中文字幕精品无码一区二区,成全视频在线播放观看方法,大伊人青草狠狠久久,亚洲一区影音先锋色资源

山東省各地市2010年高考數(shù)學(xué)最新聯(lián)考試題(3月-6月)分類匯編第4部分:數(shù)列

資源下載
  1. 二一教育資源

山東省各地市2010年高考數(shù)學(xué)最新聯(lián)考試題(3月-6月)分類匯編第4部分:數(shù)列

資源簡介

山東省各地市2010年高考數(shù)學(xué)最新聯(lián)考試題(3月-6月)分類匯編第4部分:數(shù)列
一、選擇題:
5.(山東省濟(jì)南市2010年3月高三一模試題理科)已知各項(xiàng)不為0的等差數(shù)列
數(shù)列是等比數(shù)列,且=( D )
A.2 B.4 C.8 D.16
6.(山東省濟(jì)南市2010年3月高三一模試題文科)設(shè)是等差數(shù)列,= ( B )
A.31 B.32 C.33 D.34
11.(山東省青島市2010屆高三一模理科)在數(shù)列中,(為常數(shù)),若平面上的三個(gè)不共線的非零向量滿足,三點(diǎn)共線且該直線不過點(diǎn),則等于( A )
A. B. C. D.
4.(山東省青島市2010屆高三一模文科)已知為等差數(shù)列,若,則的值為( A )
A. B. C. D.
9.(山東省青島市2010屆高三一模文科)在中,,三邊長成等差數(shù)列,且,則的值是( D )
A. B. C. D.
2.(山東省濟(jì)寧市2010年3月高三一模試題文科)在等差數(shù)列中,若,則 ( D )
A. B. C.1 D.
11.(山東省棗莊市2010年3月高三第一次模擬文科試題)正項(xiàng)等比數(shù)列的前n項(xiàng)和為,且則公比q等于 ( A )
A. B.2 C. D.4
3.(山東省聊城市2010 年 高 考 模 擬數(shù)學(xué)試題理)等差數(shù)列的前n項(xiàng)和等于 ( C )
A.152 B.154 C.156 D.158
12.(山東省泰安市2010年3月高三第一次模擬數(shù)學(xué)理科試題)某鋼廠的年產(chǎn)量由1990年的40萬噸增加到2000年的50萬噸,如果按照這樣的年增長率計(jì)算,則該鋼廠2010年的年產(chǎn)量約為( C )
A.60萬噸 B.61萬噸 C.63萬噸 D.64萬噸
3. (山東省濟(jì)南外國語學(xué)校2010年3月高三質(zhì)量檢測理)設(shè)等比數(shù)列的公比,前項(xiàng)和為,則 ( C )
21世紀(jì)教育網(wǎng)
12.(山東省濟(jì)南外國語學(xué)校2010年3月高三質(zhì)量檢測理)在數(shù)列中,若存在非零整數(shù),使得對于任意的正整數(shù)均成立,那么稱數(shù)列為周期數(shù)列,其中叫做數(shù)列的周期. 若數(shù)列滿足,如,當(dāng)數(shù)列的周期最小時(shí),該數(shù)列的前2010項(xiàng)的和是( D )

4. (山東省濟(jì)南外國語學(xué)校2010年3月高三質(zhì)量檢測文)已知數(shù)列是公差為2的等差數(shù)列,且成等比數(shù)列,則a2為 ( D )
-2 -3 2 3
(10) (山東省日照市2010年3月高三一模理科)數(shù)列中,如果數(shù)列是等差數(shù)列,則( B )
(A) (B) (C) (D)
(2) (山東省日照市2010年3月高三一模文科)已知數(shù)列為等差數(shù)列,且則等于( A )
(A) (B) (C) (D)
二、填空題:
14.(山東省東營市2010屆高三一輪教學(xué)質(zhì)量檢測數(shù)學(xué)試題理科)設(shè)等差數(shù)列{an}的前n項(xiàng)和為Sn,若,則S19=_______19_______.
三、解答題
18.(山東省濟(jì)南市2010年3月高三一模試題理科)(本小題滿分12分)
已知數(shù)列的各項(xiàng)為正數(shù),前
(1)求證:數(shù)列是等差數(shù)列;
(2)設(shè)
17.(山東省濟(jì)南市2010年3月高三一模試題文科)(本小題滿分12分)
已知:數(shù)列與—3的等差中項(xiàng)。
(1)求;
(2)求數(shù)列的通項(xiàng)公式。
解:(1)由題知,與—3的等差中項(xiàng)。
………………2分
………………6分
(2)由題知 ①
② ………………7分
②—①得
即 ③ ………………10分
也滿足③式 即
是以3為首項(xiàng),3為公比的等比數(shù)列?!?2分21世紀(jì)教育網(wǎng)
20. (山東省青島市2010屆高三一模理科)(本題滿分共12分)
已知各項(xiàng)均為正數(shù)的數(shù)列滿足,且,其中.
(Ⅰ)求數(shù)列的通項(xiàng)公式;
(Ⅱ)設(shè)數(shù)列的前項(xiàng)和為,令,其中,試比較與的大小,并加以證明.
20.(本題滿分12分)
解:(Ⅰ)因?yàn)?即
又,所以有,所以
所以數(shù)列是公比為的等比數(shù)列…………2分
由得,解得
故數(shù)列的通項(xiàng)公式為…………4分
(Ⅱ) 因,所以
即數(shù)列是首項(xiàng)為,公比是的等比數(shù)列
所以…………6分


