資源簡(jiǎn)介 專題微課 構(gòu)造法求數(shù)列通項(xiàng)公式 數(shù)列構(gòu)造法是一種常用的數(shù)學(xué)解題方法,通常用于解決一些看似復(fù)雜或難以直接解決的問(wèn)題,其核心思想是將原問(wèn)題轉(zhuǎn)化為一個(gè)等差或等比數(shù)列問(wèn)題,通過(guò)數(shù)列的性質(zhì)規(guī)律求解.題型(一) 形如an+1=pan+q的遞推關(guān)系求通項(xiàng)公式[例1] 已知數(shù)列{an}滿足a1=,an+1=(an+1),求通項(xiàng)公式an.聽(tīng)課記錄:|思|維|建|模| 形如=pan+q(其中p,q為常數(shù),且pq(p-1)≠0)可用待定系數(shù)法求得通項(xiàng)公式,步驟如下:(1)假設(shè)遞推公式可改寫(xiě)為+t=p(an+t).(2)由待定系數(shù)法,解得t=.(3)寫(xiě)出數(shù)列的通項(xiàng)公式.(4)寫(xiě)出數(shù)列{an}的通項(xiàng)公式. [針對(duì)訓(xùn)練]1.已知數(shù)列{an}滿足=2an+2,且a1=1,則 ( )A.{an}是等差數(shù)列B.{an}是等比數(shù)列C.{an+1}是等比數(shù)列D.{an+2}是等比數(shù)列2.已知數(shù)列{an}滿足a1=1,=2an+1,求{an}的通項(xiàng)公式.題型(二) 形如an=p+pn的遞推關(guān)系求通項(xiàng)公式[例2] 已知數(shù)列{an}滿足an=2an-1+2n(n≥2),且a1=1,求數(shù)列{an}的通項(xiàng)公式.聽(tīng)課記錄: [變式拓展] 本例中“an=2an-1+2n”變?yōu)椤癮n=2an-1+2n+1”,其余不變,求數(shù)列{an}的通項(xiàng)公式.|思|維|建|模| 形如an=pan-1+pn(p≠0且p≠1)的遞推關(guān)系求通項(xiàng)公式的一般步驟第一步:等式兩邊同除以pn,不管這一項(xiàng)是pn-1或pn+1,都同除以pn,為的是數(shù)列的下標(biāo)和p的指數(shù)對(duì)應(yīng)起來(lái).第二步:寫(xiě)出數(shù)列的通項(xiàng)公式.第三步:寫(xiě)出數(shù)列{an}的通項(xiàng)公式. [針對(duì)訓(xùn)練]3.已知數(shù)列{an}滿足=+,且a1=1,求數(shù)列{an}的通項(xiàng)公式.4.已知數(shù)列{an}中,a1=3,an+1=3an+2×3n+1,n∈N*,求數(shù)列{an}的通項(xiàng)公式.題型(三) 形如an+1=(A,B,C為常數(shù))的遞推關(guān)系求通項(xiàng)公式[例3] 已知數(shù)列{an}中,a1=1,an+1=(n∈N*),則數(shù)列{an}的通項(xiàng)公式an= . 聽(tīng)課記錄:|思|維|建|模| 形如an+1=(A,B,C為常數(shù)且A≠0)的數(shù)列,可通過(guò)兩邊同時(shí)取倒數(shù)的方法構(gòu)造新數(shù)列求解. [針對(duì)訓(xùn)練]5.[多選]已知數(shù)列{an}滿足a1=1,=(n∈N*),則下列結(jié)論正確的有 ( )A.為等比數(shù)列B.{an}的通項(xiàng)公式為an=C.{an}為遞增數(shù)列D.的前n項(xiàng)和Tn=2n+2-3n-4專題微課 構(gòu)造法求數(shù)列通項(xiàng)公式[題型(一)][例1] 解:∵an+1=an+,∴an+1-1=(an-1).又a1-1=-.∴數(shù)列{an-1}是首項(xiàng)為-,公比為的等比數(shù)列.∴an-1=-×n-1,∴an=1-×n-1.[針對(duì)訓(xùn)練]1.選D 由an+1=2an+2,可得an+1+2=2(an+2),所以=2.