中文字幕精品无码一区二区,成全视频在线播放观看方法,大伊人青草狠狠久久,亚洲一区影音先锋色资源

2026屆高中物理一輪復(fù)習(xí) 第四章 重難突破5 平拋運(yùn)動(dòng)的綜合問(wèn)題(課件 學(xué)案 練習(xí),共3份)

資源下載
  1. 二一教育資源

2026屆高中物理一輪復(fù)習(xí) 第四章 重難突破5 平拋運(yùn)動(dòng)的綜合問(wèn)題(課件 學(xué)案 練習(xí),共3份)

資源簡(jiǎn)介

重難突破5 平拋運(yùn)動(dòng)的綜合問(wèn)題
1.(2025·安徽蚌埠三模)如圖為某運(yùn)動(dòng)員自由式滑雪訓(xùn)練場(chǎng)景示意圖,運(yùn)動(dòng)員從跳臺(tái)a處沿水平方向飛出,在斜坡b處著陸,如果其在空中運(yùn)動(dòng)過(guò)程中與斜面間的最大距離為 m,斜坡與水平方向的夾角為30°,重力加速度g取10 m/s2,則其從a處飛出時(shí)的速度大小為(  )
A.10 m/s B.5 m/s
C. m/s D. m/s
2.(2025·福建福州期末)如圖所示,以水平初速度v0=10 m/s拋出的物體,飛行一段時(shí)間后,垂直地撞在傾角為60°的斜面上。不計(jì)空氣阻力,重力加速度取g=10 m/s2,則物體完成這段飛行的時(shí)間是( ?。?br/>A. s B.1 s
C. s D.2 s
3.(2025·四川德陽(yáng)一模)如圖所示,在豎直直角坐標(biāo)系內(nèi)有一高度為8 m、傾角為37°的斜面,將小球從+y軸上位置(0,8 m)處沿+x方向水平拋出,初速度為4 m/s,g取10 m/s2,則小球第一次在斜面上的落點(diǎn)位置為( ?。?br/>A.(3 m,4 m) B.(3 m,5 m)
C.(4 m,5 m) D.(4 m,3 m)
4.(2025·黑龍江哈爾濱期中)如圖所示,圓環(huán)豎直放置,從圓心O點(diǎn)正上方的P點(diǎn),以速度v0水平拋出的小球恰能從圓環(huán)上的Q點(diǎn)沿切線方向飛過(guò),若OQ與OP間夾角為θ,不計(jì)空氣阻力,重力加速度為g,則( ?。?br/>A.圓環(huán)的半徑為R=
B.小球從P點(diǎn)運(yùn)動(dòng)到Q點(diǎn)的時(shí)間t=
C.小球從P點(diǎn)運(yùn)動(dòng)到Q點(diǎn)的速度變化量
D.小球運(yùn)動(dòng)到Q點(diǎn)時(shí)的速度大小為vQ=
5.(2025·江西贛州期末)如圖所示,在豎直平面內(nèi)有一曲面,曲面方程為y=x2,在y軸上有一點(diǎn)P,坐標(biāo)為(0,6)。從P點(diǎn)將一可以看成質(zhì)點(diǎn)的小球水平拋出,初速度為1 m/s。不計(jì)空氣阻力,g取10 m/s2,則小球打在曲面上所用時(shí)間為(  )
A.1 s B. s
C. s D. s
6.如圖所示,乒乓球的發(fā)球器安裝在水平桌面上,豎直轉(zhuǎn)軸OO'距桌面的高度為h,發(fā)射器O'A部分長(zhǎng)度也為h。打開(kāi)開(kāi)關(guān)后,可將乒乓球從A點(diǎn)以初速度v0水平發(fā)射出去,其中≤v0≤2,設(shè)發(fā)射出的所有乒乓球都能落到桌面上,乒乓球自身尺寸及空氣阻力不計(jì)。若使該發(fā)球器繞轉(zhuǎn)軸OO'在90°角的范圍內(nèi)來(lái)回緩慢水平轉(zhuǎn)動(dòng),持續(xù)發(fā)射足夠長(zhǎng)時(shí)間后,乒乓球第一次與桌面相碰區(qū)域的最大面積S是(  )
A.2πh2 B.3πh2
C.4πh2 D.8πh2
7.〔多選〕(2025·山東菏澤期中)如圖所示為固定的半圓形豎直軌道,AB為水平直徑,O為圓心,同時(shí)從A點(diǎn)水平拋出甲、乙兩個(gè)小球,初速度分別為v1、v2,落在軌道上的C、D兩點(diǎn),OC、OD連線與豎直方向的夾角均為30°,忽略空氣阻力,兩小球均可視為質(zhì)點(diǎn),則(  )
A.甲、乙兩球同時(shí)落到軌道上
B.v1∶v2=1∶3
C.乙球的速度變化量比甲球的大
D.乙球在D點(diǎn)速度的反向延長(zhǎng)線一定過(guò)O點(diǎn)
8.(2025·云南昆明模擬)如圖所示,從高H=5 m處的A點(diǎn)先后水平拋出兩個(gè)小球1和2。球1與地面碰撞一次后,恰好越過(guò)位于水平地面上的豎直擋板落在水平地面上的E點(diǎn),已知碰撞前后的水平分速度不變、豎直分速度等大反向。球2的初速度v0=3 m/s,也恰好越過(guò)擋板落在E點(diǎn),忽略空氣阻力,取重力加速度g=10 m/s2。下列說(shuō)法正確的是( ?。?br/>A.小球2的水平射程為5 m
B.小球1平拋運(yùn)動(dòng)的初速度為1.5 m/s
C.拋出點(diǎn)A與豎直擋板頂端D點(diǎn)的高度差h= m
D.拋出點(diǎn)A與豎直擋板頂端D點(diǎn)的高度差h=1.25 m
9.(2025·湖北荊州期末)如圖所示,斜面傾角為θ,位于斜面底端A正上方的小球以初速度v0正對(duì)斜面頂點(diǎn)B水平拋出,小球到達(dá)斜面經(jīng)過(guò)的時(shí)間為t,重力加速度為g,B到斜面底邊的豎直高度為H,則下列說(shuō)法中正確的是( ?。?br/>A.若小球以最小位移到達(dá)斜面,則t=
B.若小球以最小位移到達(dá)斜面,則v0=sin θ
C.若小球能擊中斜面中點(diǎn),則t=
D.若小球垂直擊中斜面,則t=
10.(2025·湖北武漢模擬)如圖所示,傾角為37°的斜面固定在水平面上,小球從斜面上M點(diǎn)的正上方0.2 m處由靜止下落,在M點(diǎn)與斜面碰撞,之后落到斜面上的N點(diǎn)。已知小球在碰撞前、后瞬間,速度沿斜面方向的分量不變,沿垂直于斜面方向的分量大小不變,方向相反,sin 37°=0.6,cos 37°=0.8,重力加速度大小取g=10 m/s2,忽略空氣阻力,則小球從M點(diǎn)運(yùn)動(dòng)至N點(diǎn)所用的時(shí)間為( ?。?br/>A.0.2 s B.0.3 s
C.0.4 s D.0.5 s
11.(2025·河北邢臺(tái)二中模擬)如圖所示,水平屋頂高H=5 m,圍墻(厚度不計(jì))高h(yuǎn)=3.2 m,圍墻到房子的水平距離L=3 m,圍墻外空地寬x=10 m。為使小球從屋頂水平飛出落在圍墻外的空地上,重力加速度g取10 m/s2,求:
(1)小球離開(kāi)屋頂時(shí)的速度v0的大小范圍;
(2)小球落在空地上的最小速度。
12.(2025·福建三明模擬)水車是我國(guó)勞動(dòng)人民利用水能的一項(xiàng)重要發(fā)明。如圖為某景觀水車模型,水從槽口水平流出,某時(shí)刻正好垂直落在與水平面成30°角的輪葉邊緣上,輪葉在水流不斷沖擊下而轉(zhuǎn)動(dòng)。已知水車輪軸到輪緣距離為R,槽口到水車輪軸所在水平面距離為2R,忽略空氣阻力,重力加速度為g,求:
(1)水流從槽口到輪葉的運(yùn)動(dòng)時(shí)間t;
(2)水流初速度v0的大小和打在輪葉上的速度v的大小。
重難突破5 平拋運(yùn)動(dòng)的綜合問(wèn)題
1.A 將運(yùn)動(dòng)員在a處的速度及重力加速度g分解為垂直于斜面方向和沿斜面方向,則沿垂直于斜面方向,當(dāng)運(yùn)動(dòng)員到達(dá)距離斜面最大高度時(shí),有hm== m,解得v0=10 m/s,故選A。
