資源簡介 絕密 ★ 本科目考試啟用前 試卷類型:A江西省 2026 屆高三年級入學摸底考試數 學 試 題 2025.8.20本試卷共 4 頁,19 小題,滿分 150 分,考試用時 120 分鐘注意事項:①答題前,考生務必將自己的姓名、準考證號填寫在答題卡上。②回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑。如需改動,用橡皮擦干凈后,再選涂其他答案標號。回答非選擇題時,必須使用黑色字跡簽字筆將答案寫在答題卡上。寫在本試卷上無效。③考試結束后,將本試卷和答題卡一并交回一、單項選擇題:本題共 8 小題,每小題 5 分,共 40 分.在每小題給出的四個選項中,只有一項是符合題目要求的.1 2 x 2.已知集合 A {x | x 2 },B {x | ln( x 8x 14) 0},則 A B A.{x | 4 x 5} B.{x | 3 x 4} C.{x | 3 x 4} D.{x | 2 x 4}2.記 為等差數列{ }的前 n項和.若 3 = 30, 7 = 112,則 5 =A.59 B.61 C.63 D.653.“ a sin 3”是“函數 f (x) cos(x ) ln(a a 2 )為偶函數”的2 4x 2A.必要不充分條件 B.充分不必要條件C.充要條件 D.既不充分也不必要條件4.若隨機變量 X ~ (2, 2 ),且 P(X a) P(X b 1),則 a 2 b2的最小值為9A. B 3 2. C.8 D.2 2 225.已知圓臺的上底面積,下底面積分別為 、4 ,體積為7 ,則該圓臺的外接球表面積為A.16 B. 20 C. 24 D. 28 x 2 y 26.已知橢圓 E : 1.E的上頂點為 A,左、右焦點分別為 F1 ,F2 .直線 AF 與2 2 1 E的另a b一個交點為 B,直線 2與 E的另一個交點為 C.若 2 ⊥ 2,且| 1| = 10,則△ 2的周長為A.24 B.28 C.32 D.36數學試題 第 1頁(共 4頁)命題:亂打的草稿{#{QQABSQCpwwAwkBYACB6bQ0WYCEgQkIIRJYoORUAWOARLiQFIFAA=}#}7.已知數列 an 滿足 a1 8,且函數 f (x) an 1 sin( x) an x 2 an x 5 .當 x (0,1)時,函數 f (x)恰有一個零點,則 a4 1 63 1 63A. B. C. D. 16 16 16 1618 2.已知 A、B為曲線 y x (0 x 4)上的兩點,D、C 為曲線 y 2 x (0 x 4)上的兩點.其中 A4點在 B點左側,D點在C點左側.則矩形 ABCD 的面積最大值為A 16 3 B 16 2 4 3. . C. D 4 2.9 9 3 3二、多項選擇題:本題共 3 小題,每小題 6 分,共 18 分.在每小題給出的四個選項中,有多項符合題目要求.全部選對的得 6 分,部分選對的得部分分,有選錯的得 0 分.9.若雙曲線 C的焦距是虛軸長的 5 倍,則A 5.C的離心率為 B.C的漸近線方程為2y x 024C.C的漸近線夾角的正切值為 D.C的實軸長是虛軸長的 6 倍31710.在直角△ABC中,AC AB且 sin B sinC .若△ABC的內切圓半徑為 2,且與線段 BC 相切13于點D,則B A. AC 5 B. tan tan C 13 C. D.2 2 15 AD BC 0 AD2 949 1311.贛南臍橙是江西省贛州市特產,中國國家地理標志產品,被譽為“中華名果”.近年贛南臍橙受黃龍病影響,臍橙產品合格率有所降低.現有 6個臍橙,其中有 3個不合格產品,每次從中抽取 1個且不放回,設 X 為抽到第 2件合格品時的抽取次數,則A. X 的取值為 2,3,4,5 B. X 4時,共有 108種抽取順序7C.E(X ) D.D(X )21 4 20三、填空題:本題共 3 小題,每小題 5 分,共 15 分.12.已知 z (32 3i)5,則 z 的實部為 ▲ .i ( , 5 13.已知 ),且 cos( ) 1 sin 2 m, (m 0),則 cos(2 2 ) .(用含 m6 6 3 4 3▲的代數式表示)14.在平面直角坐標系中,已知 A(0,8),B(0,16).若拋物線 y 2 2px( p 0) 上有且僅有一點 H滿足HA 5 HB ,則 p ▲ .數學試題 第 2頁(共 4頁) 命題:亂打的草稿{#{QQABSQCpwwAwkBYACB6bQ0WYCEgQkIIRJYoORUAWOARLiQFIFAA=}#}四、解答題:本題共 5 小題,共 77 分.解答應寫出文字說明、證明過程或演算步驟.15.(本小題滿分 13 分)2025年江西省城市足球聯賽(即“贛超”)在江西各區市舉行.為了研究觀看“贛超”與經常參與足球運動的關系,在城市社區隨機調查了 1200人,得到如下的列聯表:觀看“贛超” 不觀看“贛超”經常參與足球運動 679 21不經常參與足球運動 121 379(1) 求觀看“贛超”者不經常參與足球運動的概率 p的估計值;(2) 根據小概率值 0.001的獨立性檢驗,分析觀看“贛超”是否與經常參與足球運動有關. 2 n(ad bc)2 . P( 2 k) 0.050 0.010 0.001附:(a b)(c d )(a c)(b d ) k 3.841 6.635 10.82816.(本小題滿分 15 分) 如圖,三棱錐 P ABC中, AC 61,AD 3,AB 5,PD DC , AD AB 9tan DAC 5 6 .(1) 若 AC AB 18,證明:平面PAC 平面ABD;(2) 若二面角 P AD B 3的正切值為 ,求三棱錐 P ABD的外接球表面積.417.