又由a1=1,得a1+2=3,所以{an+2}是首項(xiàng)為3,公比為2的等比數(shù)列.所以an+2=3×2n-1,an=3×2n-1-2,an+1=3×2n-2,an+1-an=3×2n-2-(3×2n-1-2)=3×2n-1,所以{an}不是等差數(shù)列;=不等于常數(shù),所以{an}不是等比數(shù)列;=不等于常數(shù),所以{an+1}不是等比數(shù)列.2.解:∵an+1=2an+1,令an+1+t=2(an+t),即an+1=2an+t,∴t=1,即an+1+1=2(an+1),∴數(shù)列{an+1}是以2為首項(xiàng),2為公比的等比數(shù)列.∴an+1=2×2n-1=2n,∴an=2n-1.[題型(二)][例2] 解:因?yàn)閍n=2an-1+2n(n≥2),等式兩邊同時(shí)除以2n,得=+1,即-=1,又=,所以是以為首項(xiàng),1為公差的等差數(shù)列,即=+(n-1)×1,所以an=×2n.[變式拓展]解:等式兩邊同時(shí)除以2n,得=+2,即-=2,又=,所以是以為首項(xiàng),2為公差的等差數(shù)列,所以=+(n-1)×2,即an=×2n.[針對(duì)訓(xùn)練]3.解:由題意,等式兩邊同乘2n,得=+1,即-=1,所以是以2為首項(xiàng),1為公差的等差數(shù)列,所以=2+(n-1)×1=n+1,即an=.4.解:由an+1=3an+2×3n+1,得=+2,∴-=2,又=1,即數(shù)列是首項(xiàng)為1,公差為2的等差數(shù)列,∴=2n-1,得an=(2n-1)·3n.[題型(三)][例3] 解析:因?yàn)閍n+1=,a1=1,所以an≠0,所以=+,即-=.又a1=1,則=1,所以是以1為首項(xiàng),為公差的等差數(shù)列.所以=+(n-1)×=+.所以an=.答案:[針對(duì)訓(xùn)練]5.選ABD 因?yàn)閍n+1=(n∈N*),得=+3,可轉(zhuǎn)化為+3=2,所以是以+3=4為首項(xiàng),2為公比的等比數(shù)列,故+3=4·2n-1=2n+1,所以=2n+1-3,所以an=.易知{an}為遞減數(shù)列,故A、B正確,C錯(cuò)誤.的前n項(xiàng)和Tn=-3n=2n+2-3n-4,故D正確.1 / 2(共38張PPT)專題微課 構(gòu)造法求數(shù)列通項(xiàng)公式數(shù)列構(gòu)造法是一種常用的數(shù)學(xué)解題方法,通常用于解決一些看似復(fù)雜或難以直接解決的問(wèn)題,其核心思想是將原問(wèn)題轉(zhuǎn)化為一個(gè)等差或等比數(shù)列問(wèn)題,通過(guò)數(shù)列的性質(zhì)規(guī)律求解.CONTENTS目錄123題型(一) 形如an+1=pan+q的遞推關(guān)系求通項(xiàng)公式題型(二) 形如an=pan-1+pn的遞推關(guān)系求通項(xiàng)公式題型(三) 形如an+1=(A,B,C為常數(shù))的遞推關(guān)系求通項(xiàng)公式4課時(shí)檢測(cè)題型(一) 形如an+1=pan+q的遞推關(guān)系求通項(xiàng)公式01[例1] 已知數(shù)列{an}滿足a1=,an+1=(an+1),求通項(xiàng)公式an.解:∵an+1=an+,∴an+1-1=(an-1).又a1-1=-.∴數(shù)列{an-1}是首項(xiàng)為-,公比為的等比數(shù)列.∴an-1=-×,∴an=1-×.|思|維|建|模| 形如=pan+q(其中p,q為常數(shù),且pq(p-1)≠0)可用待定系數(shù)法求得通項(xiàng)公式,步驟如下:(1)假設(shè)遞推公式可改寫(xiě)為+t=p(an+t).(2)由待定系數(shù)法,解得t=.(3)寫(xiě)出數(shù)列的通項(xiàng)公式.(4)寫(xiě)出數(shù)列{an}的通項(xiàng)公式.