2.A 物體撞在斜面上的速度與斜面方向垂直,將該速度分解,如圖所示。由于不計(jì)空氣阻力,因此物體水平方向的速度仍為v0,設(shè)物體豎直方向的速度為vy,則tan 60°==,此外,由于物體豎直方向只受到重力,因此豎直方向的加速度為重力加速度g,且物體豎直方向的初速度為零,則有vy=gt,聯(lián)立兩式解得t= s,故選A。
3.D 設(shè)小球第一次在斜面上的落點(diǎn)位置為(x,y),小球在空中做平拋運(yùn)動(dòng),水平方向有x=v0t,豎直方向有y0-y=gt2,其中v0=4 m/s,y0=8 m,又由幾何關(guān)系可得tan 37°=,聯(lián)立解得x=4 m,y=3 m,故選D。
4.A 以速度v0水平拋出的小球恰能從圓環(huán)上的Q點(diǎn)沿切線方向飛過(guò),小球運(yùn)動(dòng)到Q點(diǎn)時(shí)的速度大小為vQ=,故D錯(cuò)誤;小球在Q點(diǎn)的豎直方向的速度為vQy=v0tan θ,小球從P點(diǎn)運(yùn)動(dòng)到Q點(diǎn)的時(shí)間t==,故B錯(cuò)誤;小球水平方向做勻速直線運(yùn)動(dòng),有Rsin θ=v0t,聯(lián)立可得圓環(huán)的半徑為R=,故A正確;小球從P點(diǎn)運(yùn)動(dòng)到Q點(diǎn)的速度變化量Δv=gt=v0tan θ,故C錯(cuò)誤。
5.A 小球做平拋運(yùn)動(dòng),則打在曲面上時(shí),豎直方向位移為h=gt2,水平位移x=v0t,則小球的坐標(biāo)為,小球打在曲面上,滿足曲面方程y=x2,將小球坐標(biāo)代入曲面方程,解得t=1 s,故A正確,B、C、D錯(cuò)誤。
6.C 根據(jù)平拋運(yùn)動(dòng)規(guī)律h=gt2,解得t=,以最小速度v1=發(fā)射的乒乓球,水平位移最小,為x1=v1t=×=2h,對(duì)應(yīng)的與桌面相碰區(qū)域的圓半徑為r1=h+x1=3h,以最大速度v2=2發(fā)射的乒乓球,水平位移最大,為x2=v2t=2×=4h,對(duì)應(yīng)的與桌面相碰區(qū)域的圓半徑為r2=h+x2=5h,乒乓球第一次與桌面相碰區(qū)域的最大面積S=π[(5h)2-(3h)2]=4πh2,故C正確。
7.AB 兩個(gè)小球下落的高度是相等的,根據(jù)h=gt2,又Δv=gt,可知甲、乙兩球下落到軌道的時(shí)間相等,速度變化相等,故A正確,C錯(cuò)誤;設(shè)圓形軌道的半徑為R,則甲水平位移為x1=R-Rsin 30°=0.5R,乙水平位移為x2=R+Rsin 30°=1.5R,可得x2=3x1,水平方向做勻速直線運(yùn)動(dòng),則有v1∶v2=1∶3,故B正確;D點(diǎn)速度反向延長(zhǎng)線過(guò)水平位移中點(diǎn),所以乙球在D點(diǎn)速度的反向延長(zhǎng)線不過(guò)O點(diǎn),故D錯(cuò)誤。
8.D 根據(jù)H=gt2,x=v0t,小球2的水平射程為x=3 m,A錯(cuò)誤;兩球均落到E點(diǎn),根據(jù)對(duì)稱性可知,小球1和2運(yùn)動(dòng)總時(shí)間之比為t1∶t2=3∶1,小球1落至C點(diǎn)的水平位移為x1==1 m,小球1平拋運(yùn)動(dòng)的初速度為v1=,得v1=1 m/s,B錯(cuò)誤;球2運(yùn)動(dòng)至擋板頂端D與球1從擋板頂端D運(yùn)動(dòng)至最高點(diǎn)的時(shí)間相同,則對(duì)應(yīng)的水平方向位移之和為v0+v1=2 m,得拋出點(diǎn)A與豎直擋板頂端D點(diǎn)的高度差為h=1.25 m,故C錯(cuò)誤,D正確。
9.B 過(guò)拋出點(diǎn)作斜面的垂線CD,如圖所示,當(dāng)小球落在斜面上的D點(diǎn)時(shí),位移最小,設(shè)運(yùn)動(dòng)的時(shí)間為t,則水平方向,有x=v0t,豎直方向,有y=gt2,根據(jù)幾何關(guān)系有=tan θ,則有=tan θ,解得t=,故A錯(cuò)誤;由A選項(xiàng)可知v0=x,由幾何關(guān)系可得此時(shí)豎直方向位移y=Hcos θ·cos θ=Hcos2 θ,水平方向位移x=Hcos θsin θ,由以上可知v0=sin θ,故B正確; 若小球能擊中斜面中點(diǎn),小球下落的高度設(shè)為h,水平位移設(shè)為x1,則由幾何關(guān)系可得tan θ===,解得t1=,故C錯(cuò)誤;小球垂直擊中斜面時(shí)速度與豎直方向的夾角為θ,則tan θ=,解得t=,故D錯(cuò)誤。
10.C 由自由落體運(yùn)動(dòng)公式v2=2gh,得小球到M點(diǎn)的速度大小為v=2 m/s,以沿斜面方向?yàn)閤軸,以垂直于斜面方向?yàn)閥軸建立坐標(biāo)系,如圖所示。則vy'=vy=vcos 37°=1.6 m/s,vx=vsin 37°=1.2 m/s,將重力加速度分解為ay=gcos 37°=8 m/s2,ax=gsin 37°=6 m/s2,小球從M點(diǎn)落到斜面上的N點(diǎn),由運(yùn)動(dòng)學(xué)公式y(tǒng)=vy't-ayt2=0,代入數(shù)據(jù)解得t=0.4 s,故選C。
11.(1)5 m/s≤v0≤13 m/s?。?)5 m/s
解析:(1)設(shè)小球恰好落到空地的右側(cè)邊緣時(shí)的水平初速度為v01,則小球的水平位移
L+x=v01t1
小球的豎直位移H= g
聯(lián)立解得v01=13 m/s
設(shè)小球恰好越過(guò)圍墻邊緣時(shí)的水平初速度為v02,則小球的水平位移L=v02t2
小球的豎直位移H-h(huán)= g
解得v02=5 m/s
故小球拋出時(shí)的速度大小范圍為5 m/s≤v0≤13 m/s。
(2)小球落在空地上,下落高度一定,落地時(shí)的豎直分速度一定,當(dāng)小球恰好越過(guò)圍墻的邊緣落在空地上時(shí),落地速度最小。豎直方向有=2gH
又vmin=
解得vmin=5 m/s。
12.(1)?。?) 2
解析:(1)由幾何知識(shí)知,水流從槽口到輪葉,下落的高度為h=2R-Rsin 30°
豎直方向上水做自由落體運(yùn)動(dòng),有h=gt2
聯(lián)立解得t=。
(2)設(shè)水流垂直落到輪葉邊緣時(shí)豎直方向的分速度為vy,則vy=gt
水流垂直落在與水平面成30°角的輪葉邊緣上,則tan 30°=
水流打在輪葉上的速度的大小為v=
聯(lián)立可得v0=,v=2。
3 / 3 平拋運(yùn)動(dòng)的綜合問(wèn)題
突破點(diǎn)一 與斜面有關(guān)的平拋運(yùn)動(dòng)問(wèn)題
與斜面有關(guān)的平拋運(yùn)動(dòng)的三種情境分析
模型 方法 基本規(guī)律
分解速度,構(gòu)建速度三角形,找到斜面傾角θ與速度方向的關(guān)系 水平:vx=v0 豎直:vy=gt 合速度: v= 方向:tan θ=
分解速度,構(gòu)建速度的矢量三角形 水平:vx=v0 豎直:vy=gt 合速度: v= 方向:tan θ=
分解位移,構(gòu)建位移三角形,隱含條件:斜面傾角θ等于位移與水平方向的夾角 水平:x=v0t 豎直:y=gt2 合位移: s= 方向:tan θ=
順著斜面的平拋運(yùn)動(dòng)
(2025·貴州遵義三模)可視為質(zhì)點(diǎn)的運(yùn)動(dòng)員從P點(diǎn)以v0的速度水平飛出,若不計(jì)空氣阻力,運(yùn)動(dòng)員在空中飛行3 s后落在斜面上Q點(diǎn)。簡(jiǎn)化示意圖如圖所示,已知sin 37°=0.6,cos 37°=0.8,g取10 m/s2,則運(yùn)動(dòng)員由P到Q的過(guò)程中(  )
