且,∴,解得:,∴.【點睛】本題考查坐標(biāo)與圖形,求一次函數(shù)和反比例函數(shù)解析式,割補(bǔ)法求面積等知識.正確求出反比例函數(shù)解析式是解題關(guān)鍵.4.(2023·河北石家莊·模擬預(yù)測)如圖,在直角坐標(biāo)系中,已知、、三點,其中a、b,c滿足關(guān)系式. (1)求a、b、c的值;(2)如果在第二象限內(nèi)有一點,請用含m的式子表示四邊形的面積;(3)在(2)的條件下,是否存在點P,使四邊形的面積與的面積相等?若存在,求出點P的坐標(biāo),若不存在,請說明理由?【答案】(1),,(2)(3)存在點使【分析】(1)用非負(fù)數(shù)的性質(zhì)求解;(2)把四邊形的面積看成兩個三角形面積和,用來表示;(3)先求出的面積,根據(jù)題意,列出方程即可解決問題.【詳解】(1)解:,,,,,,;(2)解:,,,即;(3)解:,,則,存在點使.【點睛】本題考查了四邊形綜合題,屬于掌握非負(fù)數(shù)的性質(zhì),三角形及四邊形面積的求法,解決本題的關(guān)鍵是根據(jù)非負(fù)數(shù)的性質(zhì)求出,,.5.(22-23七年級下·廣東廣州·期末)在平面直角坐標(biāo)系中,點且m,n滿足,, (1)直接寫出m,n的值;(2)求三角形的面積;(3)若點P從點A出發(fā)在射線上運(yùn)動(點P不與點A點B重合),①過點P作射線軸,且點E在點P的右側(cè),請直接寫出的數(shù)量關(guān)系_______;②若點P的速度為每秒3個單位,在點P運(yùn)動的同時,點Q從點O出發(fā),以每秒2個單位的速度沿x負(fù)半軸運(yùn)動,連接是否存在某一時刻t,使的面積是的面積的2倍.若存在,請求出t值,并寫出點Q的坐標(biāo);若不存在,請說明理由.【答案】(1)(2)(3)①;②存在,值為或,點坐標(biāo)為或.【分析】(1)根據(jù)非負(fù)數(shù)的性質(zhì):兩個非負(fù)數(shù)的和為零,每一個非負(fù)數(shù)都為零求解即可;(2)結(jié)合圖形,根據(jù)點得坐標(biāo),結(jié)合三角形面積公式計算即可;(3)①根據(jù)平行線的性質(zhì)和三角形內(nèi)角和直接得到結(jié)論;②過點作于,利用的面積可求出的長,分點在線段上和延長線上兩種情況,根據(jù)點、點的速度用表示出、的長,根據(jù)列方程求出值即可得答案.【詳解】(1)(2)過點B作交x軸于點H, ∵,∴,,(3)(3)①,理由如下:如圖: ∴,,.②如圖,過點作于,∵,,∴,解得:, 當(dāng)點在線段上時,∵點的速度為每秒3個單位,點的速度為每秒2個單位,∴,,∵,∴,,∵,∴,解得:,∴,∵點在軸負(fù)半軸上,∴點坐標(biāo)為,如圖,當(dāng)點在延長線上時, ∵點的速度為每秒3個單位,點的速度為每秒2個單位,∴,,∴,,∵,∴,解得:,∴,∴點坐標(biāo)為,綜上所述:存在某一時刻t,使的面積是的面積的2倍,值為或,點坐標(biāo)為或.【點睛】本題屬于三角形的綜合題,主要考查了非負(fù)數(shù)的性質(zhì),平行線的性質(zhì),三角形內(nèi)角和定理以及三角形面積的綜合應(yīng)用,解決問題的關(guān)鍵是作輔助線構(gòu)造平行線,運(yùn)用分類討論的思想計算求解.命題點三 坐標(biāo)方法的簡單應(yīng)用 題型01 實際問題中用坐標(biāo)表示位置1.(2024·四川·中考真題)如圖,在一個平面區(qū)域內(nèi),一臺雷達(dá)探測器測得在點A,B,C處有目標(biāo)出現(xiàn).按某種規(guī)則,點A,B的位置可以分別表示為,則點C的位置可以表示為 .【答案】【分析】本題考查了坐標(biāo)確定位置,根據(jù)題意得到圓圈數(shù)表示有序數(shù)對的第一個數(shù),度數(shù)表示有序數(shù)對的第二個數(shù)是解題關(guān)鍵.根據(jù)題意可得:圓圈數(shù)表示有序數(shù)對的第一個數(shù),度數(shù)表示有序數(shù)對的第二個數(shù),可得答案.【詳解】解:∵A,B的位置分別表示為.∴目標(biāo)C的位置表示為.