21世紀(jì)教育網(wǎng)
猜想:…………8分
①當(dāng)時(shí),,上面不等式顯然成立;
②假設(shè)當(dāng)時(shí),不等式成立…………9分
當(dāng)時(shí),
綜上①②對任意的均有…………11分

[來源:21世紀(jì)教育網(wǎng)]
所以對任意的均有…………12分
20.(山東省青島市2010屆高三一模文科)(本題滿分12分)[來源:21世紀(jì)教育網(wǎng)]
某企業(yè)自年月日正式投產(chǎn),環(huán)保監(jiān)測部門從
該企業(yè)投產(chǎn)之日起對它向某湖區(qū)排放污水進(jìn)行了四個(gè)
月的跟蹤監(jiān)測,檢測的數(shù)據(jù)如下表.并預(yù)測,如果不
加以治理,該企業(yè)每月向湖區(qū)排放污水的量將成等比數(shù)列.
月份




該企業(yè)向湖區(qū)排放的污水(單位:立方米)




(Ⅰ)如果不加以治理,求從年月起,個(gè)月后,該企業(yè)總計(jì)向某湖區(qū)排放了多少立方米的污水?
(Ⅱ)為保護(hù)環(huán)境,當(dāng)?shù)卣推髽I(yè)決定從7月份開始投資安裝污水處理設(shè)備,預(yù)計(jì)月份的污水排放量比月份減少萬立方米,以后每月的污水排放量均比上月減少萬立方米,當(dāng)企業(yè)停止排放污水后,再以每月萬立方米的速度處理湖區(qū)中的污水,請問什么時(shí)候可以使湖區(qū)中的污水不多于萬立方米?
[來源:21世紀(jì)教育網(wǎng)]
20.(本題滿分12分)
解:(Ⅰ)由題意知:企業(yè)每月向湖區(qū)排放的污水量成等比數(shù)列,
設(shè)第一個(gè)月污水排放量為,則,公比為
則第個(gè)月的污水排放量為
如果不治理, 個(gè)月后的污水總量為 :
(萬立方米)……………………………4分[來源:21世紀(jì)教育網(wǎng)]
(Ⅱ)由(Ⅰ)知,則
由題意知,從月份開始,企業(yè)每月向湖區(qū)排放的污水量成等差數(shù)列,公差為,
記7月份企業(yè)向湖區(qū)排放的污水量為,則[來源:21世紀(jì)教育網(wǎng)]
………………………6分

所以該企業(yè)年月向湖區(qū)停止污水排放………………………8分
則該企業(yè)共排污水(萬立方米)…………………9分
設(shè)個(gè)月后污水不多于萬立方米
則………………………10分
因?yàn)椋詡€(gè)月后即年月污水不多于萬立方米…………12分
21.(山東省濟(jì)寧市2010年3月高三一模試題理科)(本小題滿分12分)
已知數(shù)列滿足
(1)求的值及數(shù)列的通項(xiàng)公式;
(2)令,記數(shù)列的前項(xiàng)和為,求證
21.解:(1)分別令可求得:
2分
當(dāng)為奇數(shù)時(shí),不妨設(shè),