A.水平初速度大小為30 m/s
B.水平初速度大小為20 m/s
C.P到Q的位移大小為45 m
D.P到Q的位移大小為60 m
嘗試解答
對(duì)著斜面的平拋運(yùn)動(dòng)
如圖所示,斜面傾角為θ=30°,在斜面上方某點(diǎn)處,先讓小球(可視為質(zhì)點(diǎn))自由下落,從釋放到落到斜面上所用時(shí)間為t1,再讓小球在該點(diǎn)水平拋出,小球剛好能垂直打在斜面上,運(yùn)動(dòng)的時(shí)間為t2,不計(jì)空氣阻力,則為(  )
A.  B. 
C.  D.
嘗試解答
突破點(diǎn)二 與曲面有關(guān)的平拋運(yùn)動(dòng)問(wèn)題
與曲面有關(guān)的平拋運(yùn)動(dòng)的三種情境分析
運(yùn)動(dòng)情景 物理量分析
tan θ==→t=
在半圓內(nèi)的平拋運(yùn)動(dòng), R+=v0t→t=
小球恰好從圓柱體的Q點(diǎn)沿切線飛過(guò),此時(shí)半徑OQ垂直于速度方向,圓心角θ與速度的偏向角相等
如圖所示,在豎直放置的半球形容器的中心O點(diǎn)分別以水平初速度v1、v2沿相反方向拋出兩個(gè)小球1和2(可視為質(zhì)點(diǎn)),最終它們分別落在圓弧上的A點(diǎn)和B點(diǎn),已知OA與OB互相垂直,且OA與豎直方向成α角,則兩小球的初速度之比為( ?。?br/>A.tan α B.cos α
C.tan α D.cos α
嘗試解答
突破點(diǎn)三 平拋運(yùn)動(dòng)中的臨界極值問(wèn)題
1.常見(jiàn)的“臨界術(shù)語(yǔ)”
(1)題目中有“剛好”“恰好”“正好”“取值范圍”“多長(zhǎng)時(shí)間”“多大距離”等詞語(yǔ),表明題述的過(guò)程中存在臨界點(diǎn)。
(2)題目中有“最大”“最小”“至多”“至少”等字眼,表明題述的過(guò)程中存在著極值。
2.平拋運(yùn)動(dòng)臨界、極值問(wèn)題的分析方法
(1)確定研究對(duì)象的運(yùn)動(dòng)性質(zhì);
(2)根據(jù)題意確定臨界狀態(tài);
(3)確定臨界軌跡,畫(huà)出軌跡示意圖;
(4)應(yīng)用平拋運(yùn)動(dòng)的規(guī)律結(jié)合臨界條件列方程求解。
平拋運(yùn)動(dòng)的臨界問(wèn)題
如圖所示,窗子上、下沿間的高度H=1.6 m,豎直墻的厚度d=0.4 m,某人在距離墻壁L=1.4 m、距窗子上沿h=0.2 m處的P點(diǎn),將可視為質(zhì)點(diǎn)的小物件以垂直于墻壁的速度v水平拋出,要求小物件能直接穿過(guò)窗口并落在水平地面上,不計(jì)空氣阻力,重力加速度取g=10 m/s2,則可以實(shí)現(xiàn)上述要求的速度大小是(  )
A.2 m/s B.4 m/s
C.8 m/s D.10 m/s
嘗試解答
平拋運(yùn)動(dòng)的極值問(wèn)題
某科技比賽中,參賽者設(shè)計(jì)了一個(gè)軌道模型,如圖所示。模型放到0.8 m高的水平桌子上,最高點(diǎn)距離水平地面2 m,右端出口水平。現(xiàn)讓小球在最高點(diǎn)由靜止釋放,忽略阻力作用,為使小球飛得最遠(yuǎn),右端出口距離桌面的高度應(yīng)設(shè)計(jì)為( ?。?br/>A.0 B.0.1 m
C.0.2 m D.0.3 m
嘗試解答
重難突破5 平拋運(yùn)動(dòng)的綜合問(wèn)題
【著眼“四翼”·探考點(diǎn)】
突破點(diǎn)一
【例1】 B 運(yùn)動(dòng)員由P到Q的過(guò)程中,有tan 37°==,可得水平初速度大小為v0==20 m/s,故A錯(cuò)誤,B正確;運(yùn)動(dòng)員由P到Q的過(guò)程中,水平位移為x=v0t=60 m,則P到Q的位移大小為s==75 m,故C、D錯(cuò)誤。
【例2】 D 設(shè)小球水平拋出的初速度為v0,則打到斜面上時(shí),沿豎直方向的分速度vy==gt2,水平位移x=v0t2,拋出點(diǎn)到斜面的豎直高度h=+xtan θ=+=,又h=g,解得t2=,t1=,則=,D正確。
突破點(diǎn)二
【例3】 C 兩小球被拋出后都做平拋運(yùn)動(dòng),設(shè)容器的半徑為R,兩小球運(yùn)動(dòng)的時(shí)間分別為t1、t2。則對(duì)小球1有Rsin α=v1t1,Rcos α=g,對(duì)小球2,有Rcos α=v2t2,Rsin α=g,解得兩小球的初速度之比為=tan α,故C正確。
突破點(diǎn)三
【例4】 B 小物件做平拋運(yùn)動(dòng),恰好擦著窗子上沿右側(cè)墻邊緣穿過(guò)時(shí)速度v最大。此時(shí)有L=vmaxt1,h=g,代入數(shù)據(jù)解得vmax=7 m/s,小物件恰好擦著窗口下沿左側(cè)墻邊緣穿過(guò)時(shí)速度v最小,則有L+d=vmint2,H+h=g,代入數(shù)據(jù)解得vmin=3 m/s,故v的取值范圍是3 m/s≤v≤7 m/s,故B正確,A、C、D錯(cuò)誤。
【例5】 C 設(shè)最高點(diǎn)距離水平地面的高度為H,右端出口距離地面距離為h,小球從最高點(diǎn)到右端出口,根據(jù)機(jī)械能守恒定律,有mg(H-h(huán))=mv2,從右端出口飛出后小球做平拋運(yùn)動(dòng),有x=vt,h=gt2,聯(lián)立解得x=2,根據(jù)數(shù)學(xué)知識(shí)知,當(dāng)H-h(huán)=h時(shí),x最大,即h=1 m時(shí),小球飛得最遠(yuǎn),此時(shí)右端出口距離桌面高度為Δh=1 m-0.8 m=0.2 m,故C正確。
3 / 3(共53張PPT)
重難突破5 平拋運(yùn)動(dòng)的綜合問(wèn)題
高中總復(fù)習(xí)·物理
目 錄
01
著眼“四翼”·探考點(diǎn)
02
培養(yǎng)“思維”·重落實(shí)
題型 規(guī)律 方法
著眼“四翼”·探考點(diǎn)
突破點(diǎn)一 與斜面有關(guān)的平拋運(yùn)動(dòng)問(wèn)題
與斜面有關(guān)的平拋運(yùn)動(dòng)的三種情境分析
模型 方法 基本規(guī)律
分解速度,構(gòu)建速度三
角形,找到斜面傾角θ
與速度方向的關(guān)系 水平:vx=v0
豎直:vy=gt
合速度:v=
方向:tan θ=
模型 方法 基本規(guī)律
分解速度,構(gòu)建速度的
矢量三角形 水平:vx=v0
豎直:vy=gt
合速度:v=
方向:tan θ=
模型 方法 基本規(guī)律
分解位移,構(gòu)建位移三
角形,隱含條件:斜面
傾角θ等于位移與水平
方向的夾角 水平:x=v0t
豎直:y=gt2
合位移:
s=
方向:tan θ=
順著斜面的平拋運(yùn)動(dòng)
(2025·貴州遵義三模)可視為質(zhì)點(diǎn)的運(yùn)動(dòng)員從P點(diǎn)以v0的速度水平飛
出,若不計(jì)空氣阻力,運(yùn)動(dòng)員在空中飛行3 s后落在斜面上Q點(diǎn)。簡(jiǎn)化示意
圖如圖所示,已知sin 37°=0.6,cos 37°=0.8,g取10 m/s2,則運(yùn)動(dòng)員
由P到Q的過(guò)程中( ?。?br/>A. 水平初速度大小為30 m/s
B. 水平初速度大小為20 m/s
C. P到Q的位移大小為45 m
D. P到Q的位移大小為60 m

