資源簡(jiǎn)介 物理第講 專(zhuān)題:圓周運(yùn)動(dòng)的臨界和極值問(wèn)題考點(diǎn)一 水平面內(nèi)圓周運(yùn)動(dòng)的臨界和極值問(wèn)題1.與摩擦力有關(guān)的臨界極值問(wèn)題物體間恰好不發(fā)生相對(duì)滑動(dòng)的臨界條件是物體間恰好達(dá)到最大靜摩擦力。(1)如果只有摩擦力提供向心力,則最大靜摩擦力Ffm=,靜摩擦力的方向一定指向圓心。(2)如果除摩擦力以外還有其他力提供向心力,如繩兩端連接物體隨水平面轉(zhuǎn)動(dòng),其中一個(gè)物體存在一個(gè)恰不向內(nèi)滑動(dòng)的臨界狀態(tài)和一個(gè)恰不向外滑動(dòng)的臨界狀態(tài),則臨界條件分別為靜摩擦力達(dá)到最大且靜摩擦力的方向沿半徑背離圓心和沿半徑指向圓心。2.與彈力有關(guān)的臨界極值問(wèn)題(1)兩個(gè)接觸物體分離的臨界條件是物體間的彈力恰好為零。(2)繩上拉力的臨界條件是繩恰好拉直且無(wú)彈力或繩上拉力恰好為最大承受力。例1 (多選)在修筑鐵路時(shí),彎道處的外軌會(huì)略高于內(nèi)軌。如圖所示,當(dāng)火車(chē)以規(guī)定的行駛速度轉(zhuǎn)彎時(shí),內(nèi)、外軌均不會(huì)受到輪緣的擠壓,設(shè)此時(shí)的速度大小為v,重力加速度為g,兩軌所在面的傾角為θ,則( )A.該彎道的半徑r=B.當(dāng)火車(chē)質(zhì)量改變時(shí),規(guī)定的行駛速度大小不變C.當(dāng)火車(chē)速率大于v時(shí),內(nèi)軌將受到輪緣的擠壓D.當(dāng)火車(chē)速率小于v時(shí),內(nèi)軌將受到輪緣的擠壓[答案] ABD[解析] 當(dāng)火車(chē)以速度v轉(zhuǎn)彎時(shí),恰好由重力和支持力的合力提供向心力,由牛頓第二定律可得mgtanθ=m,解得r=,v=,可知該臨界速度與火車(chē)質(zhì)量無(wú)關(guān),故當(dāng)火車(chē)質(zhì)量改變時(shí),規(guī)定的行駛速度大小不變,A、B正確;當(dāng)火車(chē)速率大于v時(shí),重力與支持力的合力不足以提供向心力,火車(chē)有做離心運(yùn)動(dòng)的趨勢(shì),故外軌將受到輪緣的擠壓,C錯(cuò)誤;當(dāng)火車(chē)速率小于v時(shí),重力與支持力的合力大于所需的向心力,火車(chē)有做近心運(yùn)動(dòng)的趨勢(shì),內(nèi)軌將受到輪緣的擠壓,D正確。例2 (多選)質(zhì)量為m的小球由輕繩a和b分別系于一輕質(zhì)細(xì)桿的A點(diǎn)和B點(diǎn),如圖所示,繩a與水平方向成θ角,繩b在水平方向且長(zhǎng)為l,當(dāng)輕桿繞軸AB以角速度ω勻速轉(zhuǎn)動(dòng)時(shí),小球在水平面內(nèi)做勻速圓周運(yùn)動(dòng),則下列說(shuō)法正確的是( )A.a(chǎn)繩的張力不可能為零B.a(chǎn)繩的張力隨角速度的增大而增大C.當(dāng)角速度ω>,b繩將出現(xiàn)彈力D.若b繩突然被剪斷,則a繩的彈力一定發(fā)生變化[答案] AC[解析] 小球在水平面內(nèi)做勻速圓周運(yùn)動(dòng),在豎直方向上所受的合力為零,水平方向上所受的合力提供向心力,所以a繩對(duì)小球的拉力在豎直方向上的分力與小球的重力平衡,可知a繩的張力不可能為零,故A正確;根據(jù)豎直方向上小球受力平衡得,F(xiàn)asinθ=mg,解得Fa=,可知a繩的張力與角速度ω?zé)o關(guān),故B錯(cuò)誤;當(dāng)b繩彈力恰好為零時(shí),有=mωl,解得ω0=,可知當(dāng)角速度ω>時(shí),b繩將出現(xiàn)彈力,故C正確;由于b繩可能沒(méi)有彈力,故b繩突然被剪斷,a繩的彈力可能不變,故D錯(cuò)誤。