中文字幕精品无码一区二区,成全视频在线播放观看方法,大伊人青草狠狠久久,亚洲一区影音先锋色资源

2.4 有理數的除法 課件(共37張PPT)

資源下載
  1. 二一教育資源

2.4 有理數的除法 課件(共37張PPT)

資源簡介

(共37張PPT)
2.4 有理數的除法
第2章 有理數的運算
【2025-2026學年】浙教版 數學 七年級上冊
授課教師:********
班 級:********
時 間:********
有理數的除法
課程目標
理解有理數除法的意義,掌握有理數除法的法則。
能夠熟練運用有理數除法法則進行計算,明確除法與乘法的關系。
學會運用有理數除法解決實際問題,掌握相關運算技巧。
有理數除法的定義
有理數的除法是已知兩個因數的積與其中一個因數,求另一個因數的運算,它是乘法的逆運算。例如,已知兩個數的積是 12,其中一個因數是 3,求另一個因數,就可以用除法表示為 12÷3。
有理數除法法則
同號兩數相除:取正號,并把絕對值相除。
例如:(+15)÷(+3)= +(15÷3)= +5;(-15)÷(-3)= +(15÷3)= +5 。
異號兩數相除:取負號,并把絕對值相除。
例如:(+15)÷(-3)= -(15÷3)= -5;(-15)÷(+3)= -(15÷3)= -5 。
0 除以任何一個不等于 0 的數:都得 0。
例如:0÷(+5)= 0;0÷(-5)= 0 。
注意:0 不能作除數,因為沒有一個數與 0 相乘能得到非 0 的數。
除法與乘法的關系
除以一個不等于 0 的數,等于乘這個數的倒數。用式子表示為:\(a\div b = a\times\frac{1}{b}\)(\(b\neq0\))。
例如:(-12)÷(-4)=(-12)×(-\(\frac{1}{4}\))= 3;(+8)÷(-2)=(+8)×(-\(\frac{1}{2}\))= -4 。
有理數除法運算步驟
確定商的符號:根據被除數和除數的符號,按照除法法則確定商的符號。
計算商的絕對值:將被除數和除數的絕對值相除,或轉化為乘法后計算絕對值的積。
寫出結果:將確定的符號和計算出的絕對值組合起來,得到除法的結果。
實例演示
計算(-24)÷(-6):
確定符號:被除數和除數都是負數,同號相除取正號。
計算絕對值:24÷6 = 4。
寫出結果:(-24)÷(-6)= +4 = 4 。
計算(-18)÷3:
確定符號:被除數是負數,除數是正數,異號相除取負號。
計算絕對值:18÷3 = 6。
寫出結果:(-18)÷3 = -6 。
計算 0÷(-7):
根據法則,0 除以任何不等于 0 的數都得 0,所以 0÷(-7)= 0 。
多個有理數相除的運算
多個有理數相除時,先確定商的符號,商的符號由負因數的個數決定:
當負因數的個數為偶數時,商為正;
當負因數的個數為奇數時,商為負。
然后將絕對值相除,或轉化為乘法后計算。
例如:(-16)÷(-2)÷(-4),負因數的個數是 2 個(偶數),先確定商為正,再計算絕對值 16÷2÷4 = 2,所以(-16)÷(-2)÷(-4)= -2 ;(-24)÷(-3)÷2,負因數的個數是 2 個(偶數),商為正,24÷3÷2 = 4,所以(-24)÷(-3)÷2 = 4 。
有理數除法運算技巧
分數除法轉化:除以一個分數等于乘這個分數的倒數,能簡化計算。例如:\(\frac{3}{4}\div\frac{5}{6}=\frac{3}{4}\times\frac{6}{5}=\frac{18}{20}=\frac{9}{10}\) 。
小數除法轉化:將小數化為分數再進行除法運算,有時更簡便。例如:0.5÷(-\(\frac{1}{4}\))= \(\frac{1}{2}\)÷(-\(\frac{1}{4}\))= \(\frac{1}{2}\)×(-4)= -2 。