解析:運(yùn)動(dòng)員由P到Q的過(guò)程中,有tan 37°==,可得水平初速度
大小為v0==20 m/s,故A錯(cuò)誤,B正確;運(yùn)動(dòng)員由P到Q的過(guò)程
中,水平位移為x=v0t=60 m,則P到Q的位移大小為s==75 m,故
C、D錯(cuò)誤。
如圖所示,從傾角為θ的足夠長(zhǎng)的斜面頂端P以速度v0拋出一個(gè)小球,落在
斜面上某處Q點(diǎn),小球落在斜面上的速度與斜面的夾角為α。若把初速度變
為3v0,小球仍落在斜面上。下列說(shuō)法中正確的是(  )
A. 小球在空中的運(yùn)動(dòng)時(shí)間不變
B. P、Q間距是原來(lái)的9倍
C. 夾角α與初速度大小有關(guān)
D. 夾角α將變小

解析:  位移與水平方向夾角的正切值tan θ==,則小球在空中運(yùn)
動(dòng)的時(shí)間t=,若初速度變?yōu)樵瓉?lái)的3倍,則小球在空中運(yùn)動(dòng)的時(shí)間
變?yōu)樵瓉?lái)的3倍,這樣豎直位移或水平位移都變?yōu)樵瓉?lái)的9倍,P、Q間距變
為原來(lái)的9倍,A錯(cuò)誤,B正確;速度方向與水平方向夾角的正切值tan β=
,可知速度方向與水平方向夾角β的正切值是位移與水平方向夾角θ正切
值的2倍,小球落在斜面上,位移方向相同,則速度方向相同,可知夾角α
與初速度大小無(wú)關(guān),C、D錯(cuò)誤。
對(duì)著斜面的平拋運(yùn)動(dòng)
如圖所示,斜面傾角為θ=30°,在斜面上方某點(diǎn)處,先讓小球(可
視為質(zhì)點(diǎn))自由下落,從釋放到落到斜面上所用時(shí)間為t1,再讓小球在該
點(diǎn)水平拋出,小球剛好能垂直打在斜面上,運(yùn)動(dòng)的時(shí)間為t2,不計(jì)空氣阻
力,則為( ?。?br/>A. B. C. D.

