資源簡(jiǎn)介 (共14張PPT)第三章函數(shù)的概念與性質(zhì)3.3 冪函數(shù)學(xué)習(xí)目標(biāo)課堂導(dǎo)入探究新知課堂練習(xí)知識(shí)總結(jié)課后作業(yè)考點(diǎn) 學(xué)習(xí)目標(biāo) 重、難點(diǎn) 核心素養(yǎng)冪函數(shù)的概念、圖象及性質(zhì) 理解冪函數(shù)的概念,圖象和性質(zhì) 重點(diǎn) 數(shù)學(xué)抽象邏輯推理冪函數(shù)的單調(diào)性 結(jié)合冪函數(shù)的性質(zhì)和圖象證明其單調(diào)性 難點(diǎn) 數(shù)據(jù)分析應(yīng)用冪函數(shù)的概念、圖象與性質(zhì)解決比大小的問題 數(shù)學(xué)運(yùn)算比較兩個(gè)冪值的大小課前思考學(xué)習(xí)目標(biāo)課堂導(dǎo)入探究新知課堂練習(xí)知識(shí)總結(jié)課后作業(yè)1前面學(xué)習(xí)了函數(shù)的概念,利用函數(shù)的概念和對(duì)圖象的觀察,研究了函數(shù)的一些性質(zhì)。本節(jié)我們利用這些知識(shí)研究一類新函數(shù),先看幾個(gè)實(shí)例。問題1:下列各式運(yùn)算運(yùn)用哪種法則?問題2:運(yùn)算結(jié)果有什么特征?(42)3=課前思考學(xué)習(xí)目標(biāo)課堂導(dǎo)入探究新知課堂練習(xí)知識(shí)總結(jié)課后作業(yè)2觀察:下列函數(shù)解析式有什么共同特征?(1)如果張紅以1元/kg的價(jià)格購(gòu)買了某種蔬菜w kg,那么她需要支付p=w元,這里p是w的函數(shù);(2)如果正方形的邊長(zhǎng)為a,那么正方形的面積S=a2,這里S是a的函數(shù);(3)如果立方體的棱長(zhǎng)為b,那么立方體的體積V=b3,這里V是b的函數(shù);(4)如果一個(gè)正方形場(chǎng)地面積為S,那么正方形的邊長(zhǎng)c=,這里c是S的函數(shù);(5)如果某人t s內(nèi)騎車行進(jìn)了1km,那么他騎車的平均速度v=km/s,即v=t -1,這里v是t的函數(shù).y=xy=x2y=x3y=y=x-1自變量換x,函數(shù)值換y上述問題中涉及的函數(shù),都是形如y=xα的函數(shù).課前思考學(xué)習(xí)目標(biāo)課堂導(dǎo)入探究新知課堂練習(xí)知識(shí)總結(jié)課后作業(yè)3一般地,函數(shù) 叫做冪函數(shù),其中 是自變量, 是常數(shù).知識(shí)點(diǎn)1 冪函數(shù)的概念1.定義:(1)冪的形式中,系數(shù)是 。(2)指數(shù)是 ,底數(shù)是 。(3)項(xiàng)數(shù)是 項(xiàng)。2.特征:11例1.拖動(dòng)選項(xiàng),判斷哪個(gè)是冪函數(shù)學(xué)習(xí)目標(biāo)課堂導(dǎo)入探究新知課堂練習(xí)知識(shí)總結(jié)課后作業(yè)4對(duì)于冪函數(shù),我們只研究α=1,2,3, ,-1時(shí)圖象的性質(zhì).學(xué)習(xí)目標(biāo)課堂導(dǎo)入探究新知課堂練習(xí)知識(shí)總結(jié)課后作業(yè)你還能從表格和圖像中得出其他的性質(zhì)嗎?定義域值域奇偶性單調(diào)性公共點(diǎn)奇函數(shù)(1,1)非奇非偶函數(shù)增函數(shù)奇函數(shù)增函數(shù)RRR偶函數(shù)RR奇函數(shù)增函數(shù)①只有α =1時(shí)圖象才是直線;②圖象一般都會(huì)出現(xiàn)在第一象限,一定不會(huì)出現(xiàn)在第四象限;③第一象限內(nèi)α由上到下遞減.