(本小題滿分 15 分)已知函數 f (x) x ln x x,g(x) cos x .(1) 若曲線 y f (x)的切線 l過點M (0,m), (m 1),求 l與坐標軸圍成的三角形面積的最小值;(2) (ⅰ) 求曲線 y g(x) 5 在( ,f (5 ))處的切線方程;6 6(ⅱ) 設函數 h(x) f (x) sin x,判斷 h(x)有幾個極值點并說明理由.(參考數據: ln 1.144, ln 2 0.693)數學試題 第 3頁(共 4頁)命題:亂打的草稿{#{QQABSQCpwwAwkBYACB6bQ0WYCEgQkIIRJYoORUAWOARLiQFIFAA=}#}18.(本小題滿分 17 分)n 1 2k,n a已知數列 an 3 ,其前 nk 項和為 Sn .設數列bn ,其中 k . bn 1 4k ,ak n ak 1(1) 求b27,b85;2S n(2) 設Tn bi ,求Tn的值;i 1n2 8n 1 n(3) 設 cn ( 1),求使得 ci 2026成立的最大正整數 n的值. (其中符號 x 表示不超n 1 8Tn 1 i 1過 x的最大整數)19.(本小題滿分 17 分)2 2已知 (2, 3)和 (4,0) C x y為橢圓 : 2 2 1,(a b 0)上的兩點.點M (mx ,m y )和 N (n ,n )也在橢a b x y圓 C上.點 A在射線OM 上且滿足 OM MA .線段 AN與橢圓 C交于異于 A,N兩點的點 B.記△MNB和△OMN的面積分別為 S1 ,S2,且 4S1 S2 0 .(1) 用mx ,m y ,nx ,n y 表示點 B的坐標;(2) (ⅰ) 求 S1 S2;(ⅱ) 若M (2, 3),求點N 的坐標.數學試題 第 4頁(共 4頁)命題:亂打的草稿{#{QQABSQCpwwAwkBYACB6bQ0WYCEgQkIIRJYoORUAWOARLiQFIFAA=}#}江西省 2026 屆高三入學摸底考試請在各題規定的黑色矩形區域內答題,超出該區域的答案無效! 請在各題規定的黑色矩形區域內答題,超出該區域的答案無效!數 學 答 題 卡 15.(13 分) 16.(15 分)姓 名:條形碼粘貼區(切勿貼出虛線框)考生號:準 考 證 號 注 意 事 項1.答題前,考生須認真核對條形碼上的個人信息,然后將本人姓名、考生號填寫在相應位置。00000000002.答選擇題時,必須使用 2B鉛筆將對應題目的答案標號11111111112222222222 涂黑,修改時用橡皮擦干凈,再選涂其他答案。3333333333 3.答非選擇題時,必須使用 0.5 毫米的黑色字跡簽字筆4444444444書寫,作圖題可先用鉛筆繪出,確認后再用 0.5 毫米的55555555556666666666 黑色字跡簽字筆描清楚。要求字體工整,筆跡清晰。嚴7777777777 格按題號所指示的答題區域作答,超出答題區域書寫的8888888888答案無效;在試題卷、草稿紙上答題無效。99999999994.保持答題卡清潔、完整。嚴禁折疊,嚴禁在答題卡上正確填涂u 錯誤填涂 缺考標記 做任何標記,嚴禁使用涂改液、膠帶紙、修正帶。單項選擇題(須用 2B 鉛筆填涂)1ABCD 3ABCD 5ABCD 7ABCD2ABCD 4ABCD 6ABCD 8ABCD多項選擇題(須用 2B 鉛筆填涂)9 ABCD10 ABCD11 ABCD非選擇題 (須用 0.5 毫米的黑色字跡簽字筆書寫)12. (5 分)13. (5 分)14. (5 分)請在各題規定的黑色矩形區域內答題,超出該區域的答案無效!請在各題規定的黑色矩形區域內答題,超出該區域的答案無效!請在各題規定的黑色矩形區域內答題,超出該區域的答案無效! 請在各題規定的黑色矩形區域內答題,超出該區域的答案無效!{#{QQABSQCpwwAwkBYACB6bQ0WYCEgQkIIRJYoORUAWOARLiQFIFAA=}#}請在各題規定的黑色矩形區域內答題,超出該區域的答案無效! 請在各題規定的黑色矩形區域內答題,超出該區域的答案無效! 請在各題規定的黑色矩形區域內答題,超出該區域的答案無效!17.(15 分) 18.(17 分) 19.(17 分)請在各題規定的黑色矩形區域內答題,超出該區域的答案無效! 請在各題規定的黑色矩形區域內答題,超出該區域的答案無效! 請在各題規定的黑色矩形區域內答題,超出該區域的答案無效!{#{QQABSQCpwwAwkBYACB6bQ0WYCEgQkIIRJYoORUAWOARLiQFIFAA=}#}江西省 2026 屆高三年級入學摸底考試數學試題參考答案及多維細目表題號 1 2 3 4 5 6 7 8 9 10 11答案 C D D A B B B A AC BD ABD【命題說明】單項選擇題中,第 6 題改編自 2022 年新高考全國 Ⅰ卷第 16 題,第 7 題改編自 2024 年新高考全國 Ⅱ卷第 6 題,其余試題均為原創試題.12. 【答案】 12213. 【答案】 2 1m14. 【答案】 32【命題說明】多項選擇題中,試題均為原創試題.15 .