解析:設(shè)小球水平拋出的初速度為v0,則打到斜面上時(shí),沿豎直方向的分
速度vy==gt2,水平位移x=v0t2,拋出點(diǎn)到斜面的豎直高度h=+
xtan θ=+=,又h=g,解得t2=,t1=,則=
,D正確。
突破點(diǎn)二 與曲面有關(guān)的平拋運(yùn)動(dòng)問(wèn)題
與曲面有關(guān)的平拋運(yùn)動(dòng)的三種情境分析
運(yùn)動(dòng)情景 物理量分析
tan θ==→t=
在半圓內(nèi)的平拋運(yùn)動(dòng),
R+=v0t→t=
運(yùn)動(dòng)情景 物理量分析
小球恰好從圓柱體的Q點(diǎn)沿切線飛過(guò),此時(shí)半徑
OQ垂直于速度方向,圓心角θ與速度的偏向角相

如圖所示,在豎直放置的半球形容器的中心O點(diǎn)分別以水平初速度
v1、v2沿相反方向拋出兩個(gè)小球1和2(可視為質(zhì)點(diǎn)),最終它們分別落在
圓弧上的A點(diǎn)和B點(diǎn),已知OA與OB互相垂直,且OA與豎直方向成α角,則
兩小球的初速度之比為( ?。?br/>A. tan α B. cos α
C. tan α D. cos α

解析:兩小球被拋出后都做平拋運(yùn)動(dòng),設(shè)容器的半徑為R,兩小球運(yùn)動(dòng)的
時(shí)間分別為t1、t2。則對(duì)小球1有Rsin α=v1t1,Rcos α=g,對(duì)小球2,有
Rcos α=v2t2,Rsin α=g,解得兩小球的初速度之比為=tan α,
故C正確。
 〔多選〕(2025·廣西南寧模擬)如圖所示,四分之一圓弧面的半徑R與
斜面的豎直高度相等,斜面的傾角為60°,圓弧面的圓心為圖中O點(diǎn),在
斜面的頂端A點(diǎn)將多個(gè)小球以不同的水平速度拋出,設(shè)小球碰到接觸面后
均不再反彈,已知重力加速度為g,則以下說(shuō)法正確的是( ?。?br/>A. 小球有可能垂直打到圓弧面上
B. 小球拋出的初速度越大,則運(yùn)動(dòng)時(shí)間越短
C. 小球拋出的速度等于時(shí),運(yùn)動(dòng)時(shí)間最長(zhǎng)
D. 若小球拋出的速度小于,則落到接觸面時(shí)速度偏角均相同


解析:  如圖所示,根據(jù)平拋運(yùn)動(dòng)的推論,速度方向
延長(zhǎng)線交于水平位移的中點(diǎn),當(dāng)圓心O為圖中水平位移
AA'的中點(diǎn)時(shí),小球垂直打在圓弧面B點(diǎn),故A正確;根
據(jù)h=gt2,當(dāng)小球打在斜面上時(shí),小球拋出的初速度越
大,小球下落高度越大,小球運(yùn)動(dòng)的時(shí)間越長(zhǎng);當(dāng)小球
打在圓弧面上時(shí),小球拋出的初速度越大,小球下落高度越小,小球運(yùn)動(dòng)的時(shí)間越短,故B錯(cuò)誤;當(dāng)小球剛好落在O點(diǎn)正下方時(shí),下落高度最大,運(yùn)動(dòng)時(shí)間最長(zhǎng),則有R=gt2,=v0t,聯(lián)立解得v0=,故C錯(cuò)誤;由以上可知,若小球拋出的速度小于,小球均落在斜面上,根據(jù)平拋運(yùn)動(dòng)推論可知,落到斜面上時(shí)速度偏角均滿足tan θ=2tan 60°=2,即落到接觸面上時(shí)速度偏角均相同,故D正確。
突破點(diǎn)三 平拋運(yùn)動(dòng)中的臨界極值問(wèn)題
1. 常見(jiàn)的“臨界術(shù)語(yǔ)”
(1)題目中有“剛好”“恰好”“正好”“取值范圍”“多長(zhǎng)時(shí)
間”“多大距離”等詞語(yǔ),表明題述的過(guò)程中存在臨界點(diǎn)。
(2)題目中有“最大”“最小”“至多”“至少”等字眼,表明題述的
過(guò)程中存在著極值。
2. 平拋運(yùn)動(dòng)臨界、極值問(wèn)題的分析方法
(1)確定研究對(duì)象的運(yùn)動(dòng)性質(zhì);
(2)根據(jù)題意確定臨界狀態(tài);
(3)確定臨界軌跡,畫(huà)出軌跡示意圖;
(4)應(yīng)用平拋運(yùn)動(dòng)的規(guī)律結(jié)合臨界條件列方程求解。
平拋運(yùn)動(dòng)的臨界問(wèn)題
如圖所示,窗子上、下沿間的高度H=1.6 m,
豎直墻的厚度d=0.4 m,某人在距離墻壁L=1.4 m、
距窗子上沿h=0.2 m處的P點(diǎn),將可視為質(zhì)點(diǎn)的小物
件以垂直于墻壁的速度v水平拋出,要求小物件能直
接穿過(guò)窗口并落在水平地面上,不計(jì)空氣阻力,重力加速度取g=10 m/s2,則可以實(shí)現(xiàn)上述要求的速度大小是(  )
A. 2 m/s B. 4 m/s
C. 8 m/s D. 10 m/s