利用運算律:在乘除混合運算中,可利用乘法交換律和結合律調整運算順序。例如:(-8)÷2×(-\(\frac{1}{2}\))=(-8)×(-\(\frac{1}{2}\))÷2 = 4÷2 = 2 。
實際應用舉例
平均分配問題:把 - 12 個蘋果平均分給 3 個小朋友,每個小朋友得到幾個蘋果?
可列式為:(-12)÷3 = -4(個),即每個小朋友得到 - 4 個蘋果,表示每個小朋友拿出 4 個蘋果(或理解為虧欠 4 個)。
速度計算問題:一輛汽車 5 小時行駛了 - 200 千米(負號表示向西行駛),它的平均速度是多少?
平均速度 = 路程 ÷ 時間,列式為:(-200)÷5 = -40(千米 / 小時),即汽車平均每小時向西行駛 40 千米。
濃度問題:把 20 克鹽溶解在 - 100 克水中(此處負號僅為舉例表示相反量),鹽與鹽水的質量比的倒數用除法計算是多少?
鹽水質量為 20 +(-100)= -80 克,鹽與鹽水的質量比為 20:(-80)= -\(\frac{1}{4}\),其倒數的除法計算為 1÷(-\(\frac{1}{4}\))= -4 。
課堂練習
計算下列各題:
(+24)÷(+6)
(-36)÷(-9)
(+42)÷(-7)
(-54)÷(+6)
0÷(-12)
運用除法與乘法的關系計算:
(-18)÷(-\(\frac{2}{3}\))
(+\(\frac{3}{4}\))÷(-\(\frac{5}{8}\))
總結
有理數除法法則是進行除法運算的依據,要注意 0 不能作除數。
除法與乘法互為逆運算,除以一個數(非 0)等于乘這個數的倒數,可利用此關系將除法轉化為乘法計算。
運算時先確定符號,再計算絕對值,多個數相除要關注負因數的個數。
有理數除法在平均分配、速度、濃度等實際場景中有應用,要能將實際問題轉化為數學運算解決。
5
課堂檢測
4
新知講解
6
變式訓練
7
中考考法
8
小結梳理
學習目錄
1
復習引入
2
新知講解
3
典例講解
1.掌握有理數的除法法則,能熟練地進行有理數的除法運算。
2.能熟練地進行簡單的有理數的加減乘除混合運算,提高運算
能力。
3.能運用有理數的除法解決簡單的實際問題,形成應用意識。
有理數的除法法則(一) 兩數相除,同號得正,異號得負,
并把絕對值相除;零除以任何一個不等于零的數都得零。
(1)0不能作為除數。(2)兩個有理數相除,若商為
1,則這兩個數相等;若商為 ,則這兩個數互為相反數。
(2) ;
解:
(3) 。
解: 。
典例1 計算:
(1) ;
解: 。
有理數的除法法則(二) 除以一個數(不等于零),等于乘
這個數的倒數。
用字母表示: 。
敲黑板
(1)有理數的除法沒有交換律、結合律及分配律。
(2)三個或三個以上的有理數相除,通常把除法運算統一轉
化為乘法運算。
典例2 計算:
(1) ;
解: 。
(2) ;
解: 。
(3) 。
解: 。
1.有理數的乘除混合運算:
(1)計算順序:按照從左往右的順序計算,有括號的,先計
算括號里面的。
(2)計算方法:先把除法轉化為乘法,然后按照有理數的乘
法法則求出結果。
將乘除運算統一為乘法運算后,可以運用乘法交換律、
結合律或分配律簡化運算。
2.有理數的加減乘除混合運算的順序:先算乘除,再算加減,
有括號的先算括號里面的,同級運算中,按照從左往右的順
序計算。
典例3 計算:
(1) ;
解: 。
(2) 。
解:
。(先算乘除后算加減)
知識過關
①兩數相除,同號得  正 ,異號得  負 ,并把  絕對值 
相除;零除以任何一個  不等于0 的數都得  0 .
②乘法與除法之間的關系:除以一個數(不等于零),等于  乘
以 這個數的  倒數 .


