中文字幕精品无码一区二区,成全视频在线播放观看方法,大伊人青草狠狠久久,亚洲一区影音先锋色资源

四川省南充高級中學2025-2026學年八年級上學期隨堂練習(開學試題)數(shù)學試卷(含答案)

資源下載
  1. 二一教育資源

四川省南充高級中學2025-2026學年八年級上學期隨堂練習(開學試題)數(shù)學試卷(含答案)

資源簡介

四川南充高級中學2025-2026學年八年級上學期隨堂練習數(shù)學
一、單選題
1.下列四個圖形中,線段是的高的是( )
A. B.
C. D.
2.如圖,老師講桌上的一個三角形卡片被壓在了書下.請你根據(jù)三角形卡片露出的部分判斷該三角形的形狀,是( )
A.等邊三角形 B.直角三角形 C.銳角三角形 D.鈍角三角形
3.如圖,已知點,在直線上,點,,在直線上.以點,,,,中的任意三點作為三角形的頂點,可以組成的三角形共有( )
A.3個 B.4個 C.6個 D.9個
4.如圖,將一副直角三角板如圖擺放,點落在邊上,、則的度數(shù)為( )
A. B. C. D.
5.如圖,在中,,,是斜邊上的高,,,垂足分別是E,F(xiàn),則圖中與(除外)相等的角的個數(shù)是( )
A.2個 B.3個 C.4個 D.5個
6.如圖,在中,是高,,是角平分線,它們相交于點O,,,則和的度數(shù)為( )
A., B.,
C., D.,
7.如圖,把三角形紙片沿折疊,使點A與點重合,且落在四邊形的內(nèi)部,已知,則的度數(shù)為( )
A. B. C. D.
二、填空題
8.我國建造的港珠澳大橋是世界最長的跨海大橋.如圖,這是港珠澳大橋中的斜拉索橋,那么斜拉索大橋中運用的數(shù)學原理是三角形的 .
9.如圖,島在A島的南偏西方向,島在A島的南偏東方向,島在島的北偏東方向,求從島看A,兩島的視角 °.
10.如圖,在中,G是邊上任意一點,D、E、F分別是、、的中點,,則的值為 .
11.如圖,在中,,分別是高和角平分線,點在的延長線上,交于點,交于點,則下列結(jié)論:
①;②;③;
④.其中正確的是 .
三、解答題
12.如圖,中,D為邊上一點,過D作,交于E;F為邊上一點,連接并延長,交的延長線于G,且.
(1)求證:平分;
(2)若,,求的度數(shù).
13.已知,,是的三邊.
(1)若,.求第三邊的取值范圍;
(2)若,,第三邊為奇數(shù),判斷的形狀;
(3)化簡.
14.(1)探究一:如圖1,與分別為的兩個外角,
已知,,則的度數(shù)為________;
易得,與之間的數(shù)量關系為________.
(2)探究二:如圖2,在四邊形中,、分別是外角、的平分線,設,試說明與的數(shù)量關系;
(3)拓展應用:如圖3,在(2)的條件下,作的平分線與的延長線交于點,在中,其中一個內(nèi)角是另一個內(nèi)角的4倍,請計算出所有符合條件的的值.
參考答案
1.C
解:A項,∵不垂直于
∴線段不是的高
B項,∵不垂直于
∴線段不是的高
C項,∵,垂足為
∴線段是的高
D項,∵不垂直于
∴線段不是的高
故選:.
2.D
解:由圖可知:三角尺露出的角是鈍角,
故該三角形是鈍角三角形,
故選D
3.D
解:可以組成的三角形有:,,,,,,,,共9個,
故選:D.
4.B
解:如圖,
根據(jù)題意得,,



故選:B.
5.B
解:∵是斜邊上的高,,,
∴,
∴,
∵,
∴,
∴圖中與(除外)相等的角的個數(shù)是3,
故選:B.
6.C
解:∵在中,是高,
∴,
∵在中,,
∴,
∵在中,,,
∴,
∵在中,,是角平分線,
∴,,
∴,
∴.
故選:C.
7.A
【詳解】∵三角形紙片沿折疊,使點與點重合,且落在四邊形的內(nèi)部,
∴,,,
∵,,
∴,,
∴,
∵,
∴,
∴,
∴,
故選:A.
8.穩(wěn)定性
解:斜拉索大橋中運用的數(shù)學原理是三角形的穩(wěn)定性;
故答案為:穩(wěn)定性.
9.
解:如圖:
由題意得:,
∴,
∴,
∴,
∴.
∴從C島看A,B兩島的視角的度數(shù)為,
故答案為:.
10.6
解:連結(jié),
點D是的中點,
,,

即,
點E是的中點,

點F是的中點,

故答案為:6.
11.①②③④
解:如圖,設交于點,
①,



,①正確;
②平分,
,,


,②正確;
③,,





由①得:,
,③正確;
④,,

,,

,④正確;
故答案為:①②③④.
12.(1)見解析
(2)
(1)證明:∵,
∴,,
∵,
∴,
∴平分;
(2)解:∵,,,
∴,
∵,
∴,
∵,
∴.
13.(1)
(2)為等腰三角形
(3)
(1)解:∵,,,
∴;
(2)解:由()得,,
∵第三邊為奇數(shù),
∴,
∴三邊為,,,
∴為等腰三角形;
(3)解:∵,,,


14.(1); .(2);(3)或或或.
解:(1)求的度數(shù)及與的關系
∵是外角,,,
∴.
又∵是外角,,且,,,
∴,
∴.
∴,

∴ .
故答案為:; .
(2)四邊形中,,
∴ .
∵,,
∴ .
又∵、分別平分、,
∴, .
在中, .
(3)由(2)知,平分,平分,
∴ .
∴中,,即 .
分四種情況討論:
當時,,解得 .
當時,,解得 .
當時,,解得 .
當時,,解得 .
綜上,的值為或或或.

展開更多......

收起↑

資源預覽

    <track id="r4fhd"></track>

    <pre id="r4fhd"><abbr id="r4fhd"><code id="r4fhd"></code></abbr></pre>
      <ul id="r4fhd"></ul>

        <menu id="r4fhd"></menu>
        1. 主站蜘蛛池模板: 嵩明县| 铅山县| 三门峡市| 冕宁县| 兴山县| 禄劝| 乳山市| 衡阳县| 鄢陵县| 齐齐哈尔市| 静乐县| 邻水| 茶陵县| 松桃| 芜湖市| 卫辉市| 武邑县| 宁陵县| 元阳县| 眉山市| 二连浩特市| 贵港市| 绥芬河市| 永新县| 水城县| 青河县| 美姑县| 图木舒克市| 安吉县| 布尔津县| 乌鲁木齐市| 通河县| 莱阳市| 蓬莱市| 湟中县| 闽清县| 蕲春县| 万源市| 大足县| 沾益县| 福贡县|