資源簡介 (共28張PPT)第三章 整式及其加減六年級上冊1 認識代數式第4課時 整式1.下列式子,符合代數式書寫格式的是( )A. B. C.m×7 D.x+y人課前小測AA2. 溫度由t ℃變為(t+2)℃,表示溫度( )A.上升了2 ℃ B.下降了2 ℃C.上升了t ℃ D.下降了t ℃3. 一輛汽車每小時行80千米,t小時行的路程是 千米.80t4. 用代數式表示“x的2倍與y的差”為 .2x-y情境導入壹目錄課堂小結肆當堂達標叁新知初探貳情境導入壹情境導入一個組合柜如圖1所示,內部用隔板縱向分隔成5個獨立的小柜子(如圖2),柜門由5個完全相同的長方形組成.(1)若要在5個柜門的周邊都貼上裝飾條,則所需裝飾條的總長度是多少?(2)若要給5個柜門的外表面噴漆,則需要噴漆的面積是多少(邊框縫隙忽略不計)?(3)設柜子的進深為c(如圖1),則整個柜子的容積是多少(柜門、隔板及背板的厚度忽略不計)?(1)10a+6b(2)5ab(3)5abc新知初探貳合作探究探究活動1 單項式及其有關概念嘗試 思考小芳房間的窗戶如圖所示,其中上方的裝飾物由兩個四分之一圓和一個半圓組成(它們的半徑相同).(1)裝飾物所占的面積是多少 (2)窗戶中能射進陽光的部分的面積是多少 (窗框面積忽略不計)(提示:裝飾物的面積即是一個圓的面積)答案:(1)(2)ab-歸納小結表示數與字母的乘積的代數式叫作單項式.單獨的一個數或一個字母也是單項式.溫馨提示:當一個單項式的系數是1或-1時,“1”通常省略不寫,但“-1”的符號“-”不能省略.如1a寫成a,-1x2y3寫成-x2y3.此外,字母因數的指數如果是1,通常也省略不寫.如a1,3x1y2通常寫成a,3xy2.單項式的系數包括它前面的符號,單獨一個非零數的次數是0.單項式中的數字因數叫作這個單項式的系數,所有字母的指數和叫作這個單項式的次數.典例分析[例1] 確定下面各單項式的系數和次數:(1)28a2b3c;(2)-x2yz;(3)5πb2;(4)- .思考:(1)單項式的系數與次數各指的是什么?28a2b3c中單項式的次數包含8嗎?(2)圓周率π和一般字母有什么不同?解:(1)28 7 (2)-1 4 (3)5π 2 (4)- 1合作探究探究活動2 多項式與整式的概念思考 交流代數式 都是單項式嗎?為什么?與同伴進行交流。ab-10a+6b,填一填:單項式4x與-5的和可用式子表示為 .想一想:式子2x-3x2y+1中,含有哪幾個單項式?哪一項不含字母?答案:2x,-3x2y,1;14x-5歸納小結(1)幾個單項式的和叫作多項式.其中,每個單項式叫作多項式的項,不含字母 的項叫作常數項.(2)單項式和多項式統稱整式.溫馨提示:多項式的每一項都包括它前面的符號;所有的整式的分母中不含字母.典例分析[例2]下列各式中:(1)哪些不是整式?(2)哪些是單項式?哪些是多項式?并指出單項式的次數.解:(1) 不是整式.(2)單項式有: 、 、 ,它們的次數依次為2、0、1;多項式有: .歸納小結整式的識別(1)單項式中不能含有加減運算,多項式中可含有加減運算.如 是由兩個單項式 , 組成的,故 為多項式.(2)單項式與多項式中若有分母,分母中一定不能含有字母.如 即為 ,故 為單項式,而 就不是單項式.(3)一個整式不是單項式就是多項式,區分一個式子是否為整式的關鍵是看分母中是否含有字母.針對練習小試牛刀下列代數式中哪些是單項式 哪些是多項式 分別填入所屬的圈中.典例分析[例3]請列出下列問題中的代數式.哪些是單項式?單項式的系數和次數分別是多少?哪些是多項式?(1)如圖,一個十字形花壇鋪滿了草皮,這個花壇草地面積是多少?ab-4c2 (2)當水結冰時,其體積大約會比原來增加 ,xm3的水結成冰后體積是多少?典例分析(3)如圖,一個長方體的箱子緊靠墻角,它的長、寬、高分別是a,b,c.這個箱子露在外面的表面積是多少?ab+ac+bc (4)某件商品的成本價為a元,按成本提高15%標價,后又以8折(即按標價的80%)銷售,這件商品的售價為多少元?0.92a歸納小結1.分數與字母的積的形式也是單項式,如 a.2.判斷一個代數式是否為單項式的主要方法:①看是不是只有乘法運算;②看這個代數式的分母上是否有字母.如 , 就不是單項式,而 是單項式,因為π表示一個具體的數,而不是字母,所以π出現在分母上可以成為單項式.歸納小結3.單項式的系數包括它前面的符號,當系數是-1或1時,數字1通常省略不寫.4.代數式包括整式,但還有其他類型,如分式等,而整式包括單項式和多項式,注意分母中含有字母的必定不是整式.針對練習單項式由數字因數和字母因數兩部分組成.注意1.單項式 的系數是 ,次數是 ;-a的系數是 ,次數是 ;8的次數是 .2.多項式 有 項,分別是 ,次數是 .當堂達標叁當堂達標6解析: 單項式的系數是前面的數字因數,次數為所有字母指數的和,所有字母指數的和為6.1.單項式- x2y3z的系數是 ,次數是 .當堂達標2.32025是 次單項式. 解析:單項式的次數為所有字母指數的和,而32025中沒有字母,所以字母的指數為0.故填零.當堂達標3.下列整式中,是單項式且次數為3的是( ) A.xy2 B.x3+y3 C.x3y D.3xy解析:A中xy2的次數為3,符合題意,B中x3+y3不是單項式;C中x3y的次數為4;D中3xy的次數為2.故選A.A當堂達標4.關于2×103a,下列說法中正確的是 ( )A.系數是2,次數是1B.系數是2,次數是4C.系數是2×103,次數是0D.系數是2×103,次數是1解析: 單項式2×103a的系數為2×103,次數為1.故選D.D課堂小結肆課堂小結通過本節課的學習,你有哪些收獲與困惑?作業布置詳見教材練習題P111 T1-5謝謝 展開更多...... 收起↑ 資源預覽 縮略圖、資源來源于二一教育資源庫