針對(duì)訓(xùn)練1.已知數(shù)列{an}滿足=2an+2,且a1=1,則( )A.{an}是等差數(shù)列 B.{an}是等比數(shù)列C.{an+1}是等比數(shù)列 D.{an+2}是等比數(shù)列√解析:由=2an+2,可得+2=2(an+2),所以=2.又由a1=1,得a1+2=3,所以{an+2}是首項(xiàng)為3,公比為2的等比數(shù)列.所以an+2=3×,an=3×-2,=3×2n-2,-an=3×2n-2-(3×-2)=3×,所以{an}不是等差數(shù)列;=不等于常數(shù),所以{an}不是等比數(shù)列;=不等于常數(shù),所以{an+1}不是等比數(shù)列.2.已知數(shù)列{an}滿足a1=1,=2an+1,求{an}的通項(xiàng)公式.解:∵=2an+1,令+t=2(an+t),即=2an+t,∴t=1,即+1=2(an+1),∴數(shù)列{an+1}是以2為首項(xiàng),2為公比的等比數(shù)列.∴an+1=2×=2n,∴an=2n-1.題型(二) 形如an=pan-1+pn的遞推關(guān)系求通項(xiàng)公式02[例2] 已知數(shù)列{an}滿足an=2an-1+2n(n≥2),且a1=1,求數(shù)列{an}的通項(xiàng)公式.解:因?yàn)閍n=2an-1+2n(n≥2),等式兩邊同時(shí)除以2n,得=+1,即-=1,又=,所以是以為首項(xiàng),1為公差的等差數(shù)列,即=+(n-1)×1,所以an=×2n.變式拓展本例中“an=2an-1+2n”變?yōu)椤癮n=2an-1+2n+1”,其余不變,求數(shù)列{an}的通項(xiàng)公式.解:等式兩邊同時(shí)除以2n,得=+2,即-=2,又=,所以是以為首項(xiàng),2為公差的等差數(shù)列,所以=+(n-1)×2,即an=×2n.|思|維|建|模| 形如an=pan-1+pn(p≠0且p≠1)的遞推關(guān)系求通項(xiàng)公式的一般步驟第一步:等式兩邊同除以pn,不管這一項(xiàng)是pn-1或pn+1,都同除以pn,為的是數(shù)列的下標(biāo)和p的指數(shù)對(duì)應(yīng)起來(lái).第二步:寫(xiě)出數(shù)列的通項(xiàng)公式.第三步:寫(xiě)出數(shù)列{an}的通項(xiàng)公式.針對(duì)訓(xùn)練3.已知數(shù)列{an}滿足=+,且a1=1,求數(shù)列{an}的通項(xiàng)公式.解:由題意,等式兩邊同乘2n,得=+1,即-=1,所以是以2為首項(xiàng),1為公差的等差數(shù)列,所以=2+(n-1)×1=n+1,即an=.4.已知數(shù)列{an}中,a1=3,an+1=3an+2×3n+1,n∈N*,求數(shù)列{an}的通項(xiàng)公式.解:由an+1=3an+2×3n+1,得=+2,∴-=2,又=1,即數(shù)列是首項(xiàng)為1,公差為2的等差數(shù)列,∴=2n-1,得an=(2n-1)·3n.03題型(三) 形如an+1=(A,B,C為常數(shù))的遞推關(guān)系求通項(xiàng)公式[例3] 已知數(shù)列{an}中,a1=1,an+1=(n∈N*),則數(shù)列{an}的通項(xiàng)公式an=______. 解析:因?yàn)閍n+1=,a1=1,所以an≠0,所以=+,即-=.又a1=1,則=1,所以是以1為首項(xiàng),為公差的等差數(shù)列.所以=+(n-1)×=+.所以an=.|思|維|建|模| 形如an+1=(A,B,C為常數(shù)且A≠0)的數(shù)列,可通過(guò)兩邊同時(shí)取倒數(shù)的方法構(gòu)造新數(shù)列求解.針對(duì)訓(xùn)練5.[多選]已知數(shù)列{an}滿足a1=1,=(n∈N*),則下列結(jié)論正確的有( )A.為等比數(shù)列B.