解析:小物件做平拋運(yùn)動(dòng),恰好擦著窗子上沿右側(cè)墻邊緣穿過(guò)時(shí)速度v最
大。此時(shí)有L=vmaxt1,h=g,代入數(shù)據(jù)解得vmax=7 m/s,小物件恰好擦
著窗口下沿左側(cè)墻邊緣穿過(guò)時(shí)速度v最小,則有L+d=vmint2,H+h=
g,代入數(shù)據(jù)解得vmin=3 m/s,故v的取值范圍是3 m/s≤v≤7 m/s,故B
正確,A、C、D錯(cuò)誤。
平拋運(yùn)動(dòng)的極值問(wèn)題
某科技比賽中,參賽者設(shè)計(jì)了一個(gè)軌道模型,
如圖所示。模型放到0.8 m高的水平桌子上,最高
點(diǎn)距離水平地面2 m,右端出口水平。現(xiàn)讓小球在
最高點(diǎn)由靜止釋放,忽略阻力作用,為使小球飛得最遠(yuǎn),右端出口距離桌面的高度應(yīng)設(shè)計(jì)為( ?。?br/>A. 0 B. 0.1 m
C. 0.2 m D. 0.3 m

解析:設(shè)最高點(diǎn)距離水平地面的高度為H,右端出口距離地面距離為h,小
球從最高點(diǎn)到右端出口,根據(jù)機(jī)械能守恒定律,有mg(H-h(huán))=mv2,從
右端出口飛出后小球做平拋運(yùn)動(dòng),有x=vt,h=gt2,聯(lián)立解得x=
2,根據(jù)數(shù)學(xué)知識(shí)知,當(dāng)H-h(huán)=h時(shí),x最大,即h=1 m時(shí),小
球飛得最遠(yuǎn),此時(shí)右端出口距離桌面高度為Δh=1 m-0.8 m=0.2 m,故C
正確。
培養(yǎng)“思維”·重落實(shí)
夯基 提能 升華
1. (2025·安徽蚌埠三模)如圖為某運(yùn)動(dòng)員自由式滑雪訓(xùn)練場(chǎng)景示意圖,
運(yùn)動(dòng)員從跳臺(tái)a處沿水平方向飛出,在斜坡b處著陸,如果其在空中運(yùn)動(dòng)過(guò)
程中與斜面間的最大距離為 m,斜坡與水平方向的夾角為30°,重力加
速度g取10 m/s2,則其從a處飛出時(shí)的速度大小為( ?。?br/>A. 10 m/s B. 5 m/s
C. m/s D. m/s
1
2
3
4
5
6
7
8
9
10
11
12

解析:  將運(yùn)動(dòng)員在a處的速度及重力加速度g分解為垂直于斜面方向和
沿斜面方向,則沿垂直于斜面方向,當(dāng)運(yùn)動(dòng)員到達(dá)距離斜面最大高度時(shí),
有hm== m,解得v0=10 m/s,故選A。
1
2
3
4
5
6
7
8
9
10
11
12
2. (2025·福建福州期末)如圖所示,以水平初速度v0=10 m/s拋出的物體,飛行一段時(shí)間后,垂直地撞在傾角為60°的斜面上。不計(jì)空氣阻力,重力加速度取g=10 m/s2,則物體完成這段飛行的時(shí)間是( ?。?br/>A. s B. 1 s C. s D. 2 s

1
2
3
4
5
6
7
8
9
10
11
12
解析:  物體撞在斜面上的速度與斜面方向垂直,將該
速度分解,如圖所示。由于不計(jì)空氣阻力,因此物體水平
方向的速度仍為v0,設(shè)物體豎直方向的速度為vy,則tan
60°==,此外,由于物體豎直方向只受到重力,
因此豎直方向的加速度為重力加速度g,且物體豎直方向的初速度為零,則有vy=gt,聯(lián)立兩式解得t= s,故選A。
1
2
3
4
5
6
7
8
9
10
11
12
3. (2025·四川德陽(yáng)一模)如圖所示,在豎直直角坐標(biāo)系內(nèi)有一高度為8
m、傾角為37°的斜面,將小球從+y軸上位置(0,8 m)處沿+x方向水
平拋出,初速度為4 m/s,g取10 m/s2,則小球第一次在斜面上的落點(diǎn)位置
為( ?。?br/>A. (3 m,4 m) B. (3 m,5 m)
C. (4 m,5 m) D. (4 m,3 m)

1
2
3
4
5
6
7
8
9
10
11
12
解析:  設(shè)小球第一次在斜面上的落點(diǎn)位置為(x,y),小球在空中
做平拋運(yùn)動(dòng),水平方向有x=v0t,豎直方向有y0-y=gt2,其中v0=4
m/s,y0=8 m,又由幾何關(guān)系可得tan 37°=,聯(lián)立解得x=4 m,y=
3 m,故選D。
1
2
3
4
5
6
7
8
9
10
11
12
4. (2025·黑龍江哈爾濱期中)如圖所示,圓環(huán)豎直放置,從圓心O點(diǎn)正上
方的P點(diǎn),以速度v0水平拋出的小球恰能從圓環(huán)上的Q點(diǎn)沿切線方向飛過(guò),
若OQ與OP間夾角為θ,不計(jì)空氣阻力,重力加速度為g,則( ?。?br/>A. 圓環(huán)的半徑為R=
B. 小球從P點(diǎn)運(yùn)動(dòng)到Q點(diǎn)的時(shí)間t=
C. 小球從P點(diǎn)運(yùn)動(dòng)到Q點(diǎn)的速度變化量
D. 小球運(yùn)動(dòng)到Q點(diǎn)時(shí)的速度大小為vQ=

1
2
3
4
5
6
7
8
9
10
11
12
解析: 以速度v0水平拋出的小球恰能從圓環(huán)上的Q點(diǎn)沿切線方向飛過(guò),
小球運(yùn)動(dòng)到Q點(diǎn)時(shí)的速度大小為vQ=,故D錯(cuò)誤;小球在Q點(diǎn)的豎直方
向的速度為vQy=v0tan θ,小球從P點(diǎn)運(yùn)動(dòng)到Q點(diǎn)的時(shí)間t==,故B
錯(cuò)誤;小球水平方向做勻速直線運(yùn)動(dòng),有Rsin θ=v0t,聯(lián)立可得圓環(huán)的半
徑為R=,故A正確;小球從P點(diǎn)運(yùn)動(dòng)到Q點(diǎn)的速度變化量Δv=gt=
v0tan θ,故C錯(cuò)誤。
1
2
3
4
5
6
7
8
9
10
11
12
5. (2025·江西贛州期末)如圖所示,在豎直平面內(nèi)有一曲面,曲面方程
為y=x2,在y軸上有一點(diǎn)P,坐標(biāo)為(0,6)。從P點(diǎn)將一可以看成質(zhì)點(diǎn)的
小球水平拋出,初速度為1 m/s。不計(jì)空氣阻力,g取10 m/s2,則小球打在
曲面上所用時(shí)間為(  )
A. 1 s B. s
C. s D. s

