中文字幕精品无码一区二区,成全视频在线播放观看方法,大伊人青草狠狠久久,亚洲一区影音先锋色资源

15.2線段的垂直平分線 課件(共25張PPT)-初中數學滬科版(2024)八年級上冊

資源下載
  1. 二一教育資源

15.2線段的垂直平分線 課件(共25張PPT)-初中數學滬科版(2024)八年級上冊

資源簡介

(共25張PPT)
15.2 線段的垂直平分線
軸對稱圖形與等腰三角形
第15章
學習目標
1.掌握使用尺規作圖法作線段的垂直平分線的步驟和技巧,理解作圖的原理,確保作圖的準確性和規范性;
2.經歷觀察,猜想,論證,歸納等過程探究線段垂直平分線的性質,體會轉化、歸納等數學思想,發展學生的推理能力;
3.理解并掌握線段的垂直平分線的性質定理及其逆定理,嘗試解決簡單的實際問題;
4.通過生活中的實例引入線段垂直平分線,激發學生的學習興趣和好奇心,感受到數學與生活的緊密聯系.
新知導入
市政府為了方便居民的生活,計劃在三個住宅小區A、B、C之間修建一個購物中心,試問,該購物中心應建于何處才能使得它到三個小區的距離相等?
問題:怎樣作出線段的垂直平分線?
任務一:線段垂直平分線
新知講解
通過折紙可以作出線段的垂直平分線.
在半透明紙上畫一條線段 AA′,折紙,使A與A′重合,得到的折痕l是線段AA′的垂直平分線.
也可以用刻度尺量出線段的中點,再用三角尺過中點畫垂線的方法作出線段的垂直平分線.
新知講解
下面介紹用尺規作圖,作出線段AB的垂直平分線.
新知講解
A
B
E
F
作法:
(1)分別以點A,B為圓心,以大于AB的長為半徑作弧,兩弧交于E,F兩點.
(2)過點E,F作直線.
則直線EF就是線段AB的垂直平分線.
為什么?
O
目的是使兩弧有交點.
思考:為什么這樣作出的直線 EF,就是線段AB的垂直平分線呢?
設所作直線EF交AB于點O,你能給出證明嗎?
新知講解
A
B
E
F
O
證明:連接AE、BE、AF、BF,
∵AE=BE,AF=BF,
∴E、F都在AB的垂直平分線上,
∴EF垂直平分AB,
∴EF⊥AB,
∴EF是線段AB的垂直平分線.
新知講解
線段垂直平分線上的點到線段兩端的距離相等.
線段的垂直平分線性質:
應用格式:
∵AC=BC,PC⊥AB,
P是l上任意一點,
∴PA=PB.
P
A
B
l
C
任務二:線段垂直平分線的性質定理及逆定理
已知:如圖 ,直線MN經過線段AB的中點O,且MN⊥AB,P是MN上任意一點.
求證:PA=PB.
新知講解
證明:∵MN⊥AB,(已知)
∴∠AOP=∠BOP=90°.(垂直定義)
在△AOP與△BOP中,
如果點P與點O重合,那么直接可得PA=PB.
∴△AOP≌△BOP.(SAS)
∴PA=PB.(全等三角形的對應邊相等)