{an}的通項(xiàng)公式為an=C.{an}為遞增數(shù)列D.的前n項(xiàng)和Tn=2n+2-3n-4√√√解析:因?yàn)閍n+1=(n∈N*),得=+3,可轉(zhuǎn)化為+3=2,所以是以+3=4為首項(xiàng),2為公比的等比數(shù)列,故+3=4·2n-1=2n+1,所以=2n+1-3,所以an=.易知{an}為遞減數(shù)列,故A、B正確,C錯(cuò)誤.的前n項(xiàng)和Tn=-3n=2n+2-3n-4,故D正確.課時(shí)檢測(cè)04134567891011121321.若數(shù)列{an}滿足an=4an-1+3(n≥2)且a1=0,則此數(shù)列第5項(xiàng)是 ( )A.15 B.255C.16 D.63√解析:∵an=4an-1+3(n≥2),∴an+1=4(an-1+1)(n≥2),∴{an+1}是以1為首項(xiàng),4為公比的等比數(shù)列,則an+1=4n-1.∴an=4n-1-1,∴a5=44-1=255.故選B.1567891011132342.在數(shù)列{an}中,a1=2,an+1=(n∈N*),則a20=( )A. B.C. D.√解析:因?yàn)閍n+1=,則==+1,又=,故是首項(xiàng)為,公差為1的等差數(shù)列.=+n-1=n-,an=,a20=.故選B.121567891011133423.已知數(shù)列{an}的前n項(xiàng)和為Sn,a1=0,an+1=an+2+1,則a5+S4=( )A.39 B.45 C.50 D.55√解析:∵an+1=an+2+1,∴an+1+1=,∴=+1,即-=1,∴數(shù)列{}是公差為1,首項(xiàng)為=1的等差數(shù)列,∴=n,an=n2-1.a1=0,a2=3,a3=8,a4=15,a5=24,S4=0+3+8+15=26,∴a5+S4=24+26=50.121567891011133424.已知數(shù)列{an}滿足a1=10,an+1=10,若as·at=a10,則s+t的最大值為( )A.10 B.12C.16 D.18√12156789101113342解析:由an+1=10可得an>0,則lg an+1=lg(10)=2lg an+1,故lg an+1+1=2(lg an+1),又lg a1+1=2,故{lg an+1}是首項(xiàng)為2,公比為2的等比數(shù)列,則lg an+1=2n,故an=1.由as·at=a10,得1·1=1=1,故2s+2t=210,則210≥2=2=,故+1≤10,解得0121567891011133425.(5分)若正項(xiàng)數(shù)列{an}滿足a1=2,=4+4an+1,則數(shù)列{an}的通項(xiàng)公式是________________. an=3×2n-1-1解析:在正項(xiàng)數(shù)列{an}中,=4+4an+1=(2an+1)2,則有an+1=2an+1,于是得an+1+1=2(an+1),而a1+1=3,因此數(shù)列{an+1}是首項(xiàng)為3,公比為2的等比數(shù)列,則有an+1=3×2n-1,即an=3×2n-1-1,所以數(shù)列{an}的通項(xiàng)公式是an=3×2n-1-1.121567891011133426.(5分)在數(shù)列{an}中,a1=1,且an+1=an+3n+1,則通項(xiàng)公式an=______. n2-解析:∵an+1=an+3n+1,∴an+1-(n+1)2+=an-n2+,∴數(shù)列為常數(shù)列,又a1=1,則a1-+=0,∴an=n2-.121567891011133427.(5分)已知數(shù)列{an}滿足a1=1,且an=2an-1+2n-1(n≥2,n∈N),則an=___________. n·2n-1解析:由題設(shè),=+(n≥2),即-=(n≥2),而=,∴是首項(xiàng)、公差均為的等差數(shù)列,即=+(n-1)=,∴an=n·2n-1.121567891011133428.