例3 如圖所示,質(zhì)量分別為m、2m、3m的物塊a、b、c,放置在水平圓盤(pán)上隨圓盤(pán)一起以角速度ω勻速轉(zhuǎn)動(dòng),其中物塊a、b疊放在一起。圖中各接觸面間的動(dòng)摩擦因數(shù)均為μ,最大靜摩擦力等于滑動(dòng)摩擦力,a、b和c與轉(zhuǎn)軸的距離分別為r和1.5r。下列說(shuō)法正確的是( )A.b對(duì)a的摩擦力為μmgB.圓盤(pán)對(duì)b的摩擦力為2mω2rC.圓盤(pán)的角速度滿足ω≤D.圓盤(pán)的角速度滿足ω≤[答案] D[解析] 對(duì)物塊a、b整體分析,圓盤(pán)對(duì)b的靜摩擦力fb提供向心力,則fb=(m+2m)ω2r=3mω2r,對(duì)a進(jìn)行受力分析,b對(duì)a的靜摩擦力fa提供向心力,則fa=mω2r,且fa≤μmg,A、B錯(cuò)誤;對(duì)c進(jìn)行受力分析,圓盤(pán)對(duì)c的靜摩擦力fc提供向心力,有fc=3mω2×1.5r,當(dāng)c恰好未相對(duì)圓盤(pán)滑動(dòng)時(shí),fc=μ×3mg,可解得此時(shí)圓盤(pán)對(duì)應(yīng)的角速度ωc=,根據(jù)A、B項(xiàng)分析同理可知,a、b分別恰未相對(duì)圓盤(pán)滑動(dòng)時(shí),圓盤(pán)對(duì)應(yīng)的角速度ωa=,ωb=,故圓盤(pán)的角速度滿足ω≤ωc=,C錯(cuò)誤,D正確。考點(diǎn)二 豎直面內(nèi)圓周運(yùn)動(dòng)的臨界和極值問(wèn)題1.在豎直平面內(nèi)做圓周運(yùn)動(dòng)的物體,按運(yùn)動(dòng)到軌道最高點(diǎn)時(shí)的受力情況可分為兩類(lèi):一是無(wú)支撐(如球與繩連接、物體沿內(nèi)軌道運(yùn)動(dòng)等),稱為“繩(環(huán))約束模型”;二是有支撐(如球與桿連接、物體在彎管內(nèi)運(yùn)動(dòng)等),稱為“桿(管)約束模型”。2.繩、桿模型涉及的臨界問(wèn)題繩模型 桿模型常見(jiàn) 類(lèi)型 均是沒(méi)有支撐的小球 均是有支撐的小球受力特征 在最高點(diǎn)除重力外,物體受到的彈力向下或等于零 在最高點(diǎn)除重力外,物體受到的彈力向下、等于零或向上受力示意圖過(guò)最高點(diǎn)的臨界條件 由mg=m得v臨= 由小球恰能做完整的圓周運(yùn)動(dòng)得v臨=0討論 分析 (1)過(guò)最高點(diǎn)時(shí),v≥,F(xiàn)N+mg=m,繩、圓軌道對(duì)球產(chǎn)生彈力FN; (2)不能過(guò)最高點(diǎn)時(shí),v<,在到達(dá)最高點(diǎn)前小球已經(jīng)脫離了圓軌道 (1)當(dāng)v=0時(shí),F(xiàn)N=mg,F(xiàn)N為支持力,沿半徑背離圓心; (2)當(dāng)0時(shí),F(xiàn)N+mg=m,F(xiàn)N指向圓心,并隨v的增大而增大例4 (2025·山東省臨沂市第三中學(xué)高三上10月月考)(多選)如圖甲、乙所示,分別用長(zhǎng)度均為1 m的輕質(zhì)細(xì)繩和輕質(zhì)細(xì)桿的一端連接質(zhì)量均為1 kg的小球A、B,另一端分別固定在O、O′點(diǎn),現(xiàn)讓A、B兩小球分別繞O、O′點(diǎn)在豎直平面內(nèi)做圓周運(yùn)動(dòng),小球均可視為質(zhì)點(diǎn),不計(jì)空氣阻力和與轉(zhuǎn)軸的摩擦阻力,重力加速度g=10 m/s2。下列說(shuō)法正確的是( )A.A球做圓周運(yùn)動(dòng)到最高點(diǎn)的最小速度為 m/sB.B球做圓周運(yùn)動(dòng)到最高點(diǎn)的最小速度為 m/sC.