【命題說明】本題為原創試題【參考答案及評分標準】解:( 1)根據表格可知,觀看“贛超”的 800 人中有 121 人不經常參與足球運121動,所以所求概率的估計值為 ·········································································· 3 分800( 2)零假設為 H 0 :觀看“贛超”與經常參與足球運動無關 ···································4 分根據題中表格得:觀看“贛超” 不觀看“贛超” 合計經常參與足球運動 679 21 700不經常參與足球運121 379 500動合計 800 400 1200 2 1200 (679 379 21 121)2代入公式得: 695.604 ·············································· 12 分700 500 800 400根據小概率值 0.001的獨立性檢驗,可推斷H 0 不成立,即觀看“贛超”與經常參與足球運動有關 ······································································································· 13 分【評分注意事項】①未寫零假設扣 1 分;②列出正確公式但計算結果錯誤,一律扣 5 分 .16.【命題說明】本題為原創試題【參考答案及評分標準】 解:( 1)證明: AD AB AD AB cos BAD 3 5 cos BAD 9 ,3解得: cos BAD ················································································································· 1 分5數學試題 參考答案 第 1 頁 共 8 頁{#{QQABSQCpwwAwkBYACB6bQ0WYCEgQkIIRJYoORUAWOARLiQFIFAA=}#}在△ABD中,由余弦定理, BD2 AD2 AB2 2AD AB cos BAD3代入數據得: BD2 32 52 2 3 5 16,得:BD 4 ······························································2 分5 AD2 BD2 25 AB2 ,由勾股定理逆定理得, AD BD ························································ 3 分 tan DAC 5 且 DAC (0,2 ) cos DAC 6 ··································································4 分6 61 AD 6 AC AD AC cos DAC 3 61 18 ··································································5 分61 又 AC AB 18 ···················································· 6 分 AC AB AD AC AC (AB AD) AC DB 18 18 0 AC DB 即AC DB ············································································································7 分又 AD AC A且AD,AC 平面PAC BD 平面PAC ···················································································································8 分 BD 平面ABD 平面ABD 平面PAC ·········································································································· 9 分(2)在△ADC中:由余弦定理:CD AD 2 AC 2 2AD AC cos DAC 34 ADC ADP 180 cos ADC cos ADP 0AD2 CD2 AC 2 AD2 PD2 AP2 0 解得: AP 5 ·························································10 分2AD CD 2AD PD在平面ABD 內,過點A 作 AE AD由(1)知:PA AD 平面PAD 平面BAD AD 二面角P AD B 的平面角為 PAE ···················································································· 11 分則 tan PAE 3 4數學試題 參考答案 第 2 頁 共 8 頁{#{QQABSQCpwwAwkBYACB6bQ0WYCEgQkIIRJYoORUAWOARLiQFIFAA=}#} AP AD,BD 平面PAD,且PA cos PAE 4 BD 可將三棱錐放如長方體內,該長方體的長寬高分別為3,3,4(如圖)所以長方體的體對角線等于外接球的直徑 2R PD 34 ·································································13 分 S 4 R 2 34 ·················································································································· 15 分球【評分注意事項】如考生使用坐標法,答案全對且證明了垂直關系,給滿分 .17.