資源簡介 中小學教育資源及組卷應用平臺3.2 代數式的值一、選擇題 1.若,則代數式的值為( )A. B. C. D. 2.已知的值等于,則代數式的值為( )A. B. C. D. 3.如果互為相反數,互為倒數,則的值是( )A. B. C. D. 4.如圖所示,在這個數據運算程序中,若開始輸入的的值為,結果輸出的是,返回進行第二次運算則輸出的是,,則第次輸出的結果是( )A. B. C. D.二、填空題 1.若有理數,,滿足,,則______________. 2.按照如圖所示的計算程序,若,則輸出的結果是____________. 3.如圖所示的運算程序中,若開始輸入的值為,則第次輸出的結果是___________. 4.已知,則_______.三、解答題 1.理解與思考:整體代換是數學的一種常見思想方法,在代數式求值或化簡中經常會有用到.例如:,則______;我們將作為一個整體代入,則原式.仿照上面的解題方法,完成下面的問題.(1)若,則______;(2)如果,求的值;(3)若,求的值. 2.【教材呈現】下題是某某版七年級上冊數學教材的一道練習:代數式的值為,則代數式的值為______.【閱讀理解】小明在做作業時采用整體代入的方法,解答如下:由題意得,則有,所以所以代數式的值為.【解決問題】請運用小明的方法解決下列問題:(1)若代數式的值為,求代數式的值;(2)當時,代數式的值為,當時,求代數式的值; 3.閱讀與思考:【教材呈現】下圖是某版本七年級上冊數學教材中的內容.代數式的值為,則代數式的值為______【閱讀理解】小明在做作業時采用的方法如下: 由題意,得,則有. 所以代數式的值為.根據理解,解決問題:【方法運用】(1)已知,求的值;【拓展應用】(2)若時,代數式的值為,求當時,代數式的值. 4.如圖是一個“數值轉換機”的示意圖.(1)寫出輸出結果______(用含的代數式表示);(2)填寫下表;輸出 5.若,且,求的值. 6.如圖,新城社區要在兩塊緊挨在一起的長方形荒地上修建一個半圓形花圃,尺寸如圖所示(單位:米).(1)求陰影部分的面積(用含的代數式表示);(2)當,取時,求陰影部分的面積. 7.李明同學買了元的乘車月票卡,他是一個有心人,他把每次乘車的次數用表示,卡上的余額用表示,用如圖的表格記錄了每次乘車后的余額. 次數 余額(元) … …(1)請你寫出用李明乘車的次數表示余額的公式;(2)利用上述公式,幫李明算一算乘了次車還剩多少元?(3)李明用此卡一共最多能乘幾次車?參考答案與試題解析一、選擇題1.【答案】C【考點】已知式子的值,求代數式的值【解析】本題考查了代數式求值,熟練掌握整體思想是解題關鍵.將已知等式作為整體代入計算即可得.【解答】解:,,故選:.2.【答案】C【考點】已知式子的值,求代數式的值【解析】本題考查了求代數式的值,先由得,再通過,再把代入求值即可,熟練掌握運算法則及整體代入是解題的關鍵.【解答】解:的值等于,,,由,故選:.3.【答案】C【考點】列代數式求值【解析】根據相反數和倒數求出,,代入求出即可.【解答】,互為相反數,,互為倒數,,,,故選.4.【答案】A【考點】程序流程圖與代數式求值【解析】根據題意和運算程序可以計算出前幾次的輸出結果,從而可以發現結果的變化特點,從而可以得到第次輸出的結果,本題得以解決.【解答】解:由題意可得,第一次輸出的結果為,第二次輸出的結果為,第三次輸出的結果為,第四次輸出的結果為,第五次輸出的結果為,第六次輸出的結果為,第七次輸出的結果為,第八次輸出的結果為,第九次輸出的結果為,,由上可得,從第二次輸出結果開始,以,,,,,依次循環出現,,第次輸出的結果是,故選:.二、填空題1.【答案】【考點】已知式子的值,求代數式的值【解析】此題考查了絕對值的意義,根據題意得到所以異號,分兩種情況進行解答即可.