某次A、B兩球運(yùn)動(dòng)到最高點(diǎn)對(duì)繩、桿的作用力大小分別為2 N、5 N,則此時(shí)A、B兩球經(jīng)過(guò)最高點(diǎn)時(shí)的速度大小之比可能為2∶5D.某次A、B兩球運(yùn)動(dòng)到最高點(diǎn)對(duì)繩、桿的作用力大小分別為2 N、5 N,則此時(shí)A、B兩球經(jīng)過(guò)最高點(diǎn)時(shí)的速度大小之比可能為2∶[答案] ACD[解析] A球與細(xì)繩相連,則恰好能到最高點(diǎn)時(shí)有mg=m,解得A球做圓周運(yùn)動(dòng)到最高點(diǎn)的最小速度為v1== m/s,故A正確。B球與桿相連,做圓周運(yùn)動(dòng)到最高點(diǎn)的最小速度為v2=0,故B錯(cuò)誤。某次A、B兩球運(yùn)動(dòng)到最高點(diǎn)對(duì)繩、桿的作用力大小分別為FA=2 N、FB=5 N,根據(jù)牛頓第二定律,A球在最高點(diǎn)時(shí)有FA+mg=m,代入數(shù)據(jù)解得其經(jīng)過(guò)最高點(diǎn)時(shí)的速度大小v3=2 m/s;對(duì)B球有兩種情況,當(dāng)桿對(duì)B球的作用力為支持力時(shí),有mg-FB=m,代入數(shù)據(jù)解得其經(jīng)過(guò)最高點(diǎn)時(shí)的速度大小v4= m/s;當(dāng)桿對(duì)B球的作用力為拉力時(shí),有mg+FB=m,代入數(shù)據(jù)解得其經(jīng)過(guò)最高點(diǎn)時(shí)的速度大小v5= m/s,則小球A、B在最高點(diǎn)的速度大小之比為v3∶v4=2∶5或v3∶v5=2∶,故C、D正確。豎直面內(nèi)圓周運(yùn)動(dòng)問(wèn)題的解題思路跟進(jìn)訓(xùn)練 (多選)如圖所示,質(zhì)量為m的小球置于內(nèi)表面光滑的正方體盒子中,盒子的棱長(zhǎng)略大于球的直徑。某同學(xué)拿著這個(gè)盒子在豎直面內(nèi)做半徑為R的勻速圓周運(yùn)動(dòng),盒子在運(yùn)動(dòng)過(guò)程中不發(fā)生轉(zhuǎn)動(dòng),已知重力加速度為g,盒子經(jīng)過(guò)最高點(diǎn)A時(shí)與小球間恰好無(wú)作用力。以下說(shuō)法正確的是( )A.該盒子做勻速圓周運(yùn)動(dòng)的線速度為B.該盒子做勻速圓周運(yùn)動(dòng)的周期為2πC.盒子經(jīng)過(guò)最低點(diǎn)C時(shí)與小球之間的作用力大小為2mgD.盒子經(jīng)過(guò)與圓心O等高處的B點(diǎn)時(shí),小球?qū)凶幼蟊诘膲毫Υ笮閙g答案:CD解析:盒子經(jīng)過(guò)最高點(diǎn)A時(shí)與小球間恰好無(wú)作用力,此時(shí)由小球的重力提供向心力,有mg=m,則該盒子做勻速圓周運(yùn)動(dòng)的線速度為v=,周期為T(mén)==2π,故A、B錯(cuò)誤;盒子經(jīng)過(guò)最低點(diǎn)C時(shí),盒子對(duì)小球的作用力與小球重力的合力提供向心力,有N-mg=m,解得盒子對(duì)小球的作用力大小N=2mg,故C正確;盒子經(jīng)過(guò)與圓心O等高處的B點(diǎn)時(shí),由盒子左壁對(duì)小球水平向右的壓力Fx提供向心力,有Fx=m=mg,根據(jù)牛頓第三定律,小球?qū)凶幼蟊诘膲毫Υ笮镕壓=Fx=mg,故D正確。例5 如圖所示,一傾斜的勻質(zhì)圓盤(pán)繞垂直于盤(pán)面且過(guò)圓盤(pán)圓心的固定轉(zhuǎn)軸以恒定角速度ω轉(zhuǎn)動(dòng),盤(pán)面上離轉(zhuǎn)軸距離2.5 m處有一小物體與圓盤(pán)始終保持相對(duì)靜止。