【命題說明】本題為原創試題【參考答案及評分標準】解:(1)設切線 l與曲線 y f (x) 相切于點 (x0 , x0 ln x0 x0 ) , f (x) ln x則 l 的方程為 y (x0 ln x0 x0 ) ln x0 (x x0 )將M (0,m)代入得,m (x0 ln x0 x0 ) ln x0 (0 x0 ) 得:x0 m ···············································1 分m y ln( m)x m 令y 0,解得:x ············································································· 2 分ln( m)1 m m2 所求三角形面積S(m) m ,(m 1) ······················································· 3 分2 ln( m) 2 ln( m)S (m) m[2 ln( m) 1] 2[ln( m)]2m ( , e )時,S (m) 0,則S (m)單調遞減;m ( e, 1)時,S (m) 0,則S (m)單調遞增 ······ 4 分 S(m) S( e) e,即所求三角形面積最小值為e. ··································································· 5 分2 (ⅰ) g (x) sin x g (5 ) 1 g(5 3( ) , , ) 6 2 6 25 5 則曲線y g(x)在( ,g( )) y 3 1 5 處的切線方程為 (x )6 6 2 2 6y 1 3 5 即 x . ·················································································································· 6 分2 2 12(ⅱ) h (x) ln x cos x,欲求h(x)有幾個極值點,即求h (x) 有幾個變號零點 令H (x) h (x)① x (0,1] 1時, 1,sin x 1, 則H (x) 1 sin x 0, H (x)在(0,1]上單調遞增x x數學試題 參考答案 第 3 頁 共 8 頁{#{QQABSQCpwwAwkBYACB6bQ0WYCEgQkIIRJYoORUAWOARLiQFIFAA=}#}x 0 時, H (x) . H (1) cos1 0由零點存在定理: x1 (0,1), 使得H (x1) 0 x (0,1]時 , h(x)有一個極值點 ······························································································· 8 分②x (1, 時, ln x 0, cos x 0, H (x) ln x cos x 0,此時H (x) 無零點 ······································ 9 分2 ③x 1 3 5 ( ,e)時,下證:ln x x cos x2 2 2 12 (x) 1 3 5 1令 x 2 2 12 cos x ,則 (x) sin x 2x 5 ( , )時, (x) 0 (x) x (5 ,故 單調遞減; ,e)時, (x) 0 ,故 (x) 單調遞增2 6 6 (x) (5 ) 0 ················································································································· 11 分6 令 (x) ln x 1 x3 5 2 x ,則 (x) 2 2 12 2 xx ,2 時, (x) 0, (x)單調遞增;x 2,e 時, (x) 0, (x) 單調遞減 2 (x) min ( ), (e) e 3 5 1 0 ········································································· 13 分 2 2 2 12ln x 1 3 5 x cos x2 2 12 x ,e ,H (x) ln x cos x 0恒成立,此時H (x)無零點 ··············································· 14 分 2 ④x e, )時,ln x 1,cos x 1 (兩者不同時取得等號) x e, ,H (x) ln x cos x 0恒成立,此時H (x)無零點 ················································· 15 分綜上可得,h(x)有1個極值點【評分注意事項】①函數求導后未說明單調性直接得到極值,一處扣 1 分;②畫圖像直接判斷極值點個數,未進行證明的一律不給分;③如有其他正確解法,亦可酌情給分 .數學試題 參考答案 第 4 頁 共 8 頁{#{QQABSQCpwwAwkBYACB6bQ0WYCEgQkIIRJYoORUAWOARLiQFIFAA=}#}18.