1
2
3
4
5
6
7
8
9
10
11
12
解析:  小球做平拋運(yùn)動(dòng),則打在曲面上時(shí),豎直方向位移為h=gt2,
水平位移x=v0t,則小球的坐標(biāo)為,小球打在曲面上,滿
足曲面方程y=x2,將小球坐標(biāo)代入曲面方程,解得t=1 s,故A正確,B、
C、D錯(cuò)誤。
1
2
3
4
5
6
7
8
9
10
11
12
6. 如圖所示,乒乓球的發(fā)球器安裝在水平桌面上,豎直轉(zhuǎn)軸OO'距桌面的
高度為h,發(fā)射器O'A部分長(zhǎng)度也為h。打開(kāi)開(kāi)關(guān)后,可將乒乓球從A點(diǎn)以初
速度v0水平發(fā)射出去,其中≤v0≤2,設(shè)發(fā)射出的所有乒乓球都
能落到桌面上,乒乓球自身尺寸及空氣阻力不計(jì)。若使該發(fā)球器繞轉(zhuǎn)軸
OO'在90°角的范圍內(nèi)來(lái)回緩慢水平轉(zhuǎn)動(dòng),持續(xù)發(fā)射足夠長(zhǎng)時(shí)間后,乒乓
球第一次與桌面相碰區(qū)域的最大面積S是(  )
A. 2πh2 B. 3πh2
C. 4πh2 D. 8πh2

1
2
3
4
5
6
7
8
9
10
11
12
解析:  根據(jù)平拋運(yùn)動(dòng)規(guī)律h=gt2,解得t=,以最小速度v1=
發(fā)射的乒乓球,水平位移最小,為x1=v1t=×=2h,對(duì)應(yīng)的與桌
面相碰區(qū)域的圓半徑為r1=h+x1=3h,以最大速度v2=2發(fā)射的乒乓
球,水平位移最大,為x2=v2t=2×=4h,對(duì)應(yīng)的與桌面相碰區(qū)域
的圓半徑為r2=h+x2=5h,乒乓球第一次與桌面相碰區(qū)域的最大面積S=
π[(5h)2-(3h)2]=4πh2,故C正確。
1
2
3
4
5
6
7
8
9
10
11
12
7. 〔多選〕(2025·山東菏澤期中)如圖所示為固定的半圓形豎直軌道,
AB為水平直徑,O為圓心,同時(shí)從A點(diǎn)水平拋出甲、乙兩個(gè)小球,初速度
分別為v1、v2,落在軌道上的C、D兩點(diǎn),OC、OD連線與豎直方向的夾角
均為30°,忽略空氣阻力,兩小球均可視為質(zhì)點(diǎn),則( ?。?br/>A. 甲、乙兩球同時(shí)落到軌道上
B. v1∶v2=1∶3
C. 乙球的速度變化量比甲球的大
D. 乙球在D點(diǎn)速度的反向延長(zhǎng)線一定過(guò)O點(diǎn)


1
2
3
4
5
6
7
8
9
10
11
12
解析:  兩個(gè)小球下落的高度是相等的,根據(jù)h=gt2,又Δv=gt,可知
甲、乙兩球下落到軌道的時(shí)間相等,速度變化相等,故A正確,C錯(cuò)誤;設(shè)
圓形軌道的半徑為R,則甲水平位移為x1=R-Rsin 30°=0.5R,乙水平位
移為x2=R+Rsin 30°=1.5R,可得x2=3x1,水平方向做勻速直線運(yùn)動(dòng),
則有v1∶v2=1∶3,故B正確;D點(diǎn)速度反向延長(zhǎng)線過(guò)水平位移中點(diǎn),所以
乙球在D點(diǎn)速度的反向延長(zhǎng)線不過(guò)O點(diǎn),故D錯(cuò)誤。
1
2
3
4
5
6
7
8
9
10
11
12
8. (2025·云南昆明模擬)如圖所示,從高H=5 m處的A點(diǎn)先后水平拋出兩
個(gè)小球1和2。球1與地面碰撞一次后,恰好越過(guò)位于水平地面上的豎直擋
板落在水平地面上的E點(diǎn),已知碰撞前后的水平分速度不變、豎直分速度
等大反向。球2的初速度v0=3 m/s,也恰好越過(guò)擋板落在E點(diǎn),忽略空氣阻
力,取重力加速度g=10 m/s2。下列說(shuō)法正確的是(  )
A. 小球2的水平射程為5 m
B. 小球1平拋運(yùn)動(dòng)的初速度為1.5 m/s
C. 拋出點(diǎn)A與豎直擋板頂端D點(diǎn)的高度差h= m
D. 拋出點(diǎn)A與豎直擋板頂端D點(diǎn)的高度差h=1.25 m

1
2
3
4
5
6
7
8
9
10
11
12
解析:  根據(jù)H=gt2,x=v0t,小球2的水平射程為x=3 m,A錯(cuò)
誤;兩球均落到E點(diǎn),根據(jù)對(duì)稱性可知,小球1和2運(yùn)動(dòng)總時(shí)間之比為
t1∶t2=3∶1,小球1落至C點(diǎn)的水平位移為x1==1 m,小球1平拋運(yùn)
動(dòng)的初速度為v1=,得v1=1 m/s,B錯(cuò)誤;球2運(yùn)動(dòng)至擋板頂端D與球
1從擋板頂端D運(yùn)動(dòng)至最高點(diǎn)的時(shí)間相同,則對(duì)應(yīng)的水平方向位移之和
為v0+v1=2 m,得拋出點(diǎn)A與豎直擋板頂端D點(diǎn)的高度差為h=
1.25 m,故C錯(cuò)誤,D正確。
1
2
3
4
5
6
7
8
9
10
11
12
9. (2025·湖北荊州期末)如圖所示,斜面傾角為θ,位于斜面底端A正上
方的小球以初速度v0正對(duì)斜面頂點(diǎn)B水平拋出,小球到達(dá)斜面經(jīng)過(guò)的時(shí)間為
t,重力加速度為g,B到斜面底邊的豎直高度為H,則下列說(shuō)法中正確的是
( ?。?br/>A. 若小球以最小位移到達(dá)斜面,則t=
B. 若小球以最小位移到達(dá)斜面,則v0=sin θ
C. 若小球能擊中斜面中點(diǎn),則t=
D. 若小球垂直擊中斜面,則t=