思考:你能寫出上面定理的逆命題嗎?它是真命題嗎?如果是真命題,請給出證明.
新知講解
逆命題:到線段兩端距離相等的點在線段的垂直平分線上.
它是真命題,證明如下:
已知:如圖,PA=PB.求證:點P在線段AB的垂直平分線上.
新知講解
證明:過點P作AB的垂線PC,垂足為點C.
則∠PCA=∠PCB=90°.
在Rt△PCA和Rt△PCB中,PA=PB,PC=PC,
∴Rt△PCA≌Rt△PCB.(HL)
∴AC=BC.
又PC⊥AB,
∴點P在線段AB的垂直平分線上.
P
A
B
C
新知講解
定理 到線段兩端距離相等的點在線段的垂直平分線上.
線段的垂直平分線性質的判定:
應用格式:
∵PA=PB,
∴點P在AB的垂直平分線上.
P
A
B
作用:判斷一個點是否在線段的垂直平分線上.
例.已知:如圖,△ABC的邊AB,AC的垂直平分線相交于點P.
求證:點 P在BC的垂直平分線上.
新知講解
證明:連接 PA,PB,PC.
∵點P在AB,AC的垂直平分線上,(已知)
∴PA=PB,PA=PC.
(線段垂直平分線上的點到線段兩端的距離相等)
∴PB=PC.(等量代換)
∴點P在BC的垂直平分線上.
(到線段兩端距離相等的點在線段的垂直平分線上)
新知講解
例題說明:三角形三邊的垂直平分線相交于一點, 這點到三角形三個頂點的距離相等.
新知講解
判斷線段垂直平分線的兩種方法:
一是定義法;二是判定定理 .
一般習慣用定義法進行判斷,而利用判定定理判斷更簡單 . 用判定定理判定一條直線是線段的垂直平分線時,一定要證明直線上有兩點到線段兩個端點的距離相等 .
[知識技能類作業]必做題:
課堂練習
1.用直尺和圓規作線段的垂直平分線,下列作法正確的是( )
C
課堂練習
2.在銳角三角形ABC內一點P,滿足PA=PB=PC,則點P是△ABC( )
A.三條角平分線的交點
B.三條中線的交點
C.三條高的交點
D.三邊垂直平分線的交點
D
[知識技能類作業]必做題:
課堂練習
3.如圖,在△ABC中,DE垂直平分線段AB于點D,交AC于點E.則下面結論正確的是(   )
A.AB=AC
B.AC>BC
C.AC=BC
D.ACB
[知識技能類作業]必做題:
4.如圖,AB是一條長途汽車經過的公路,C、D是公路旁的村莊,現在要在公路上設一個長途汽車站,要求這個車站到兩個村莊的距離相等,請找出這個車站的位置.
[知識技能類作業]必做題:
課堂練習
解:連接CD,作線段CD的垂直平分線
交直線AB于O點,
O點便是長途汽車站的位置.
[知識技能類作業]選做題:
課堂練習
5.如圖,△ABC中,AB=AC,AB的垂直平分線交AC于E,連接BE,AB+BC=16 cm,則△BCE的周長是 cm.
16
6.如圖,AD是BAC的平分線,EF垂直平分AD交BC的延長線于點F.
若∠FAC=68°,則∠B的度數為 .
[知識技能類作業]選做題:
課堂練習
68°
解:∵O是AB、BC的垂直平分線的交點,
∴OA=OB,OB=OC,
∴OA=OC,
∴點O也在線段AC的垂直平分線上,
即△OAB、△OBC、 △OAC都是軸對稱圖形,
[綜合拓展類作業]
課堂練習
7.如圖,在△ABC中,∠BAC=58°,O是AB、BC的垂直平分線的
交點,求∠BOC的度數.
[綜合拓展類作業]
課堂練習
7.如圖,在△ABC中,∠BAC=58°,O是AB、BC的垂直平分線的
交點,求∠BOC的度數.
∴∠1=∠3,∠4=∠8,∠2=∠7,
∴∠BOC=∠5+∠6
=∠3+∠1+∠2+∠7
=2(∠1+∠2)
=2∠BAC
=116°.
課堂總結
1.線段的垂直平分線性質:
線段垂直平分線上的點到線段兩端的距離相等.
2.線段的垂直平分線性質定理的逆定理:
到線段兩端距離相等的點在線段的垂直平分線上.
3.三角形三邊垂直平分線性質:
三角形三邊的垂直平分線相交于一點, 這點到三角形三個頂點的距離相等.
本課結束
2

展開更多......

收起↑

資源預覽

    <track id="r4fhd"></track>

    <pre id="r4fhd"><abbr id="r4fhd"><code id="r4fhd"></code></abbr></pre>
      <ul id="r4fhd"></ul>

        <menu id="r4fhd"></menu>
        1. 主站蜘蛛池模板: 霞浦县| 东光县| 靖安县| 枣阳市| 襄垣县| 广安市| 怀仁县| 平武县| 蒲江县| 灵台县| 军事| 墨脱县| 合作市| 班玛县| 黔西县| 金川县| 铁力市| 巴彦淖尔市| 合作市| 沙坪坝区| 怀来县| 林州市| 廉江市| 彰化县| 永嘉县| 大竹县| 昭通市| 双城市| 安徽省| 明溪县| 常州市| 梨树县| 邯郸县| 汉阴县| 双流县| 尚义县| 岳池县| 延津县| 柯坪县| 罗源县| 江安县|