(5分)已知數(shù)列{an}滿足a1=1,3an+1an=an-an+1,則通項(xiàng)公式an=_________. 解析:∵3an+1an=an-an+1,∴-=3,且=1,∴是以1為首項(xiàng),3為公差的等差數(shù)列,∴=1+(n-1)·3=3n-2,∴an=.121567891011133429.(5分)已知數(shù)列{an}的首項(xiàng)是a1=1,且an+1=,則數(shù)列{an}的通項(xiàng)公式為_(kāi)______. an=解析:由an+1=,即(n+1)an+1=nan,故數(shù)列{nan}為常數(shù)列,a1=1,即nan=1,an=.1215678910111334210.(5分)在數(shù)列{an}中,a1=1,a2=3,且對(duì)任意的n∈N*,都有=3an+1-2an,則數(shù)列{an}的通項(xiàng)公式為_(kāi)________________. an=2n-1解析:由=3an+1-2an,得-an+1=2(an+1-an).又a1=1,a2=3,所以a2-a1=2≠0,所以{an+1-an}是首項(xiàng)為2,公比為2的等比數(shù)列,所以an+1-an=2n,所以an=a1+(a2-a1)+…+(an-an-1)=1+2+22+…+2n-1=2n-1,n≥2,因?yàn)閍1=1符合上式,所以an=2n-1.1215678910111334211.(10分)數(shù)列{an}的前n項(xiàng)和為Sn,已知a1=2,3Sn=an+1-+2(n∈N*).(1) n∈N*時(shí),寫(xiě)出an+1與an之間的遞推關(guān)系;(6分)解:因?yàn)?Sn=an+1-2n+2+2 ①,所以當(dāng)n≥2時(shí),3Sn-1=an-2n+1+2 ②,①-②得3an=an+1-an-2n+1(n≥2),即an+1=4an+2n+1(n≥2),在①中,令n=1得a2=3a1+23-2=12=4a1+22,也符合上式,所以an+1=4an+2n+1.12156789101113342(2)求{an}的通項(xiàng)公式.(4分)解:因?yàn)閍n+1=4an+2n+1,則an+1+2n+1=4(an+2n),且a1+2=4≠0,所以數(shù)列{an+2n}是以4為首項(xiàng),4為公比的等比數(shù)列,所以an+2n=4n,故an=4n-2n.1215678910111334212.(15分)已知數(shù)列{an}的前n項(xiàng)和為Sn,a1=3且Sn+Sn+1=2n2+6n+3,n∈N*.(1)求S9的值;(5分)解:因?yàn)镾n+Sn+1=2n2+6n+3,所以Sn+2+Sn+1=2(n+1)2+6(n+1)+3.兩式相減,得an+2+an+1=4(n+2),n∈N*.所以S9=a1+(a2+a3)+(a4+a5)+…+(a8+a9)=3+4[(1+2)+(3+2)+…+(7+2)]=3+4×=99.12156789101113342(2)求數(shù)列{an}的通項(xiàng)公式.(10分)解:由(1)知an+2+an+1=4(n+2)①,可得an+an+1=4(n+1)②,n≥2.因?yàn)閍1=3,S2+S1=11,所以a2=5,又S3+S2=23=2a1+2a2+a3,所以a3=7.又由①②得an+2-an=4,n≥2.所以a2n=a2+4(n-1)=4n+1,即an=2n+1,n為偶數(shù),則當(dāng)n≥3,且為奇數(shù)時(shí),an=4(n+1)-an+1=4(n+1)-[2(n+1)+1]=2n+1,又a1=3,a3=7符合上式,綜上得an=2n+1.1215678910111334213.(15分)在數(shù)列{an}中, a1=4且 an+1=,求數(shù)列{an}的通項(xiàng)公式.