故答案為:2.(2023·貴州·中考真題)如圖,是貴陽市城市軌道交通運(yùn)營部分示意圖,以噴水池為原點,分別以正東、正北方向為軸、軸的正方向建立平面直角坐標(biāo)系,若貴陽北站的坐標(biāo)是,則龍洞堡機(jī)場的坐標(biāo)是 . 【答案】【分析】根據(jù)題意,一個方格代表一個單位,在方格中數(shù)出洞堡機(jī)場與噴水池的水平距離和垂直距離,再根據(jù)洞堡機(jī)場在平面直角坐標(biāo)系的第三象限即可求解.【詳解】解:如圖,以噴水池為原點,分別以正東、正北方向為軸、軸的正方向建立平面直角坐標(biāo)系,若貴陽北站的坐標(biāo)是,方格中一個小格代表一個單位, 洞堡機(jī)場與噴水池的水平距離有9個單位長度,與噴水池的垂直距離有4個單位長度,且在平面直角坐標(biāo)系的第三象限,龍洞堡機(jī)場的坐標(biāo)是,故答案為:.【點睛】本題考查了平面直角坐標(biāo)系點的坐標(biāo),掌握在平面直角坐標(biāo)系中確定一個坐標(biāo)需要找出距離坐標(biāo)原點的水平距離和垂直距離是解題的關(guān)鍵.3.(2022·江蘇泰州·中考真題)如圖所示的象棋盤中,各個小正方形的邊長均為1.“馬”從圖中的位置出發(fā),不走重復(fù)路線,按照“馬走日”的規(guī)則,走兩步后的落點與出發(fā)點間的最短距離為 .【答案】【分析】根據(jù)第一步馬往外跳,第二步馬再往回跳但路線不與第一步的路線重合,這樣走兩步后的落點與出發(fā)點距離最短.【詳解】解:如下圖所示:馬第一步往外跳,可能的落點為A、B、C、D、E、F點,第二步往回跳,但路線不與第一步的路線重合,這樣走兩步后的落點與出發(fā)點距離最短,比如,第一步馬跳到A點位置,第二步在從A點跳到G點位置,此時落點與出發(fā)點的距離最短為,故答案為:.【點睛】本題借助象棋中的“馬走日”的規(guī)則考察了兩點之間的距離公式,解題的關(guān)鍵是讀懂題意.4.(2024·山西朔州·模擬預(yù)測)我國水墨畫發(fā)展有著悠遠(yuǎn)歷史,相傳始于唐代,成于五代,盛于宋元,明清及近代以來續(xù)有發(fā)展,重于意境優(yōu)美,圖為水墨畫“早有蜻蜓立上頭”,若將其放在平面直角坐標(biāo)系中,點,,則點C坐標(biāo)為 .【答案】【分析】本題主要考查了點的坐標(biāo),根據(jù)已知點的坐標(biāo),找出原點,建立平面直角坐標(biāo)系,然后根據(jù)點的位置,寫出點的坐標(biāo).解題關(guān)鍵是熟練掌握根據(jù)已知點的坐標(biāo),找出坐標(biāo)原點.【詳解】解:如圖所示,根據(jù)點,,建立坐標(biāo)系,如圖所示:∴點坐標(biāo)為:,故答案為:.5.(2024·吉林·二模)《聞王昌齡左遷龍標(biāo)遙有此寄》是唐代大詩人李白的詩作,笑笑默寫該詩如圖所示.如果用表示“楊”字的位置,那么圖中錯別字的位置表示為 .4 楊 花 落 盡 子 規(guī) 啼 ,3 聞 到 龍 標(biāo) 過 五 溪 .2 我 寄 愁 心 與 明 月 ,1 隨 君 直 到 夜 郎 西 .1 2 3 4 5 6 7 8【答案】【分析】本題主要考查坐標(biāo)與位置,先找出詩句中的錯別字“到”,再確定位置即可【詳解】解:《聞王昌齡左遷龍標(biāo)遙有此寄》詩句中的錯別字是“聞到龍標(biāo)過五溪”中的“到”,應(yīng)為“道”,其坐標(biāo)為,故答案為: 題型02 用方向角和距離確定物體的位置解題方法:在航海和地理測繪中,經(jīng)常用方向角和距離來刻畫平面內(nèi)兩個物體的相對位置1)通常以北偏東(西),或南偏東(西)來確定方向,用距離來確定兩個物體相距的路程.2)用方向角和距離表示平面內(nèi)物體的位置時,和地圖上的方向一致,按上北下南,,左西右東劃分.1.(2023·河北石家莊·二模)一艘海上搜救船在巡邏過程中發(fā)現(xiàn)點A處有一艘船發(fā)出求救信號,如圖是搜救船上顯示的雷達(dá)示意圖,圖上標(biāo)注了以搜救船為中心的等距線(圖中所示的同心圓,單位:海里)及角度,要讓搜救船在第一時間抵達(dá)故障船所在的位置,應(yīng)該將搜救船的航行方案調(diào)整為( ) A.