資源簡介 (共18張PPT)3.3 一元一次方程的應用第3章 一次方程與方程組第 3 課時 比例與和、差、倍、分問題課堂小結問題引入父子兩人今年年齡之和為 40 歲,已知兩年前父親年齡是兒子年齡的 8 倍,請問兩年前父子各幾歲? 請問再過幾年父親的年齡是兒子年齡的 2 倍?例1 三個作業隊共同使用水泵排澇,如果三個作業隊排澇的土地面積之比為 4∶5∶6,而這一次裝運水泵和耗用的電力費用共計 120 元,三個作業隊按土地面積比各應負擔多少元?分析:各個作業隊應負擔費用與排澇的土地面積成正比,且三個作業隊各自應負擔費用之和等于 120 元. 由于共有土地 4 + 5 + 6 = 15 份,因而 120 元可由 15 份共同分擔.比例問題解:設每份土地排澇分擔費用為 x 元,那么三個作業隊應負擔費用分別為 4x 元,5x 元,6x 元.依據題意,得 4x + 5x + 6x = 120.解方程,得 x = 8.4x = 32,5x = 40,6x = 48.答:三個作業隊各應負擔 32 元、40 元、48 元.例2 質量為 45 克的某種三色冰淇淋中,咖啡色、紅色和白色配料的比為 1∶2∶6,這種三色冰淇淋中,咖啡色、紅色和白色配料分別是多少 解:設咖啡色配料為 x 克,那么紅色配料為 2x 克,白色配料為 6x 克.依據題意,得 x + 2x + 6x = 45.解方程,得 x = 5.則 2x = 10,6x = 30.答:咖啡色、紅色和白色配料分別為 5 克、10 克、30 克.比例問題:就是把一個數按照一定的比分成若干份.一般需間接設元,設每一份為 x,再根據各部分之和等于總體列出方程.方法歸納例3 (1) 學校圖書館原有圖書 a 冊,最近增加了 20%,則增加了圖書______冊,現在有圖書______冊;(2) 某煤礦去年比前年減產 15%,已知去年產煤 60 萬噸. 設前年產煤 x 萬噸,則可列方程______________.增長量 = 原有量×增長率,現有量 = 原有量 + 增加量;降低量 = 原有量×降低率,現有量 = 原有量 - 降低量.20%a1.2ax - 15%x = 60和、差、倍、分問題例4 一只輪船載重量為 300 噸,容積為 1000 立方米.現有甲、乙兩種貨物待裝,已知甲種貨物每噸體積 7 立方米,乙種貨物每噸體積 2 立方米,問怎樣安排貨運,才能充分利用船的載重量與容積?載重量(噸) 容積(立方米)甲乙總計 300 1000解:設甲種貨物運載 x 噸,則乙種貨物為 (300 - x) 噸,甲種貨物所占容積為 7x 立方米,乙種貨物所占容積為 2(300 - x) 立方米,總容積為 1000 立方米.根據題意,得 7x + 2(300 - x)=1000.解方程,得 x = 80. 則 300 - x = 220.答:甲種貨物裝運 80 噸,乙種貨物裝運 220 噸.和、差、倍、分問題:常用兩種不同的形式表示題中的同一個量,由這兩個式子相等得到方程.我們可以通過列表格的方式呈現題目中給出的信息,找出等量關系,列出方程.方法歸納父子兩人今年年齡之和為 40 歲,已知兩年前父親年齡是兒子年齡的 8 倍,請問兩年前父子各幾歲?兩年前 今年兒子父親總計 40解:兩年前兒子為 x 歲.依據題意,得(8x + 2) + (x + 2) = 40.解方程,得x = 4, 則 8x = 32.答:兩年前父親 32 歲,兒子 4 歲.練一練x8xx + 28x + 21. 甲、乙二人按照 2∶5 的比例投資開辦了一家公司,約定除去各項支出外,所得利潤按投資比例分成,第一個月盈利 3500 元,那么甲得________,乙分別應得________.2. 一個兩位數,個位數字和十位數字的和為 7,如果把十位數字和各位數字對調,所得新數比原數大 45,那么原兩位數是____.1000 元2500 元163. 一根長 16 米的鐵絲分成兩段,做成一個長方形和一個正方形,已知長方形的長和寬之比為 2∶1,長方形的長比正方形的邊長多 3 米,正方形的面積____平方米.14. 我國四大發明之一的黑火藥是用硝酸鉀、硫磺、木炭三種,原料按 15∶2∶3 的比例配制而成,現要配制這種火藥 150 公斤,則這三種原料各需要多少公斤?解:設需要硝酸鉀 15x 公斤,硫磺 2x 公斤,木炭 3x 公斤.依題意,得 15x + 2x + 3x = 150. 解方程得 x = 7.5.則 15x = 15×7.5 = 112.5, 2x = 2×7.5 = 15,3x = 3×7.5 = 22.5.答:硝酸鉀需要 112.5 公斤,硫磺需要 15 公斤,木炭需要 22.5 公斤.5. 甲、乙、丙三隊合修一條公路,計劃出 280 人,如果甲隊人數是乙隊的一半,丙隊人數是乙隊的 2 倍,問三隊各出多少人?解:設乙隊出 x 人,則甲隊出 人,丙隊出 2x 人,三隊共出 280 人.依題意 得 x + +2x = 280.解方程 得 x = 80, = 40,2x = 160.答:甲隊出 40 人,乙隊出 80 人,丙隊出 160 人.6. 甲、乙、丙三位同學向貧困地區的少年兒童捐贈圖書,已知這三位同學捐贈圖書冊數的比是 5∶6∶9.(1) 如果他們共捐書 320 冊,那么這三位同學各捐書多少冊?(2) 如果甲、丙兩同學捐書的和是乙同學捐書冊數的 2 倍還多 12 冊,那么他們各捐書多少冊 甲 乙 丙捐書數量(冊) 5x 6x 9x(1) 合計捐書 320 冊 (2) 甲 + 丙 = 2×乙 + 12 解:設甲同學捐書 5x 本,乙同學捐書 6x 本,丙同學捐書 9x 本,(1)依題意,得 5x + 6x + 9x = 320.解方程 得 x = 16. 則 5x = 80;6x = 96;9x = 144.(2)依題意,得 5x + 9x = 2×6x + 12.解方程,得 x = 6. 則 5x = 30;6x = 36;9x = 54.答:他們個捐了 30 本,36 本,54 本書.一元一次方程的應用比例問題和、差、倍、分問題步驟增長量 = 原有量×增長率;降低量 = 原有量×降低率現有量 = 原有量 + 增加量;現有量 = 原有量 - 降低量采用間接設元法,通常設每一份為 x1.設未知數;2.找等量關系;3.列方程;4解方程;5.檢驗作答 展開更多...... 收起↑ 資源預覽 縮略圖、資源來源于二一教育資源庫