資源簡介 高中新課標數(shù)學(xué)選修(1-2)3.1~3.2教材解讀一、數(shù)系的擴充和復(fù)數(shù)的概念 1.復(fù)數(shù)的引入:回想數(shù)系的每一次擴充都主要來自兩個方面:一方面數(shù)學(xué)本身發(fā)展的需要;另一方面由于實際的需要.而復(fù)數(shù)的引入屬于前者. 我們知道,方程在實數(shù)范圍內(nèi)無解,于是需引入新數(shù)i使方程有解,顯然,需要. 數(shù)系的擴充過程:自然數(shù)集整數(shù)集有理數(shù)集實數(shù)集復(fù)數(shù)集. 2.復(fù)數(shù)的代數(shù)形式:由實數(shù)的運算類似地得到新數(shù)i可以同實數(shù)進行加、減、乘運算,于是得到:形如的數(shù)叫做復(fù)數(shù),并且把的這一表現(xiàn)形式叫做復(fù)數(shù)的代數(shù)形式,其中的a叫做復(fù)數(shù)的實部,b叫復(fù)數(shù)的虛部.注意復(fù)數(shù)的虛部是,而不是. 3.復(fù)數(shù)相等的充要條件 且 注意事項: (1)復(fù)數(shù) ?。?)復(fù)數(shù)集 ?。?)兩個實數(shù)可以比較大小,但兩個復(fù)數(shù)如果不全是實數(shù),則不能比較大小.二、復(fù)數(shù)的幾何意義 1.復(fù)數(shù)可以用平面直角坐標系的點來唯一表示,于是:21世紀教育網(wǎng) 復(fù)數(shù)集與坐標系中的點集,可以建立一一對應(yīng). 2.建立了直角坐標系來表示復(fù)數(shù)的平面叫做復(fù)平面.在復(fù)平面內(nèi),x軸叫做實軸,y軸叫做虛軸,x軸的單位是1,y軸的單位是i,實軸與虛軸的交點叫做原點,且原點對應(yīng)復(fù)數(shù)0.于是有下面的一一對應(yīng)關(guān)系:復(fù)數(shù)復(fù)平面內(nèi)的點. 3.由于平面向量與坐標平面的點一一對應(yīng),于是有: 復(fù)數(shù)平面向量. 在這些意義下,我們就可以把復(fù)數(shù)說成點或向量,這給研究復(fù)數(shù)運算的幾何意義帶來了方便. 4.復(fù)數(shù)的模就是這個復(fù)數(shù)對應(yīng)的向量的模,復(fù)數(shù)的模為. 三、復(fù)數(shù)代數(shù)形式的四則運算 1.復(fù)數(shù)的加法、減法 ①運算法則. 其運算法則類似于多項式的合并同類項 ②復(fù)數(shù)加法的運算律 對于任意的,有: 交換律:. 結(jié)合律:. ?、蹚?fù)數(shù)加法的幾何意義 設(shè),分別與復(fù)數(shù),對應(yīng),根據(jù)向量加法的平行四邊形(三角形)法則,則有(如圖1). 由平面向量的坐標運算:,即得與復(fù)數(shù)對應(yīng). 可見,復(fù)數(shù)的加法可以按向量加法的法則進行.21世紀教育網(wǎng)[來源:21世紀教育網(wǎng)] ?、軓?fù)數(shù)減法的幾何意義 設(shè),分別與復(fù)數(shù),對應(yīng)(如圖2), 根據(jù)向量加法的三角形法則有:. 于是:. 由平面向量的坐標運算:,即得與復(fù)數(shù)對應(yīng). 于是得到向量的減法運算法則為:兩個復(fù)數(shù)的差與連接兩個向量的終點并指向被減數(shù)的向量相對應(yīng). 2.復(fù)數(shù)代數(shù)形式的乘法運算 ①運算法則:. 兩個復(fù)數(shù)相乘類似于兩個多項式相乘,只是把換為,并且把實部與虛部分別合并即可. ②運算律:交換律:. 結(jié)合律:. 分配律:. ③虛數(shù)i的乘方及其規(guī)律:,,,,,,,, . 可見,,,,,即具有周期性且最小正周期為4. ④共軛復(fù)數(shù) 與互為共軛復(fù)數(shù),即當兩個復(fù)數(shù)的實部相等,虛部互為相反數(shù)時,這兩個復(fù)數(shù)叫做互為共軛復(fù)數(shù). 它的幾何意義是:共軛的兩個復(fù)數(shù)關(guān)于x軸對稱.主要用于復(fù)數(shù)的化簡以及復(fù)數(shù)的除法運算. 3.復(fù)數(shù)代數(shù)形式的除法運算 運算法則:. 其實質(zhì)是分母“實數(shù)化”,即分子以及分母同乘以分母的“實數(shù)化”因式.類似于以前所學(xué)的把分母“有理化”.[來源:21世紀教育網(wǎng)]21世紀教育網(wǎng) 展開更多...... 收起↑ 資源預(yù)覽 縮略圖、資源來源于二一教育資源庫