向北偏西150°方向航行4海里 B.向南偏西120°方向航行3海里C.向北偏西60°方向航行4海里 D.向東偏北150°方向航行3海里【答案】C【分析】根據(jù)方向角的定義:以正南或正北為基準(zhǔn),到目標(biāo)所在線形成的小于的角,進(jìn)行判斷即可.【詳解】解:根據(jù)方向角的定義可知,搜救船的航行方案調(diào)整為向北偏西60°方向航行4海里,故選:C.【點睛】本題考查利用方向角確定位置.熟練掌握方向角的定義,是解題的關(guān)鍵.2.(2022·河北石家莊·三模)某學(xué)校在某商城的南偏西方向上,且距離商城,則下列表示正確的是( )A.B.C.D.【答案】C【分析】根據(jù)各選項的單位長度及圖示可得到兩地的距離均為1500m,從而將問題轉(zhuǎn)化為判斷兩地的相對方向,再根據(jù)方向角的定義,即可解答.【詳解】解:A、某商城在某學(xué)校的南偏西方向上,且距離商城1500m,故A不符合題意;B、某學(xué)校在某商城的南偏西方向上,且距離商城1500m,故B不符合題意;C、某學(xué)校在某商城的南偏西方向上,且距離商城1500m,故C符合題意;D、某商城在某學(xué)校的南偏西方向上,且距離商城1500m,故D不符合題意.故選C.【點睛】本題主要考查了位置的確定,解題關(guān)鍵是掌握方向角的表示方法.3.(2022·河北·二模)如圖,甲、乙二人同時從A地出發(fā),甲沿北偏東50°方向行走200m后到達(dá)B地,然后立即向正東方向行走200m,二人恰好在C地相遇,若乙中途未改變方向,則乙的行走方向為( )A.北偏東30° B.北偏東40° C.北偏東70° D.無法確定【答案】C【分析】延長CB交AF于D,根據(jù)方位角得出∠DAB=50°,根據(jù)正東方向得出CD⊥AF,根據(jù)行走距離得出AB=BC,利用三角形外交性質(zhì)得出∠ABC=∠DAB+∠ADB=50°+90°=140°,根據(jù)等腰三角形性質(zhì)得出∠BAC=∠BCA=即可.【詳解】解:延長CB交AF于D,∵甲沿北偏東50°方向行走200m后到達(dá)B地,然后立即向正東方向行走200m,二人恰好在C地相遇,∴∠DAB=50°,CD⊥AF,AB=BC,∴∠ABC=∠DAB+∠ADB=50°+90°=140°,∴∠BAC=∠BCA=,∴∠DAC=∠DAB+∠BAC=50°+20°=70°,∴乙的行走方向為沿北偏東70°.故選:C.【點睛】本題考查方位角的應(yīng)用,方位角之間關(guān)系,三角形外角性質(zhì),等腰三角形判定與性質(zhì),中掌握方位角的應(yīng)用,方位角之間關(guān)系,三角形外角性質(zhì),等腰三角形判定與性質(zhì)是解題關(guān)鍵.4.(2020·河北·中考真題)如圖,從筆直的公路旁一點出發(fā),向西走到達(dá);從出發(fā)向北走也到達(dá).下列說法錯誤的是( )A.從點向北偏西45°走到達(dá)B.公路的走向是南偏西45°C.公路的走向是北偏東45°D.從點向北走后,再向西走到達(dá)【答案】A【分析】根據(jù)方位角的定義及勾股定理逐個分析即可.【詳解】解:如圖所示,過P點作AB的垂線PH,選項A:∵BP=AP=6km,且∠BPA=90°,∴△PAB為等腰直角三角形,∠PAB=∠PBA=45°,又PH⊥AB,∴△PAH為等腰直角三角形,∴PH=km,故選項A錯誤;選項B:站在公路上向西南方向看,公路的走向是南偏西45°,故選項B正確;選項C:站在公路上向東北方向看,公路的走向是北偏東45°,故選項C正確;選項D:從點向北走后到達(dá)BP中點E,此時EH為△PEH的中位線,故EH=AP=3,故再向西走到達(dá),故選項D正確.故選:A.【點睛】本題考查了方位角問題及等腰直角三角形、中位線等相關(guān)知識點,方向角一般以觀測者的位置為中心,所以觀測者不同,方向就正好相反,但角度不變. 展開更多...... 收起↑ 資源列表 第09講 函數(shù)與平面直角坐標(biāo)系(講義,3考點+3命題點13種題型(含3種解題技巧))(原卷版).docx 第09講 函數(shù)與平面直角坐標(biāo)系(講義,3考點+3命題點13種題型(含3種解題技巧))(解析版).docx 縮略圖、資源來源于二一教育資源庫