1
2
3
4
5
6
7
8
9
10
11
12
解析: 過(guò)拋出點(diǎn)作斜面的垂線CD,如圖所示,當(dāng)小球
落在斜面上的D點(diǎn)時(shí),位移最小,設(shè)運(yùn)動(dòng)的時(shí)間為t,則水
平方向,有x=v0t,豎直方向,有y=gt2,根據(jù)幾何關(guān)系
有=tan θ,則有=tan θ,解得t=,故A錯(cuò)誤;由A選項(xiàng)可知v0=x,由幾何關(guān)系可得此時(shí)豎直方向位移y=Hcos θ·cos θ=Hcos2 θ,水平方向位移x=Hcos θsin θ,由以上可知v0=sin θ,故B正確;
1
2
3
4
5
6
7
8
9
10
11
12
若小球能擊中斜面中點(diǎn),小球下落的高度設(shè)為h,水平位移設(shè)為x1,則由幾何關(guān)系可得tan θ===,解得t1=,故C錯(cuò)誤;小球垂直擊中斜面時(shí)速度與豎直方向的夾角為θ,則tan θ=,解得t=,故D錯(cuò)誤。
1
2
3
4
5
6
7
8
9
10
11
12
10. (2025·湖北武漢模擬)如圖所示,傾角為37°的斜面固定在水平面
上,小球從斜面上M點(diǎn)的正上方0.2 m處由靜止下落,在M點(diǎn)與斜面碰撞,
之后落到斜面上的N點(diǎn)。已知小球在碰撞前、后瞬間,速度沿斜面方向的
分量不變,沿垂直于斜面方向的分量大小不變,方向相反,sin 37°=
0.6,cos 37°=0.8,重力加速度大小取g=10 m/s2,忽略空氣阻力,則小
球從M點(diǎn)運(yùn)動(dòng)至N點(diǎn)所用的時(shí)間為( ?。?br/>A. 0.2 s B. 0.3 s
C. 0.4 s D. 0.5 s

1
2
3
4
5
6
7
8
9
10
11
12
解析:  由自由落體運(yùn)動(dòng)公式v2=2gh,得小球到M點(diǎn)
的速度大小為v=2 m/s,以沿斜面方向?yàn)閤軸,以垂直于
斜面方向?yàn)閥軸建立坐標(biāo)系,如圖所示。則vy'=vy=vcos
37°=1.6 m/s,vx=vsin 37°=1.2 m/s,將重力加速度
分解為ay=gcos 37°=8 m/s2,ax=gsin 37°=6 m/s2,小球從M點(diǎn)落到斜面上的N點(diǎn),由運(yùn)動(dòng)學(xué)公式y(tǒng)=vy't-ayt2=0,代入數(shù)據(jù)解得t=0.4 s,故選C。
1
2
3
4
5
6
7
8
9
10
11
12
11. (2025·河北邢臺(tái)二中模擬)如圖所示,水平屋頂高H=5 m,圍墻(厚
度不計(jì))高h(yuǎn)=3.2 m,圍墻到房子的水平距離L=3 m,圍墻外空地寬x=
10 m。為使小球從屋頂水平飛出落在圍墻外的空地上,重力加速度g取10
m/s2,求:
(1)小球離開(kāi)屋頂時(shí)的速度v0的大小范圍;
答案: 5 m/s≤v0≤13 m/s 
1
2
3
4
5
6
7
8
9
10
11
12
解析: 設(shè)小球恰好落到空地的右側(cè)邊緣時(shí)的水平初速度為v01,則小
球的水平位移
L+x=v01t1
小球的豎直位移H= g
聯(lián)立解得v01=13 m/s
設(shè)小球恰好越過(guò)圍墻邊緣時(shí)的水平初速度為v02,則小球的水平位移L=v02t2
小球的豎直位移H-h(huán)= g
解得v02=5 m/s
故小球拋出時(shí)的速度大小范圍為5 m/s≤v0≤13 m/s。
1
2
3
4
5
6
7
8
9
10
11
12
(2)小球落在空地上的最小速度。
答案: 5 m/s
解析:小球落在空地上,下落高度一定,落地時(shí)的豎直分速度一定,當(dāng)小
球恰好越過(guò)圍墻的邊緣落在空地上時(shí),落地速度最小。豎直方向有=
2gH
又vmin=
解得vmin=5 m/s。
1
2
3
4
5
6
7
8
9
10
11
12
12. (2025·福建三明模擬)水車是我國(guó)勞動(dòng)人民利
用水能的一項(xiàng)重要發(fā)明。如圖為某景觀水車模型,
水從槽口水平流出,某時(shí)刻正好垂直落在與水平面
成30°角的輪葉邊緣上,輪葉在水流不斷沖擊下而
轉(zhuǎn)動(dòng)。已知水車輪軸到輪緣距離為R,槽口到水車輪軸所在水平面距離為2R,忽略空氣阻
力,重力加速度為g,求:
(1)水流從槽口到輪葉的運(yùn)動(dòng)時(shí)間t;
答案:  
1
2
3
4
5
6
7
8
9
10
11
12
解析: 由幾何知識(shí)知,水流從槽口到輪葉,下落的高度為h=2R-
Rsin 30°
豎直方向上水做自由落體運(yùn)動(dòng),有h=gt2
聯(lián)立解得t=。
1
2
3
4
5
6
7
8
9
10
11
12
(2)水流初速度v0的大小和打在輪葉上的速度v的大小。
答案:  2
解析:設(shè)水流垂直落到輪葉邊緣時(shí)豎直方向的分速度為vy,
則vy=gt水流垂直落在與水平面成30°角的輪葉邊緣上,則tan 30°=
水流打在輪葉上的速度的大小為v=
聯(lián)立可得v0=,v=2。
1
2
3
4
5
6
7
8
9
10
11
12
THANKS
演示完畢 感謝觀看

展開(kāi)更多......

收起↑

資源列表

    <track id="r4fhd"></track>

    <pre id="r4fhd"><abbr id="r4fhd"><code id="r4fhd"></code></abbr></pre>
      <ul id="r4fhd"></ul>

        <menu id="r4fhd"></menu>
        1. 主站蜘蛛池模板: 卓资县| 霍城县| 密云县| 崇文区| 河北省| 平果县| 赤峰市| 沙雅县| 泰州市| 通化市| 新干县| 郴州市| 锦屏县| 墨江| 余庆县| 通渭县| 邵阳市| 芮城县| 自治县| 郁南县| 沁水县| 平昌县| 丰顺县| 静安区| 墨玉县| 枣阳市| 礼泉县| 汤原县| 呼玛县| 衡阳市| 周至县| 九台市| 景德镇市| 江津市| 响水县| 洛扎县| 香格里拉县| 上虞市| 顺义区| 博白县| 滕州市|