中文字幕精品无码一区二区,成全视频在线播放观看方法,大伊人青草狠狠久久,亚洲一区影音先锋色资源

第4章《平面直角坐標系》章節檢測(含解析)八年級數學上冊蘇科版

資源下載
  1. 二一教育資源

第4章《平面直角坐標系》章節檢測(含解析)八年級數學上冊蘇科版

資源簡介

第4章《平面直角坐標系》章節檢測卷
一、選擇題(本大題共10小題,每小題3分,共30分)
1.下列數據中能確定物體位置的是( )
A.某小區26號樓二單元301號 B.長安大街東
C.南偏西 D.北緯
2.點在直角坐標系的軸上,則點坐標為( )
A. B. C. D.
3.下列說法:①若,則點在原點處;②點一定在第二象限;③若點,,且,則直線軸;④若點,,則線段.其中正確是( )
A.②③④ B.①③④ C.①②④ D.①②③
4.在平面直角坐標系中,第四象限內的點到兩坐標軸的距離相等,則的是( )
A.3 B. C.1 D.
5.若點在第三象限,則點在( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
6.平面直角坐標系中的點一定不在的象限是( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
7.已知平面直角坐標系內有三個點,若四邊形是平行四邊形,則點C的坐標為()
A. B. C. D.
8.已知直線軸,點的坐標為,并且線段,則點的坐標為( )
A. B.
C.或 D.或
9.在平面直角坐標系中,過,兩點作直線,下列說法正確的是( )
A.軸 B.軸 C.軸 D.AB經過原點
10.如圖,在平面直角坐標系中,半徑均為個單位長度的半圓、、,,組成一條平滑的曲線,點從原點出發,沿這條曲線向右運動,速度為每秒個單位長度,則第秒時,點的坐標是( )
A. B. C. D.
二、填空題(本大題共10小題,每小題3分,共30分)
11.如圖,平行四邊形的頂點的坐標分別是、、,則點的坐標為 .
12.在平面直角坐標系中,點到兩條坐標軸的距離相等,則a的值是 .
13.在平面直角坐標系中,點坐標,點為軸上一動點,當的長度最短時,其長度為 .
14.平面直角坐標系中,若點在第二象限,則 0(填“”或“”).
15.已知點在軸上,點在軸上,則點位于第 象限.
16.已知點在第二象限,點到軸的距離是點到軸的距離的3倍,則點的坐標為 .
17.在平面直角坐標系中,點的坐標為,軸,,則點的坐標為 .
18.在平面直角坐標系中,點,,,點為平面直角坐標系中的點,以、、、為頂點的四邊形為平行四邊形,則點的坐標 .
19.若點與點關于軸成軸對稱,則 .
20.已知有序數對及常數,我們稱有序數對,為有序數對的“階結伴數對”.如的“1階結伴數對”為即.若有序數對與它的“階結伴數對”關于軸對稱,則此時的值為 .
三、解答題(本大題共5小題,共40分)
21.(本題8分)如圖,把 ABC向上平移3個單位長度,再向右平移2個單位長度,得到.
(1)請在平面直角坐標系上畫出,并寫出點A及點的坐標;
(2) ABC的面積 ;
(3)若點P在y軸上,且的面積是 ABC的面積的2倍,則點P的坐標為 .
22.(本題8分)已知點A的坐標為.
(1)若點A在x軸上,求點A的坐標.
(2)若點A在過點且與y軸平行的直線上,求點A的坐標.
(3)若將點A沿與y軸平行的直線平移2個單位長度后,點A恰好落在x軸上,求x的值.
23.(本題8分)如圖,在平面直角坐標系中,是由 ABC平移得到的.
(1)分別寫出下列各點的坐標:______;______;______;
(2)是由 ABC經過怎樣的平移得到的?
(3)平面內一點經過(2)中的平移后得到,則點是 ABC內部的一點嗎?請說明理由.
24.(本題8分)在平面直角坐標系中,對于點A,若點B的坐標為,其中m為常數,則稱點B是點A的“m級關聯點”.例如,點A的“4級關聯點”點B的坐標為,即B.
(1)點P的“3級關聯點”是_________;
(2)若點C的“2級關聯點”點D在x軸上,求點D的坐標;
(3)在(2)的條件下,若存在點,使得軸,且,求點的坐標.(提示:先由(2)求出點的坐標)
25.(本題8分)如圖是由小正方形組成的網格,每個小正方形的邊長均為1,每個小正方形的頂點叫做格點.在網格中建立如圖所示的平面直角坐標系,三角形的三個頂點都是格點,點A的坐標是,僅用無刻度的直尺在給定的網格中完成畫圖,并回答下列問題.
(1)點B的坐標是___________;點C的坐標是___________;
(2)將三角形先向左平移2個單位長度,再向下平移4個單位長度得到三角形,點的對應點分別是點,請在圖中畫出三角形;
(3)在(2)的條件下,連,則四邊形的面積為___________;
(4)在線段上畫點P,使.
參考答案
一、選擇題
1.A
【知識點】用有序數對表示位置
【分析】本題考查了有序數對表示位置,理解位置的確定需要兩個數據是解題的關鍵.
根據有序數對表示位置需要兩個數據對各選項分析判斷后利用排除法求解.