解:由an+1=兩邊減去1得,an+1-1=-1=,兩邊取倒數(shù)得,===+·,兩邊同加得,+=+·=·,12156789101113342由a1=4,則+=≠0,所以有=,故是以為首項(xiàng),為公比的等比數(shù)列.所以+=·,故an-1=,解得an=.12課時(shí)檢測(cè)(三十六) 構(gòu)造法求數(shù)列通項(xiàng)公式(標(biāo)的題目為推薦講評(píng)題,配有精品課件.選擇題請(qǐng)?jiān)诖痤}區(qū)內(nèi)作答,填空、解答題請(qǐng)?jiān)陬}后作答)1.若數(shù)列{an}滿足an=4an-1+3(n≥2)且a1=0,則此數(shù)列第5項(xiàng)是 ( )A.15 B.255C.16 D.632.在數(shù)列{an}中,a1=2,an+1=(n∈N*),則a20= ( )A. B.C. D.3.已知數(shù)列{an}的前n項(xiàng)和為Sn,a1=0,an+1=an+2+1,則a5+S4= ( )A.39 B.45C.50 D.554.已知數(shù)列{an}滿足a1=10,an+1=10,若as·at=a10,則s+t的最大值為 ( )A.10 B.12C.16 D.185.(5分)若正項(xiàng)數(shù)列{an}滿足a1=2,=4+4an+1,則數(shù)列{an}的通項(xiàng)公式是 . 6.(5分)在數(shù)列{an}中,a1=1,且an+1=an+3n+1,則通項(xiàng)公式an= . 7.(5分)已知數(shù)列{an}滿足a1=1,且an=2an-1+2n-1(n≥2,n∈N),則an= . 8.(5分)已知數(shù)列{an}滿足a1=1,3an+1an=an-an+1,則通項(xiàng)公式an= . 9.(5分)已知數(shù)列{an}的首項(xiàng)是a1=1,且an+1=,則數(shù)列{an}的通項(xiàng)公式為 . 10.(5分)在數(shù)列{an}中,a1=1,a2=3,且對(duì)任意的n∈N*,都有=3an+1-2an,則數(shù)列{an}的通項(xiàng)公式為 . 11.(10分)數(shù)列{an}的前n項(xiàng)和為Sn,已知a1=2,3Sn=an+1-+2(n∈N*).(1) n∈N*時(shí),寫(xiě)出an+1與an之間的遞推關(guān)系;(6分)(2)求{an}的通項(xiàng)公式.(4分)12.(15分)已知數(shù)列{an}的前n項(xiàng)和為Sn,a1=3且Sn+Sn+1=2n2+6n+3,n∈N*.(1)求S9的值;(5分)(2)求數(shù)列{an}的通項(xiàng)公式.(10分)13.(15分)在數(shù)列{an}中, a1=4且 an+1=,求數(shù)列{an}的通項(xiàng)公式.課時(shí)檢測(cè)(三十六)1.選B ∵an=4an-1+3(n≥2),∴an+1=4(an-1+1)(n≥2),∴{an+1}是以1為首項(xiàng),4為公比的等比數(shù)列,則an+1=4n-1.∴an=4n-1-1,∴a5=44-1=255.故選B.2.選B 因?yàn)閍n+1=,則==+1,又=,故是首項(xiàng)為,公差為1的等差數(shù)列.=+n-1=n-,an=,a20=.故選B.3.選C ∵an+1=an+2+1,∴an+1+1=( +1)2,∴=+1,即-=1,∴數(shù)列{}是公差為1,首項(xiàng)為=1的等差數(shù)列,∴=n,an=n2-1.a1=0,a2=3,a3=8,a4=15,a5=24,S4=0+3+8+15=26,∴a5+S4=24+26=50.4.選D 由an+1=10a可得an>0,則lg an+1=lg(10a)=2lg an+1,故lg an+1+1=2(lg an+1),又lg a1+1=2,故{lg an+1}是首項(xiàng)為2,公比為2的等比數(shù)列,則lg an+1=2n,故an=102n-1.由as·at=a10,得102s-1·102t-1=102s+2t-2=10210-2,故2s+2t=210,則210≥2=2=2+1,故+1≤10,解得05.