【解答】解:由題意得所以所以異號,當,所以當,所以綜上所述,故答案為:2.【答案】【考點】程序流程圖與代數式求值【解析】當,,,則當,,,進而可得結果.【解答】解:當,,,當,,,輸出結果為,故答案為:.3.【答案】【考點】程序流程圖與代數式求值【解析】本題主要考查了代數式的求值.按運算程序先計算,通過計算結果找出規律,利用規律得結論.【解答】解:輸入,是奇數,輸出.輸入,是偶數,輸出,輸入,是奇數,輸出.輸入,是偶數,輸出,輸入,是奇數,輸出.輸入,是偶數,輸出,輸入,是偶數,輸出輸入,是偶數,輸出.輸入,是奇數,輸出,依次類推,輸出的結果分別以、、、、、循環..故第次輸出的結果是.故答案為:.4.【答案】【考點】列代數式求值【解析】此題暫無解析【解答】解:.三、解答題1.【答案】(2)(3)【考點】已知式子的值,求代數式的值【解析】(1)求出,整體代入法求出代數式的值即可;(2)利用整體代入法求值即可;(3)利用賦值法,進行求解即可.【解答】(1)解:,,;故答案為:;(2),;(3),當時,則:,即:①,當時,則:,即:②,,得:,.2.【答案】(1)(2)【考點】已知式子的值,求代數式的值【解析】(1)將變形為,然后將代入求值即可;(2)由已知條件可得,則當時,,然后將代入求值即可.【解答】(1)解:;(2)解:當時,代數式的值為,,即:,當時,.3.【答案】(1),;(2)【考點】已知式子的值,求代數式的值【解析】(1)由題意得,然后把變形為,再整體代入求值即可;(2)把代入代數式,根據其值為得出,再把代入代數式中,最后代入計算即可.【解答】解:(1),.(2)當時,代數式的值為,,則有,,當時,.4.【答案】(2),,,,【考點】列代數式程序流程圖與代數式求值【解析】(1)根據程序流程圖列出對應的代數式即可;(2)根據所求,分別將的值代入代數式即可得出輸出值.【解答】(1)解:,故答案為:;(2)解:當時,;當,;當,;當,;當,;填表如下輸出5.【答案】或【考點】絕對值的意義絕對值非負性有理數的乘方列代數式求值【解析】根據絕對值,非負性,乘方,乘法計算即可.本題考查了非負性,絕對值,乘方運算,乘法運算,熟練掌握運算法則是解題的關鍵.【解答】解:,,解得;,或,當,時,;當,時,;故的值為或.6.【答案】解:(1)由圖可知上面的長方形的面積為(平方米),下面的長方形的面積為(平方米),兩個長方形的面積為(平方米),半圓的半徑為(米),半圓的面積為(平方米),陰影部分的面積為平方米;(2)當,取時,陰影部分的面積(平方米),陰影部分的面積為平方米.【考點】列代數式列代數式求值【解析】(1)先求出兩個長方形的面積,再減去半圓的面積,即可得出陰影部分的面積;(2)把,取代入中的結論,即可得出答案.【解答】解:(1)由圖可知上面的長方形的面積為(平方米),下面的長方形的面積為(平方米),兩個長方形的面積為(平方米),半圓的半徑為(米),半圓的面積為(平方米),陰影部分的面積為平方米;(2)當,取時,陰影部分的面積(平方米),陰影部分的面積為平方米.7.【答案】解:(1)由表可以看出:每次乘車消費元,由此可得.(2)當時,,即李明乘了次車后還剩元;(3)由(1)知,,當時,解得,所以最多乘次.【考點】列代數式列代數式求值【解析】此題暫無解析【解答】解:(1)由表可以看出:每次乘車消費元,由此可得.(2)當時,,即李明乘了次車后還剩元;(3)由(1)知,,當時,解得,所以最多乘次.21世紀教育網 www.21cnjy.com 精品試卷·第 2 頁 (共 2 頁)21世紀教育網(www.21cnjy.com) 展開更多...... 收起↑ 資源預覽 縮略圖、資源來源于二一教育資源庫