【詳解】解:A、某小區26號樓二單元301號,物體的位置明確,故本選項符合題意;
B、長安大街東, 物體的位置不明確,故本選項不符合題意;
C、南偏西,只確定方向,不確定距離,即無法確定物體位置,故本選項不符合題意;
D、北緯,只確定方向,不確定距離,即無法確定物體位置,故本選項不符合題意.
故選:A.
2.B
【知識點】寫出直角坐標系中點的坐標
【分析】本題考查了平面直角坐標系點的特點,根據直角坐標系中軸上點的縱坐標為的特征得,解出的值,再代入橫坐標表達式即可確定點的坐標,熟練掌握平面直角坐標系里點的坐標特點是解題的關鍵.
【詳解】解:∵點在直角坐標系的軸上,
∴,
解得,
∴,
∴點的坐標為,
故選:.
3.A
【知識點】判斷點所在的象限、寫出直角坐標系中點的坐標、求點到坐標軸的距離
【分析】本題考查了平面直角坐標系中點的相關知識.逐一分析各命題的正確性即可.
【詳解】解:①:若,則或,此時點在坐標軸上,但不一定在原點,故①錯誤;
②:點的橫坐標為負,縱坐標,滿足第二象限的條件,故②正確;
③:點與的橫坐標相同,且縱坐標不為0,因此直線平行于軸,故③正確;
④:點與的縱坐標相同,線段的長度為橫坐標之差的絕對值:,故④正確;
綜上分析可知:正確的有②③④.
故選:A.
4.D
【知識點】求點到坐標軸的距離、已知點所在的象限求參數
【分析】本題考查了點到坐標軸的距離,點所在象限的特點;根據點P在第四象限,得,再由此點到兩坐標軸的距離相等得:,即可求得a的值.
【詳解】解:∵點P在第四象限,
∴;
∵點P到兩坐標軸的距離相等,
∴,
∴.
故選:D.
5.D
【知識點】判斷點所在的象限
【分析】本題考查判斷點所在的象限,根據第三象限點的坐標特征確定a、b的符號,再分析點B的坐標符號即可判斷所在象限.
【詳解】解:點在第三象限,
橫坐標,縱坐標,
,
點在第四象限.
故選D.
6.C
【知識點】求不等式組的解集、判斷點所在的象限
【分析】本題主要考查平面直角坐標系中點的坐標與象限的關系,以及如何通過代數不等式判斷點可能所在的象限.明確各象限坐標符號特征∶第一象限第二象限,第三象限,第四象限 .分析點的坐標符號,分別假設點P在四個象限,建立不等式組,判斷是否存在解.若某個象限對應的不等式組無解,則點P一定不在該象限.
【詳解】解:假設點P在第一象限:
則且,
解不等式∶.
(存在解,例如).
假設點P在第二象限
則且,
解不等式∶.
(存在解,例如).
假設點P在第三象限
則且,
解不等式∶ 且,矛盾,無解.
假設點P在第四象限:
則且,
解不等式∶.
(存在解,例如).
綜上,點一定不在第三象限.
故選:C.
7.C
【知識點】坐標系中的平移、利用平行四邊形的性質求解
【分析】本題考查平行四邊形的性質,坐標與圖形,解題的關鍵是熟知平行四邊形的性質.
利用平行四邊形對邊平行且相等,結合坐標平移規律求解.
【詳解】解:如圖
∵四邊形是平行四邊形,
∴,.
∵,,
∴;
∵,沿軸方向,
∴點是點向左平移個單位(因為長度為3).
∴向左平移個單位,橫坐標,縱坐標不變,即,
故選:C.
8.D
【知識點】坐標系中的平移
【分析】本題考查了坐標與圖形.根據題意得出的縱坐標為,根據,得出點的橫坐標,即可求解.
【詳解】解:∵直線軸,點的坐標為,
∴的縱坐標為,
∵,
∴點的橫坐標為或,
∴則點的坐標為或,
故選:D.
9.A
【知識點】坐標系中描點、坐標與圖形綜合
【分析】本題考查了坐標與圖形性質,垂直于軸的直線上點的橫坐標相同是解題的關鍵.
根據兩點的橫坐標相等,縱坐標不等,即可得出過兩點的直線垂直于軸.
【詳解】,
軸,
故選:A.
10.C
【知識點】點坐標規律探索
【分析】本題考查圖形坐標規律探究,理解題意,由題意可知,點運動一個半圓所用的時間為秒,點的橫坐標為運動時間的倍,縱坐標以,,,四個數為一個循環,根據規律即可求得第秒點位置,得到點的變化規律是解題的關鍵.
【詳解】解:由題意可知,點運動一個半圓所用的時間為(秒),
當時間為秒時,點;
當時間為秒時,點;
當時間為秒時,點;
當時間為秒時,點;
當時間為秒時,點,
.....;
∴點的橫坐標為運動時間的倍,縱坐標以,,,四個數為一個循環,
∴當時間為秒時,點的橫坐標為,由,則點的縱坐標為,
∴點的坐標是,
故選:.
二、填空題
11.
【知識點】利用平行四邊形的性質求解、坐標與圖形綜合、寫出直角坐標系中點的坐標
【分析】本題主要考查平行四邊形的性質,坐標與圖形的性質等知識,熟練掌握平行四邊形的性質是解題的關鍵.根據平行四邊形的性質可得,點的縱坐標與點的縱坐標相等,從而即可得到點的坐標.
【詳解】解:,,
,
為平行四邊形,
,,
點的縱坐標與點的縱坐標相等,
點的坐標為,
故答案為:.
12.或3
【知識點】求點到坐標軸的距離
【分析】本題考查點到坐標軸的距離,點到x軸的距離等于縱坐標的絕對值,點到y軸的距離等于橫坐標的絕對值,由此可得,分情況討論即可.
【詳解】解:點到兩條坐標軸的距離相等,
,