解析:在正項(xiàng)數(shù)列{an}中,a=4a+4an+1=(2an+1)2,則有an+1=2an+1,于是得an+1+1=2(an+1),而a1+1=3,因此數(shù)列{an+1}是首項(xiàng)為3,公比為2的等比數(shù)列,則有an+1=3×2n-1,即an=3×2n-1-1,所以數(shù)列{an}的通項(xiàng)公式是an=3×2n-1-1.答案:an=3×2n-1-16.解析:∵an+1=an+3n+1,∴an+1-(n+1)2+=an-n2+,∴數(shù)列為常數(shù)列,又a1=1,則a1-+=0,∴an=n2-.答案:n2-7.解析:由題設(shè),=+(n≥2),即-=(n≥2),而=,∴是首項(xiàng)、公差均為的等差數(shù)列,即=+(n-1)=,∴an=n·2n-1.答案:n·2n-18.解析:∵3an+1an=an-an+1,∴-=3,且=1,∴是以1為首項(xiàng),3為公差的等差數(shù)列,∴=1+(n-1)·3=3n-2,∴an=.答案:9.解析:由an+1=,即(n+1)an+1=nan,故數(shù)列{nan}為常數(shù)列,a1=1,即nan=1,an=.答案:an=10.解析:由an+2=3an+1-2an,得an+2-an+1=2(an+1-an).又a1=1,a2=3,所以a2-a1=2≠0,所以{an+1-an}是首項(xiàng)為2,公比為2的等比數(shù)列,所以an+1-an=2n,所以an=a1+(a2-a1)+…+(an-an-1)=1+2+22+…+2n-1=2n-1,n≥2,因?yàn)閍1=1符合上式,所以an=2n-1.答案:an=2n-111.解:(1)因?yàn)?Sn=an+1-2n+2+2 ①,所以當(dāng)n≥2時(shí),3Sn-1=an-2n+1+2 ②,①-②得3an=an+1-an-2n+1(n≥2),即an+1=4an+2n+1(n≥2),在①中,令n=1得a2=3a1+23-2=12=4a1+22,也符合上式,所以an+1=4an+2n+1.(2)因?yàn)閍n+1=4an+2n+1,則an+1+2n+1=4(an+2n),且a1+2=4≠0,所以數(shù)列{an+2n}是以4為首項(xiàng),4為公比的等比數(shù)列,所以an+2n=4n,故an=4n-2n.12.解:(1)因?yàn)镾n+Sn+1=2n2+6n+3,所以Sn+2+Sn+1=2(n+1)2+6(n+1)+3.兩式相減,得an+2+an+1=4(n+2),n∈N*.所以S9=a1+(a2+a3)+(a4+a5)+…+(a8+a9)=3+4[(1+2)+(3+2)+…+(7+2)]=3+4×=99.(2)由(1)知an+2+an+1=4(n+2)①,可得an+an+1=4(n+1)②,n≥2.因?yàn)閍1=3,S2+S1=11,所以a2=5,又S3+S2=23=2a1+2a2+a3,所以a3=7.又由①②得an+2-an=4,n≥2.所以a2n=a2+4(n-1)=4n+1,即an=2n+1,n為偶數(shù),則當(dāng)n≥3,且為奇數(shù)時(shí),an=4(n+1)-an+1=4(n+1)-[2(n+1)+1]=2n+1,又a1=3,a3=7符合上式,綜上得an=2n+1.13.解:由an+1=兩邊減去1得,an+1-1=-1=,兩邊取倒數(shù)得,===+·,兩邊同加得,+=+·=·,由a1=4,則+=≠0,所以有=,故是以為首項(xiàng),為公比的等比數(shù)列.所以+=·n-1,故an-1=,解得an=.1 / 2 展開(kāi)更多...... 收起↑ 資源列表 專題微課 構(gòu)造法求數(shù)列通項(xiàng)公式.docx 專題微課 構(gòu)造法求數(shù)列通項(xiàng)公式.pptx 課時(shí)檢測(cè)(三十六) 構(gòu)造法求數(shù)列通項(xiàng)公式.docx 縮略圖、資源來(lái)源于二一教育資源庫(kù)