物體與盤(pán)面間的動(dòng)摩擦因數(shù)為(設(shè)最大靜摩擦力等于滑動(dòng)摩擦力),盤(pán)面與水平面的夾角為30°,g取10 m/s2。則ω的最大值是( )A. rad/s B. rad/sC.1.0 rad/s D.0.5 rad/s[答案] C[解析] 當(dāng)物體隨圓盤(pán)轉(zhuǎn)到最低點(diǎn)恰好要滑動(dòng)時(shí),圓盤(pán)的角速度最大,其受力如圖所示(其中O為轉(zhuǎn)軸位置),由沿盤(pán)面的合力提供向心力,有μmgcos30°-mgsin30°=mωR,得ωmax==1.0 rad/s,故選C。與豎直面內(nèi)的圓周運(yùn)動(dòng)類(lèi)似,斜面上的圓周運(yùn)動(dòng)也是集中分析物體在最高點(diǎn)和最低點(diǎn)的受力情況,列牛頓運(yùn)動(dòng)定律方程來(lái)解題。只是在受力分析時(shí),一般需要進(jìn)行立體圖到平面圖的轉(zhuǎn)化,這是解斜面上圓周運(yùn)動(dòng)問(wèn)題的難點(diǎn)。物體在斜面上與斜面相對(duì)靜止做圓周運(yùn)動(dòng)時(shí),一般受摩擦力(如例5所示),還要參照水平面內(nèi)圓周運(yùn)動(dòng)的臨界問(wèn)題分析。1(共22張PPT)第四章 曲線運(yùn)動(dòng)第4講 專(zhuān)題:圓周運(yùn)動(dòng)的臨界和極值問(wèn)題目錄12考點(diǎn)一 水平面內(nèi)圓周運(yùn)動(dòng)的臨界和極值問(wèn)題考點(diǎn)二 豎直面內(nèi)圓周運(yùn)動(dòng)的臨界和極值問(wèn)題考點(diǎn)一 水平面內(nèi)圓周運(yùn)動(dòng)的臨界和極值問(wèn)題 2.與彈力有關(guān)的臨界極值問(wèn)題(1)兩個(gè)接觸物體分離的臨界條件是物體間的彈力恰好為零。(2)繩上拉力的臨界條件是繩恰好拉直且無(wú)彈力或繩上拉力恰好為最大承受力。考點(diǎn)二 豎直面內(nèi)圓周運(yùn)動(dòng)的臨界和極值問(wèn)題1.在豎直平面內(nèi)做圓周運(yùn)動(dòng)的物體,按運(yùn)動(dòng)到軌道最高點(diǎn)時(shí)的受力情況可分為兩類(lèi):一是無(wú)支撐(如球與繩連接、物體沿內(nèi)軌道運(yùn)動(dòng)等),稱為“繩(環(huán))約束模型”;二是有支撐(如球與桿連接、物體在彎管內(nèi)運(yùn)動(dòng)等),稱為“桿(管)約束模型”。2.繩、桿模型涉及的臨界問(wèn)題繩模型 桿模型常見(jiàn) 類(lèi)型 均是沒(méi)有支撐的小球均是有支撐的小球受力特征 在最高點(diǎn)除重力外,物體受到的彈力向下或等于零 在最高點(diǎn)除重力外,物體受到的彈力向下、等于零或向上受力示意圖豎直面內(nèi)圓周運(yùn)動(dòng)問(wèn)題的解題思路與豎直面內(nèi)的圓周運(yùn)動(dòng)類(lèi)似,斜面上的圓周運(yùn)動(dòng)也是集中分析物體在最高點(diǎn)和最低點(diǎn)的受力情況,列牛頓運(yùn)動(dòng)定律方程來(lái)解題。只是在受力分析時(shí),一般需要進(jìn)行立體圖到平面圖的轉(zhuǎn)化,這是解斜面上圓周運(yùn)動(dòng)問(wèn)題的難點(diǎn)。物體在斜面上與斜面相對(duì)靜止做圓周運(yùn)動(dòng)時(shí),一般受摩擦力(如例5所示),還要參照水平面內(nèi)圓周運(yùn)動(dòng)的臨界問(wèn)題分析。 展開(kāi)更多...... 收起↑ 資源列表 第4講 專(zhuān)題:圓周運(yùn)動(dòng)的臨界和極值問(wèn)題.docx 第4講 專(zhuān)題:圓周運(yùn)動(dòng)的臨界和極值問(wèn)題.pptx 縮略圖、資源來(lái)源于二一教育資源庫(kù)