解得或,
故答案為:或3.
13.4
【知識點】求點到坐標軸的距離、垂線段最短
【分析】本題考查垂線段最短,點到坐標軸的距離,根據垂線段最短,得到當軸時,的長度最短,即為點縱坐標的絕對值,即可得出結果.
【詳解】解:由題意,得:當軸時,的長度最短,
∵點A坐標為,
∴軸時,的長度最短,為4;
故答案為:4.
14.
【知識點】判斷點所在的象限
【分析】本題考查了平面直角坐標系中各象限內點的坐標特征,解題的關鍵是掌握各象限內點的坐標符號特點.
根據平面直角坐標系中第二象限內點的坐標特征進行判斷.
【詳解】在平面直角坐標系中,四個象限的符號特點分別是:第一象限;第二象限;第三象限;第四象限.
已知點在第二象限,第二象限內點的橫坐標為負,縱坐標為正,
所以.
故答案為:.
15.二
【知識點】判斷點所在的象限、已知點所在的象限求參數
【分析】本題考查平面直角坐標系中點的坐標特征,熟知坐標軸上及象限內的點的坐標特征是解答的關鍵.根據坐標軸上點的坐標特征求得m、n值,再根據各個象限中點的坐標特征解答即可.
【詳解】解:∵點在軸上,點在軸上,
∴,,
解得,,
∴點在第二象限,
故答案為:二.
16.
【知識點】求點到坐標軸的距離、已知點所在的象限求參數
【分析】本題考查坐標系中點的坐標特征,由點在第二象限,可知,再由點到軸的距離是點到軸的距離的3倍,列方程求解即可得到答案.熟記坐標系中點的坐標特征是解決問題的關鍵.
【詳解】解:點在第二象限,點到軸的距離是點到軸的距離的3倍,

