中文字幕精品无码一区二区,成全视频在线播放观看方法,大伊人青草狠狠久久,亚洲一区影音先锋色资源

2025中考九年級數學專題復習 中點問題模型的構造 課件(共20張PPT)

資源下載
  1. 二一教育資源

2025中考九年級數學專題復習 中點問題模型的構造 課件(共20張PPT)

資源簡介

(共20張PPT)
中點問題模型的構造
九年級專題復習
學習目標
1.學會構造與中點有關的基本圖形
2.能運用與中點有關的定理解決問題
復習回顧
1、等腰三角形的“三線合一”
2、三角形的中位線
3、直角三角形斜邊中線
4、線段的垂直平分線
我們回憶一下與中點有關的定理有哪些?
等腰三角形三線合一模型
圖形示例
B
D
A
C
模型分析
如圖,在△ABC中,AB=AC,點D為BC的中點.
連接AD,則AD⊥BC,AD平分∠BAC.
等腰三角形底邊上的高、中線及頂角的平分線互相重合(簡稱“三線合一”)
典例精講:
等腰三角形三線合一模型
12
5
【例1】如圖,在△ABC中,AB=AC=5,BC=6,點M為BC的中點,MN⊥AC于點N.則MN的長為____.

等腰三角形+底邊中點 聯想
等腰三角形三線合一
三角形中位線模型
圖形示例
模型分析
A
E
D
C
B
如圖,在△ABC中,點D、E 分別為AB、AC的中點,則DE∥BC,且DE=BC.
性質定理:
三角形的中位線平行于第三邊,并且等于第三邊的一半。
三角形中位線模型
典例精講:
A. 3 B. 4 C. 2
【例2】如圖,在四邊形ABCD中,AB=6,BC=10,∠A=130°,∠D=100°,AD=CD. 若點E,F分別是邊AD,CD的中點,則EF的長是( )
B
兩個中點 聯想 構造中位線
直角三角形斜邊中線模型
圖形示例
模型分析
B
C
A
D
在△ABC中∠C=90°,點D為AB的中點。
連接CD,則CD=AB
性質:
直角三角形斜邊上的中線等于斜邊的一半
直角三角形斜邊中線模型
典例精講:
【例3】如圖∠ACB=90°,點D為AB的中點連接DC并延長到E使CE=CD,過點B作BF∥DE,與AE的延長線交于點F,若BF=8,則AB的長度為( )
6

直角三角形+斜邊中點 聯想
直角三角形斜邊 中線性質
垂直平分線模型
圖形示例
模型分析
如圖,CD垂直于AB,且CD平分線段AB,則DA=DB.
線段垂直平分線的性質:
線段垂直平分線上的點到線段兩端的距離相等
【例4】如圖,在△ABC中,AB=AC,∠C=30°,點D是AB的中點,過點D作DE⊥AB交BC于點E,DE=2,則CE的長度為( B?。?br/>垂直平分線模型
典例精講:
A. 7 B. 8 C. 9 D. 10
B

線段的垂直平分線 聯想 線段垂直平分線的性質
強化訓練
1.如圖,在△ABC中,AB=AC,∠BAC=120°,點D為BC的中點,DE⊥AC于點E,AE=2則CE為( C )
2.如圖,在Rt△ABC中,∠ACB=90 ,CD為AB邊上的高,若點A關于CD所在直線的對稱點E恰好為AB的中點,則∠BCE的度數是( )
A.2 B.4 C.6 D.8
A.60 B.45 C.30 D.75
1 題
2 題

C
C
Γ
3. 如圖,在矩形ABCD中,R,P分別是AB,AD上的點,E,F分別是RP,PC的中點,當點P在AD上從點A向點D移動,而點R保持不動時,下列結論成立的是( C )
A. 線段EF的長逐漸增大 B. 線段EF的長逐漸減小
C. 線段EF的長不變 D. 線段EF的長先增大后小
4.如圖1,在△ABC中,AB=AC,∠A=30 ,AB的垂直平分線l交AC于點D,則∠CBD的度數為( )
A.30 B.45 C.50 D.75
3題
4題
C
B

1、等腰三角形+底邊中點 聯想 等腰三角形三線合一
2、兩個中點 聯想 構造中位線
3、直角三角形+斜邊中點 聯想 直角三角形斜邊中線性質
4、線段的垂直平分線 聯想 線段垂直平分線的性質
課堂小結
拓展提高
1、如圖,D是△ABC內一點,BD⊥CD,AD=12,BD=8,CD=6,點E,F,G,H分別是AB,AC,CD,BD的中點,則四邊形EFGH的周長是____.
22
2、如圖,△ABC的面積是12,點D,E,F,G分別是BC,AD,BE,CE的中點,則△AFG的面積是____.
題2
題1
4.5

3、如圖所示,在△ABC中,∠C=90°,AC=10,BC=8,線段DE的兩個端點D,E分別在邊AC,BC上滑動,且DE=6.若點M,N分別是DE,AB的中點,則MN的最小值為( C?。?/p>

展開更多......

收起↑

資源預覽

    <track id="r4fhd"></track>

    <pre id="r4fhd"><abbr id="r4fhd"><code id="r4fhd"></code></abbr></pre>
      <ul id="r4fhd"></ul>

        <menu id="r4fhd"></menu>
        1. 主站蜘蛛池模板: 扎赉特旗| 女性| 灵川县| 龙海市| 湖北省| 密山市| 九江县| 隆回县| 铁岭市| 启东市| 天津市| 加查县| 上蔡县| 建湖县| 大关县| 三明市| 吐鲁番市| 琼结县| 金坛市| 无棣县| 项城市| 南雄市| 郑州市| 繁昌县| 枣阳市| 新化县| 西峡县| 绿春县| 延长县| 志丹县| 石门县| 土默特右旗| 安丘市| 沙河市| 班戈县| 巴林左旗| 乐昌市| 鲁甸县| 永宁县| 扎鲁特旗| 新乡县|