絕對值
不等于0
0


倒數
有理數的除法法則
1. 計算15÷(-5)的結果是( B )
A. -5 B. -3
C. 3 D. 5
B
1
2
3
4
5
6
7
8
9
10
11
12
13
14
2. [2024·寧波鄞州區調研]-1÷(-5)÷ 的計算結果是
( A )
A. -1
D. 1
A
1
2
3
4
5
6
7
8
9
10
11
12
13
14
3. 已知算式“5■(-5)”的值為-1,“■”部分是因被污
染而看不清的運算符號,則該運算符號應該是( D )
A. + B. -
C. × D. ÷
D
1
2
3
4
5
6
7
8
9
10
11
12
13
14
4. 列式計算:
(1)一個數與- 的積為 ,求這個數;
【解】 ÷ = × =- .
(2)-2 除以一個數的商為-9,求這個數.
【解】-2 ÷(-9)= × = .
1
2
3
4
5
6
7
8
9
10
11
12
13
14
有理數的乘除混合運算
5. [2024·溫州鹿城區月考]計算2÷3× 的結果是( C )
A. -2 B. 2
C
1
2
3
4
5
6
7
8
9
10
11
12
13
14
6. 計算:
(1) × ÷0.25;
【解】原式= × ×4
= .
1
2
3
4
5
6
7
8
9
10
11
12
13
14
(2) ÷(-5)× ;
【解】原式= × ×
=- .
1
2
3
4
5
6
7
8
9
10
11
12
13
14
(3) × × ÷ .
【解】原式= × × ×
=- .
1
2
3
4
5
6
7
8
9
10
11
12
13
14
有理數除法的實際應用
7. 張強和李倩分別用電腦錄入同一份稿件,張強錄入了這份
稿件的 后,還剩下3 500字,李倩錄入的字數占這份稿件
的 ,則李倩錄入的字數為( C )
A. 3 500 B. 2 800
C. 3 000 D. 3 200
C
1
2
3
4
5
6
7
8
9
10
11
12
13
14
8. [新視角·動態探究題][2024·上海青浦區期末] 如圖,機器
人淘淘和巧巧分別站在邊長為15米的正方形道路ABCD的
頂點D,B處,他們同時出發,分別以1米每秒和1.5米每
秒的速度沿正方形道路按順時針方向勻速行走,當淘淘和
巧巧第一次都在正方形的同一頂點處時,經過了多少秒?
( B )
A. 30秒 B. 60秒
C. 90秒 D. 120秒
B
1
2
3
4
5
6
7
8
9
10
11
12
13
14
9. 下列說法不正確的是( A )
A. 如果兩個數的和為0,那么這兩個數的商一定為-1
B. 如果兩個數的商為-1,那么這兩個數的和一定為0
C. 如果兩個數的符號相同,那么這兩個數的商一定為正數
D. 如果兩個數的商為正數,那么這兩個數的符號一定相同
A
1
2
3
4
5
6
7
8
9
10
11
12
13
14
10. [2023·無錫濱湖區一模]某同學在計算-16÷a時,誤將
“÷”看成“+”,結果是-12,則-16÷a的正確結
果是( D )
A. 6 B. -6
C. 4 D. -4
D
1
2
3
4
5
6
7
8
9
10
11
12
13
14
11. 下列說法:①若m滿足|m|+m=0,則m<0;②
若|a-b|=b-a,則b>a;③若a+b=0,則
=-1;④若三個有理數a,b,c滿足 + +
=1,則 =-1.其中正確的有( A )
A. 1個 B. 2個
C. 3個 D. 4個
1
2
3
4
5
6
7
8
9
10
11
12
13
14
【點撥】
①因為|m|+m=0,所以|m|=-m,
所以m≤0,故①錯誤;
②因為|a-b|=b-a,所以b-a≥0.所以
b≥a,故②錯誤;
③當a=b=0時,滿足a+b=0,但不滿足 =-
1,故③錯誤;
1
2
3
4
5
6
7
8
9
10
11
12
13
14
④當a,b,c都是正數時, + +
= + + =1+1+1=3,不符合題意;
當a,b,c中有兩個正數、一個負數時,不妨設
a,b為正數,則 + + = + + =