,
解得,
,
故答案為:.
17.或.
【知識點】寫出直角坐標系中點的坐標、坐標系中的平移
【分析】本題考查了坐標與圖形的性質,要掌握平行于y軸的直線上的點橫坐標相等,再根據兩點相對的位置及兩點距離確定點的坐標.
線段軸,A、B兩點橫坐標相等,又,B點在A點上邊或者下邊,根據距離確定B點坐標.
【詳解】解:∵軸,
∴A、B兩點的橫坐標相同,
又,
∴B點縱坐標為:或,
∴B點的坐標為:或.
故答案為:或.
18.或或
【知識點】坐標系中的平移
【分析】本題考查了平行四邊形的性質,坐標與圖形的性質.分三種情況:①為對角線時,②為對角線時,③為對角線時;由平行四邊形的性質容易得出點的坐標.
【詳解】解:如圖,分三種情況:
①為對角線時,平行且等于,點的坐標為;
②為對角線時,平行且等于,點的坐標為;
③為對角線時,平行且等于,點的坐標為;
綜上所述,點的坐標為或或.
故答案為:或或.
19.4
【知識點】坐標與圖形變化——軸對稱、坐標系中的對稱
【分析】本題考查了坐標與圖形變換-軸對稱,熟練掌握點坐標的軸對稱變化規律是解題關鍵.根據關于軸對稱的兩個點的橫坐標互為相反數、縱坐標相等可求出的值,再代入計算即可得.
【詳解】解:∵點與點關于軸成軸對稱,
∴,
∴,
∴,
故答案為:4.
20.
三、解答題
21.(1)解:如圖,即為所作,

由圖可得:,;
(2)解: ABC的面積;
(3)解:設點的坐標為,
∵的面積是 ABC的面積的2倍,
∴,
解得或,
∴點的坐標為或.
22.(1)∵點A在x軸上,

∴,
∴,
∴點A的坐標為.
(2)∵點A在過點且與y軸平行的直線上,
∴,
∴,
∴,
∴點A的坐標為
(3)∵將點A沿與y軸平行的直線平移2個單位長度后,點A恰好落在x軸上,
∴,
∴或.
23.(1)解:;;.
故答案為:;;.
(2) ABC向左平移4個單位再向下平移2個單位得到
(3)平面內一點經過(2)中的平移后得到即

解得:
∴,根據坐標系可得點不是 ABC內部的一點
24.(1)解:由題意可得:
點P的“3級關聯點”是,即,
故答案為:;
(2)解:由題意可得:
點C的“2級關聯點”點D的坐標為:,
∵點D在x軸上,
∴,
∴,
∴,點;
(3)解:由(2)可知,點,
∵軸,
∴點的橫坐標為,
設點的縱坐標為,
∵,
∴,
解得:或,
∴點的坐標為或.
25.(1)解:根據圖形得,
故答案為:;
(2)解:如圖所示,三角形為所求,
(3)解:四邊形的面積為,
故答案為:;
(4)解:如圖所示,點為所求,
∵,
∴,
∵,
∴.

展開更多......

收起↑

資源預覽

<pre id="tfb94"><li id="tfb94"></li></pre>

<bdo id="tfb94"><rt id="tfb94"></rt></bdo>
  • <menu id="tfb94"><dl id="tfb94"></dl></menu><i id="tfb94"><acronym id="tfb94"><sub id="tfb94"></sub></acronym></i>

    1. 主站蜘蛛池模板: 当涂县| 伊金霍洛旗| 汝南县| 伊川县| 义乌市| 当阳市| 东乌| 博爱县| 常山县| 汕头市| 利川市| 蛟河市| 毕节市| 岗巴县| 厦门市| 布尔津县| 隆林| 新余市| 南宁市| 砀山县| 上杭县| 永丰县| 林州市| 隆回县| 宁化县| 宝清县| 科技| 桦南县| 西安市| 屏山县| 利辛县| 白河县| 兰溪市| 大丰市| 浦县| 和田市| 沙湾县| 张掖市| 韩城市| 汉源县| 遂平县|