④α>0時(shí),圖象在定義域內(nèi)上升;⑤α <0時(shí),圖象在第一象限下降;⑥只有α >0時(shí),圖象才與坐標(biāo)軸相交,且交點(diǎn)一定為原點(diǎn);你能總結(jié)冪函數(shù)的一般性質(zhì)嗎?5課前思考學(xué)習(xí)目標(biāo)課堂導(dǎo)入探究新知課堂練習(xí)知識(shí)總結(jié)課后作業(yè)6知識(shí)點(diǎn)2 冪函數(shù)的性質(zhì)(1)所有的冪函數(shù)在(0,+∞)都有定義,并且圖象都過點(diǎn)(1,1);(2)α>0時(shí),冪函數(shù)的圖象通過原點(diǎn),并且在區(qū)間[0,+∞)上是增函數(shù),特別地,當(dāng)α>1時(shí),冪函數(shù)的圖象下凸;當(dāng)0<α<1時(shí),冪函數(shù)的圖象上凸;(3)α<0時(shí),冪函數(shù)的圖象不過原點(diǎn),冪函數(shù)圖象在區(qū)間(0,+∞)上是減函數(shù).例1. 證明冪函數(shù) f(x)=是增函數(shù).課前思考學(xué)習(xí)目標(biāo)課堂導(dǎo)入探究新知課堂練習(xí)知識(shí)總結(jié)課后作業(yè)7證明:函數(shù)的定義域是[0,+∞).且 有=因?yàn)?br/>所以題型一 冪函數(shù)的概念學(xué)習(xí)目標(biāo)課堂導(dǎo)入探究新知課堂練習(xí)知識(shí)總結(jié)課后作業(yè)8 2.若f(x)=(m2-4m-4)xm是冪函數(shù),則m= .解析:f(x)=(m2-4m-4)xm是冪函數(shù),m2-4m-4=1,即m2-4m-5=0,解得m=5或m=-1.1.已知冪函數(shù)y=mxn(m,n∈R)的圖象經(jīng)過點(diǎn)(4,2),則m-n= .解析:由函數(shù)y=mxn(m,n∈R)為冪函數(shù),得m=1.又因?yàn)楹瘮?shù)y=mxn的圖象經(jīng)過點(diǎn)(4,2),所以4n=2,解得n=,所以m-n=1-=5或-11.冪函數(shù)的判斷方法(1)冪函數(shù)是一種“形式定義”的函數(shù),也就是說必須完全具備形如y=xα(α∈R)的函數(shù)才是冪函數(shù).(2)如果函數(shù)以根式的形式給出,則要注意先把根式化為分?jǐn)?shù)指數(shù)冪的形式進(jìn)行化簡(jiǎn)整理,再對(duì)照冪函數(shù)的定義進(jìn)行判斷.2.用待定系數(shù)法求冪函數(shù)解析式若已知待求函數(shù)是冪函數(shù),則可根據(jù)待定系數(shù)法,設(shè)函數(shù)為f(x)=xα,根據(jù)條件求出α即可.題型二 利用冪函數(shù)的單調(diào)性比較大小學(xué)習(xí)目標(biāo)課堂導(dǎo)入探究新知課堂練習(xí)知識(shí)總結(jié)課后作業(yè)9利用冪函數(shù)的單調(diào)性比較大小的三種方法 題型三 利用函數(shù)奇偶性的定義求值學(xué)習(xí)目標(biāo)課堂導(dǎo)入探究新知課堂練習(xí)知識(shí)總結(jié)課后作業(yè)101.冪函數(shù)y=x-1與直線y=x,y=1,x=1將平面直角坐標(biāo)系的第一象限分成八個(gè)“卦限”:①,②,③,④,⑤,⑥,⑦,⑧(如圖所示),那么冪函數(shù)y=的圖象經(jīng)過的“卦限”是 ( )A.④⑦ B.④⑧ C.③⑧ D.①⑤D2.冪函數(shù)y=xα在第一象限的大致圖象如圖所示,已知α取-2,,,2四個(gè)值,則曲線C1,C2,C3,C4對(duì)應(yīng)的α的值依次為 ( )A.-2,,,2 B.2,-2 C.-2,2, D.2,,-2B課堂小結(jié)學(xué)習(xí)目標(biāo)課堂導(dǎo)入探究新知課堂練習(xí)知識(shí)總結(jié)課后作業(yè)11課后作業(yè)學(xué)習(xí)目標(biāo)課堂導(dǎo)入探究新知課堂練習(xí)知識(shí)總結(jié)課后作業(yè)121.完成本節(jié)練習(xí)第1、2、3題2.完成習(xí)題3.2 第12、13題 展開更多...... 收起↑ 資源預(yù)覽 縮略圖、資源來源于二一教育資源庫(kù)