【命題說明】本題改編自 2024 年天津卷第 19 題【參考答案及評分標準】解:(1) 27 33 a4 ·············································································································· 1 分 b27 2 4 8 ··························································································································2 分 34 85 35 即a5 85 a6 ····································································································3 分 b85 2 5 4 5 85 81 90 ································································································ 4 分2 S 1 3n 3n 1( ) n ·············································································································5 分1 3 23n 1則Tn bii 1當3k 1 i 3k 1(k )時,bi bi 1 4k,b k 1 2k ·····································································6 分3可知數列 bi 是以2k為首項,以4k為公差,項數為2 3 k 1的等差數列 ··········································· 7 分3k 1 2 3k 1 2k 2k 4k 2 3k 1 1 b i 8k 9k 1 ······································································8 分i 3k 1 2 8k 9k 1 1 8k 1 9k 8k 9 9k 1 ························································································9 分8n 1 n Tn 8k 1 9k k 11 8n 1 9 8k 9 9 ··································································· 11 分k 1 8 8【若考生使用錯位相減法且最終結果正確,同樣得此步的 4 分;若結果有誤但作差過程無誤,得 1 分】2 2 2 2 2 n(3 c n 1 1 n n n 1 n 3) n n n 1 n 1 ························ 12 分n 1 3 (n 1)3n n 1 (n 1)3n n 1 (n 1)3nn2n 1 0 3n下證當 時, (n 1)3n 1n2 3n①顯然 n 0恒成立 ·······································································································13 分(n 1)3② n2 3n (n 1)3n n n 3n 3n 2 1 n C0 1n 20 C1 1n 1 21 C2n n n 1n 2 22 ... Cn 0 nn 1 2 1 2 n n ································14 分 n2 3n (n 1)3n n n 3n 00 n2 3n 1(n 1)3n數學試題 參考答案 第 5 頁 共 8 頁{#{QQABSQCpwwAwkBYACB6bQ0WYCEgQkIIRJYoORUAWOARLiQFIFAA=}#}故 cn n 1 ···························································································································15 分n ci 1 2 3 ... (n 1 1) n(n 1) ···················································································16 分i 1 21 n(n 1) 2026,滿足不等式的最大正整數n 64 ································································· 17 分219.【命題說明】本題為原創試題【參考答案及評分標準】解:(1)由點A在射線OM上且滿足OM MA 得,M為線段OA 的中點S 1 1 2 S△AMN 4S1 S2 S△AMN ,即4 NB h NA h2 2NA 4 ·································································································································1 分NB 1 1 1 OB ON NB ON NA 3 ON OA ON OA ON ···················································2 分4 4 4 4 又 OA 2OM 2 mx,m y 2mx,2m y , ON nx,n y B 2mx 3nx2m y 3ny , ········································································································ 3 分 4 4 22 ( 3)2 2 2 1 a 4(2)由題意知 : a