為等差數(shù)列,

即 4分
當(dāng)為偶數(shù)時(shí),設(shè),

為等比數(shù)列,
,

綜上所述, 6分
(2)
8分

兩式相減:
10分
,
故 12分
注:若求出猜想出[來源:21世紀(jì)教育網(wǎng)]
(1)問給2分,在上面基礎(chǔ)上(2)問解答正確給8分。
20.(山東省濟(jì)寧市2010年3月高三一模試題文科)(本小題滿分12分)
已知正項(xiàng)數(shù)列的前項(xiàng)和為當(dāng)時(shí),點(diǎn)在直線上,數(shù)列滿足
(1)求數(shù)列的通項(xiàng)公式;
(2)設(shè)數(shù)列的前n項(xiàng)和為。求。
12分
20.(山東省棗莊市2010年3月高三第一次模擬理科試題)(本小題滿分12分)
已知各項(xiàng)均為正數(shù)的數(shù)列的前n項(xiàng)和滿足
21世紀(jì)教育網(wǎng)
(1)求數(shù)列的通項(xiàng)公式;
(2)設(shè)數(shù)列為數(shù)列的前n項(xiàng)和,求證:

20.(1)當(dāng)n=1時(shí),有
解得 …………1分
當(dāng)時(shí),有兩式相減得
…………3分
由題設(shè)
故數(shù)列是首項(xiàng)為2,公差為3的等差數(shù)列……5分
(2)由…………6分

…………8分

則21世紀(jì)教育網(wǎng)
而是單調(diào)遞減數(shù)列.…………10分
所以,
從而成立. …………12分
17.(山東省棗莊市2010年3月高三第一次模擬文科試題)(本小題滿分12分)
已知數(shù)列滿足 (p為常數(shù))
(1)求p的值及數(shù)列的通項(xiàng)公式;
(2)令,求數(shù)列的前n項(xiàng)和
17.解(1)令 …………3分
以上兩式相減,得 …………7分
由于適于上式,[來源:21世紀(jì)教育網(wǎng)]
所以數(shù)列的通項(xiàng)公式是 …………8分
(2)由(1),得……10分
…………12分
22.(山東省東營市2010屆高三一輪教學(xué)質(zhì)量檢測數(shù)學(xué)試題理科)(本小題滿分14分)21世紀(jì)教育網(wǎng)
已知在數(shù)列{an}中,(t>0且t≠1).是函數(shù)的一個(gè)極值點(diǎn).
(1)證明數(shù)列是等比數(shù)列,并求數(shù)列的通項(xiàng)公式;
(2)記,當(dāng)t=2時(shí),數(shù)列的前n項(xiàng)和為Sn,求使Sn>2008的n的最小值;
(3)當(dāng)t=2時(shí),是否存在指數(shù)函數(shù)g(x),使得對于任意的正整數(shù)n有成立?若存在,求出滿足條件的一個(gè)g(x);若不存在,請說明理由.
令,則有:

…………13分
即函數(shù)滿足條件.
20.(山東省聊城市2010 年 高 考 模 擬數(shù)學(xué)試題理)(本小題滿分12分)
已知等比數(shù)列中,分別是某等差數(shù)列的第5項(xiàng)、第3項(xiàng)、第2項(xiàng),且公比
(1)求數(shù)列的通項(xiàng)公式;
(2)已知數(shù)列滿足是數(shù)列的前n項(xiàng)和,
求證:當(dāng)
21世紀(jì)教育網(wǎng) 20.解:(1)由已知得
從而得
解得(舍去) …………4分
所以 …………6分
(2)由于
因此所證不等式等價(jià)于:
①當(dāng)n=5時(shí),因?yàn)樽筮?32,右邊=30,所以不等式成立;
②假設(shè)時(shí)不等式成立,即
兩邊同乘以2得
這說明當(dāng)n=k+1時(shí)也不等式成立。
由①②知,當(dāng)成立。
因此,當(dāng)成立。 …………12分
20.(山東省聊城市2010 年 高 考 模 擬數(shù)學(xué)試題文)(本小題滿分12分)
已知等比數(shù)列中,分別是某等差數(shù)列的第5項(xiàng)、第3項(xiàng)、第2項(xiàng),且公比
(1)求數(shù)列的通項(xiàng)公式;
(2)已知數(shù)列滿足:的前n項(xiàng)和
20.解:(1)由已知得
從而得
解得(舍去) …………4分
所以 …………6分
(2)當(dāng)n=1時(shí),21世紀(jì)教育網(wǎng)
當(dāng)
兩式相減得
因此 …………8分
當(dāng)n=1時(shí),
當(dāng)
綜上, …………12分
19.(山東省泰安市2010年3月高三第一次模擬數(shù)學(xué)理科試題)(本小題滿分12分)
設(shè)等差數(shù)列的前項(xiàng)和為,公比是正數(shù)的等比數(shù)列的前項(xiàng)和為,已知。
(Ⅰ)求的通項(xiàng)公式;
(Ⅱ)若數(shù)列滿足對任意都成立;求證:數(shù)列是等比數(shù)列。
19. (山東省煙臺市2010年3月高三診斷性試題理科) (本小題滿分12分)
在數(shù)列中,, (是常數(shù),),且,,成公比不為的等比數(shù)列.
(1)求的值;
(2)求的通項(xiàng)公式.
19.解:(1),,,
因?yàn)?,,成等比?shù)列,…………2分
所以,
解得或.…………5分
當(dāng)時(shí),,不符合題意舍去,故.…………6分
(2)當(dāng)時(shí),由于
,
,
,
所以.…………10分
又,,故.
當(dāng)時(shí),上式也成立,
所以.…………12分
19.(山東省煙臺市2010年3月高三診斷性試題文科)(本題滿分12分)
已知點(diǎn)(1,2)是函數(shù)的圖象上
一點(diǎn),數(shù)列的前項(xiàng)和.
(1)求數(shù)列的通項(xiàng)公式;
(2)若,求數(shù)列的前項(xiàng)和.
19.解:(1)把點(diǎn)代入函數(shù)得
所以數(shù)列的前項(xiàng)和為 …………………3分
當(dāng)時(shí),
當(dāng)時(shí),
對時(shí)也適合[來源:21世紀(jì)教育網(wǎng)]
…………………5 分
(2)由得,所以 ………………7 分