1+1-1=1,所以 = =-1;
1
2
3
4
5
6
7
8
9
10
11
12
13
14
當a,b,c中有兩個負數、一個正數時,不妨設
a,b為負數,則 + + = + +
=-1-1+1=-1,不符合題意;
當a,b,c都是負數時, + +
= + + =-1-1-1=-3,不符合題意.
所以若三個有理數a,b,c滿足 + +
=1,則 =-1,故④正確.
A
【答案】
1
2
3
4
5
6
7
8
9
10
11
12
13
14
12. 計算6÷ 時,小剛同學的計算過程如下:
解:原式=6÷ +6÷ =-12+18=6.
(1)請你判斷小剛同學的計算過程是否正確,若不正確,
請你寫出正確的計算過程;
【解】不正確.
正確的計算過程為:原式=6÷ =-36.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
【解】因為 ÷ =( - + )×(-
18)=-9+3-2=-8,18÷ =18÷ =
18× = ,
所以原式=-8+ = .
(2)用適當的方法計算 ÷ +18÷ 的值.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
13. 小麗有5張寫著不同數的卡片(如圖),請你按要求抽取卡
片,完成下列各題:
從中抽取2張卡片,將卡片上的數相乘,再抽取1張卡
片,用前面兩數之積除以第3張卡片上的數得到商.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
(1)如何抽取,可使商最大?最大是多少?
【解】抽取的卡片上的數分別為-3,-5,+ ,可
使商最大.最大是(-3)×(-5)÷ =15×4=60.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
(2)如何抽取,可使商最小?最小是多少?
【解】抽取的卡片上的數分別為+3,-5,+ ,可
使商最小,最小是(+3)×(-5)÷ =-15×4=
-60.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
14. [新視角·條件開放題]對于四個數“-8,-2,1,3”及
四種運算“+,-,×,÷”,列算式解答:
(1)求這四個數的和;
【解】(-8)+(-2)+1+3=-6.
(2)在這四個數中選出兩個數,按要求進行下列計
算,使得:
①兩數差的結果最小;
②兩數積的結果最大;
【解】①(-8)-3=-11.②(-8)×(-2)=16.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
(3)在這四個數中選出三個數,在四種運算中選出兩種,
組成一個算式,使運算結果等于沒選的那個數.
【解】答案不唯一,符合要求即可.
如:(-8)÷(-2)-3=1或(-8)÷(-2)-1=3.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
謝謝觀看!

展開更多......

收起↑

資源預覽

    <track id="r4fhd"></track>

    <pre id="r4fhd"><abbr id="r4fhd"><code id="r4fhd"></code></abbr></pre>
      <ul id="r4fhd"></ul>

        <menu id="r4fhd"></menu>
        1. 主站蜘蛛池模板: 浮山县| 永清县| 荆州市| 东阳市| 邵阳市| 荣昌县| 枣强县| 江陵县| 林芝县| 大港区| SHOW| 永济市| 北宁市| 四平市| 满城县| 科技| 弥渡县| 微山县| 榆社县| 延津县| 兴和县| 许昌市| 甘谷县| 卢氏县| 达日县| 壶关县| 沭阳县| 信宜市| 潞西市| 宁强县| 宜良县| 雷波县| 英德市| 永州市| 遂平县| 灵宝市| 乌兰县| 厦门市| 正宁县| 长宁区| 石城县|