b 解得: ································································ 4 分2 2 4 0 1 b 2 3 a2 b2x2 y2 2m 3n 2m 3n 橢圓 C 的方程: 1 ,將B x x y y , 代入得16 12 4 4 2 2mx 3n2x 2my 3ny 4 4 116 12 m 2 m 2y n 2 n2y m n myny 整理得, 4 x 9 x x x 12 16 1 ·······························5 分 16 12 16 12 16 12 m 2x m2 y 1又 點M 16 12,N均在C上,即 ,代入2 1 式得, n 2x n y 1 16 12mxnx myny 1 2 ·································································································· 6 分16 12 4數學試題 參考答案 第 6 頁 共 8 頁{#{QQABSQCpwwAwkBYACB6bQ0WYCEgQkIIRJYoORUAWOARLiQFIFAA=}#} m 2 m 2y x 1 M N 16 12點 , 均在C上,即 ,兩式相乘得, n 2x n2 y 1 16 12 m 2 m 2 n 2 n 22 m n m n2 m n n m x y x y 1 x x y y x y x y 整理得, 1 ······································7 分 16 12 16 12 16 12 16 12將 2 式代入得,mxny nxmy 6 5 ····························································································8 分 2S 1 OM ON sin MON 1 OM ON 2 m2 m 2 n 2 n 2 1 ······································· 9 分2 2 x y x y 2 2OM ON m 2 m 2 n 2 n 2 21 2 2 2 2 x y x y mxnx myny mx my nx ny ·········································· 10 分2 m 2 m 2 n 2 2x y x ny1 mxny nxmy 3 5 ···········································································································11 分2 S S 1 5 5 15 51 2 S2 S2 S2 3 5 ·············································································· 12 分4 4 4 4m n myny 1(3)由(2)知 x x ,將m 2,m 3代入得,16 12 4 x y 2nx 3 n y 1 16 12 4則 ··············································································································· 13 分n 2 2 x ny 1 16 12 1 3 5 1 3 5 nx1 2 nx2 2解得 或 ···················································································· 17 分 3 5 1 n n3 5 3y2 y1 4 4 N 1 3 5 3 5 1 綜上可得, 1 , 和 N 1 3 5 3 5 3 2 4 2 , 2 4 【以上均為筆者解法,如有其他解法亦可酌情給分】數學試題 參考答案 第 7 頁 共 8 頁{#{QQABSQCpwwAwkBYACB6bQ0WYCEgQkIIRJYoORUAWOARLiQFIFAA=}#}多 維 細 目 表學科素養 預估難度題題分必備知識 數邏數直數數型號值 學輯學觀學據易 中 難抽推建想運分象理模象算析選擇題 1 5 集合的運算 √ √ √選擇題 2 5 等差數列求和 √ √ √選擇題 3 5 偶函數的性質 √ √ √選擇題 4 5 正態分布 √ √ √選擇題 5 5 圓臺,外接球 √ √ √ √選擇題 6 5 橢圓,解三角形 √ √ √ √選擇題 7 5 數列通項 √ √選擇題 8 5 導數的應用 √ √ √選擇題 9 6 雙曲線的性質 √ √選擇題 10 6 解三角形 √ √ √選擇題 11 6 離散型隨機變量的均值與方差 √ √ √ √填空題 12 5 復數與二項式定理 √ √ √填空題 13 5 三角恒等變換 √ √ √填空題 14 5 拋物線的性質 √ √ √ √解答題 15 13 獨立性檢驗 √ √ √ √解答題 16 15 面與面的關系,球的表面積 √ √ √ √解答題 17 15 導數,零點個數 √ √ √ √解答題 18 17 數列求和,不等式 √ √ √ √解答題 19 17 橢圓,面積計算 √ √ √擬定:亂打的草稿數學試題 參考答案 第 8 頁 共 8 頁{#{QQABSQCpwwAwkBYACB6bQ0WYCEgQkIIRJYoORUAWOARLiQFIFAA=}#} 展開更多...... 收起↑ 資源預覽 縮略圖、資源來源于二一教育資源庫