由①-②得:
所以 ………………………………12 分
18.(山東省濟(jì)南外國語學(xué)校2010年3月高三質(zhì)量檢測理)設(shè)等差數(shù)列的前項(xiàng)和為,且(是常數(shù),),.
(Ⅰ)求的值及數(shù)列的通項(xiàng)公式;
(Ⅱ)證明:.
18.解:(Ⅰ)解:因?yàn)椋?br/> 所以當(dāng)時(shí),,解得,
當(dāng)時(shí),,即,解得,
所以,解得;
則,數(shù)列的公差,
所以.
(Ⅱ)因?yàn)?

.
因?yàn)椋?.
18.(山東省濟(jì)南外國語學(xué)校2010年3月高三質(zhì)量檢測文)已知等差數(shù)列中,,前10項(xiàng)和.
求數(shù)列的通項(xiàng)公式
若從數(shù)列中依次取出第2,4,8,…, ,…項(xiàng),按原來的順序排成一個(gè)新的數(shù)列,21世紀(jì)教育網(wǎng)21世紀(jì)教育網(wǎng)
試求新數(shù)列的前項(xiàng)和.
18.解.(1) 數(shù)列為等差數(shù)列,,.21世紀(jì)教育網(wǎng)

(2)新數(shù)列的前項(xiàng)和=
(20) (山東省日照市2010年3月高三一模理科)(本小題滿分12分)
已知數(shù)列的前項(xiàng)和為且。
(Ⅰ)求證數(shù)列是等比數(shù)列,并求;
(Ⅱ)已知集合問是否存在實(shí)數(shù),使得對于任意的都有?若存在,求出的取值范圍;若不存在,說明理由。
因此對任意的要使只需 解得………………………11分21世紀(jì)教育網(wǎng)
綜上得實(shí)數(shù)的范圍是 ……………………………………………………12分

展開更多......

收起↑

資源預(yù)覽

<pre id="tfb94"><li id="tfb94"></li></pre>

<bdo id="tfb94"><rt id="tfb94"></rt></bdo>
  • <menu id="tfb94"><dl id="tfb94"></dl></menu><i id="tfb94"><acronym id="tfb94"><sub id="tfb94"></sub></acronym></i>

    1. 主站蜘蛛池模板: 鄱阳县| 金川县| 乌审旗| 陇西县| 营山县| 扎兰屯市| 阿坝县| 顺昌县| 阳原县| 乐平市| 义马市| 宜兰市| 嵊州市| 东乡| 淮安市| 怀来县| 阿拉善盟| 大石桥市| 二连浩特市| 墨竹工卡县| 泽库县| 麟游县| 揭西县| 宜兴市| 常熟市| 宁晋县| 天水市| 九台市| 金塔县| 诸暨市| 青海省| 汨罗市| 德钦县| 双峰县| 永靖县| 莱芜市| 武安市| 清镇市| 志丹县| 永福县| 自治县|