資源簡(jiǎn)介 專(zhuān)題8 二元一次不等式(組)與簡(jiǎn)單的線(xiàn)性規(guī)劃問(wèn)題INCLUDEPICTURE "F:\\實(shí)習(xí)期文件\\寒假作業(yè)數(shù)學(xué)高二\\數(shù)學(xué)高二寒假作業(yè)(必修5、選修2-1)(理)\\復(fù)習(xí)回顧.TIF" \* MERGEFORMAT INCLUDEPICTURE "H://必修5、選修2-1(理)/復(fù)習(xí)回顧.TIF" \* MERGEFORMATINETINCLUDEPICTURE "H://必修5、選修2-1(理)/復(fù)習(xí)回顧.TIF" \* MERGEFORMATINET INCLUDEPICTURE "H://必修5、選修2-1(理)/復(fù)習(xí)回顧.TIF" \* MERGEFORMATINET1.二元一次不等式(組)與平面區(qū)域在平面直角坐標(biāo)系中,二元一次不等式Ax+By+C>0,表示直線(xiàn)Ax+By+C=0某一側(cè)所有點(diǎn)組成的平面區(qū)域(把直線(xiàn)畫(huà)成虛線(xiàn),表示區(qū)域不包括邊界);二元一次不等式Ax+By+C≥0,表示直線(xiàn)Ax+By+C=0某一側(cè)所有點(diǎn)組成的平面區(qū)域(把直線(xiàn)畫(huà)成實(shí)線(xiàn),表示區(qū)域包括邊界).由于對(duì)在直線(xiàn)Ax+By+C=0同一側(cè)的所 ( http: / / www.21cnjy.com )有點(diǎn)(x,y),把它的坐標(biāo)(x,y)代入Ax+By+C,所得到實(shí)數(shù)的符號(hào)都相同,所以只需在此直線(xiàn)的某一側(cè)取一特殊點(diǎn)(x0,y0),從Ax0+By0+C的正負(fù)即可判斷Ax+By+C>0表示直線(xiàn)哪一側(cè)的平面區(qū)域.(特殊地,當(dāng)C≠0時(shí),常把原點(diǎn)作為此特殊點(diǎn)).2.簡(jiǎn)單的線(xiàn)性規(guī)劃問(wèn)題(1)線(xiàn)性目標(biāo)函數(shù):關(guān)于x、y的一次解析式z=ax+by,叫線(xiàn)性目標(biāo)函數(shù).(2)線(xiàn)性規(guī)劃問(wèn)題:一般地,在線(xiàn)性約束條件下求線(xiàn)性目標(biāo)函數(shù)的最大值或最小值問(wèn)題,統(tǒng)稱(chēng)為線(xiàn)性規(guī)劃問(wèn)題.(3)可行解、可行域和最優(yōu)解:滿(mǎn)足線(xiàn)性約束條件的解(x,y)叫做可行解.由所有可行解組成的集合叫做可行域.使目標(biāo)函數(shù)取得最大值或最小值的可行解叫做線(xiàn)性規(guī)劃問(wèn)題的最優(yōu)解.INCLUDEPICTURE "F:\\實(shí)習(xí)期文件\\寒假作業(yè)數(shù)學(xué)高二\\數(shù)學(xué)高二寒假作業(yè)(必修5、選修2-1)(理)\\典型例題.TIF" \* MERGEFORMAT INCLUDEPICTURE "H://必修5、選修2-1(理)/典型例題.TIF" \* MERGEFORMATINETINCLUDEPICTURE "H://必修5、選修2-1(理)/典型例題.TIF" \* MERGEFORMATINET INCLUDEPICTURE "H://必修5、選修2-1(理)/典型例題.TIF" \* MERGEFORMATINET例1 如圖所示,表示滿(mǎn)足不等式(x-y)(x+2y-2)>0的點(diǎn)(x,y)所在的區(qū)域?yàn)? )INCLUDEPICTURE "F:\\實(shí)習(xí)期文件\\寒假作業(yè)數(shù)學(xué)高二\\數(shù)學(xué)高二寒假作業(yè)(必修5、選修2-1)(理)\\H9.TIF" \* MERGEFORMAT INCLUDEPICTURE "H://必修5、選修2-1(理)/H9.TIF" \* MERGEFORMATINETINCLUDEPICTURE "H://必修5、選修2-1(理)/H9.TIF" \* MERGEFORMATINET INCLUDEPICTURE "H://必修5、選修2-1(理)/H9.TIF" \* MERGEFORMATINETINCLUDEPICTURE "F:\\實(shí)習(xí)期文件\\寒假作業(yè)數(shù)學(xué)高二\\數(shù)學(xué)高二寒假作業(yè)(必修5、選修2-1)(理)\\H10.TIF" \* MERGEFORMAT INCLUDEPICTURE "H://必修5、選修2-1(理)/H10.TIF" \* MERGEFORMATINETINCLUDEPICTURE "H://必修5、選修2-1(理)/H10.TIF" \* MERGEFORMATINET INCLUDEPICTURE "H://必修5、選修2-1(理)/H10.TIF" \* MERGEFORMATINET變式1 △ABC的三個(gè)頂點(diǎn)坐標(biāo)為A(3,- ( http: / / www.21cnjy.com )1),B(-1,1),C(1,3),則△ABC的內(nèi)部及邊界所對(duì)應(yīng)的二元一次不等式組是__________________.例2 若變量x,y滿(mǎn)足約束條件則x+2y的最大值是( )A.- B.0C. D.變式2 已知x,y滿(mǎn)足約束條件若z=ax+y的最大值為4,則a等于( )A.3 B.2 C.-2 D.-3例3 已知正數(shù)a,b,c滿(mǎn)足:5c-3a≤b≤4c-a,則的最大值是________.變式3 如果方程x2+ax+b=0的兩個(gè)實(shí)根一個(gè)小于1,另一個(gè)大于1,那么實(shí)數(shù)a2+b2的范圍是________.INCLUDEPICTURE "F:\\實(shí)習(xí)期文件\\寒假作業(yè)數(shù)學(xué)高二\\數(shù)學(xué)高二寒假作業(yè)(必修5、選修2-1)(理)\\強(qiáng)化提高.TIF" \* MERGEFORMAT INCLUDEPICTURE "H://必修5、選修2-1(理)/強(qiáng)化提高.TIF" \* MERGEFORMATINETINCLUDEPICTURE "H://必修5、選修2-1(理)/強(qiáng)化提高.TIF" \* MERGEFORMATINET INCLUDEPICTURE "H://必修5、選修2-1(理)/強(qiáng)化提高.TIF" \* MERGEFORMATINETA級(jí)1.若x,y滿(mǎn)足則2x+y的最大值為( )A.0 B.3 C.4 D.52.設(shè)變量x,y滿(mǎn)足約束條件則目標(biāo)函數(shù)z=2x+5y的最小值為( )A.-4 B.6 C.10 D.173.設(shè)二元一次不等式組所表示的平面區(qū)域?yàn)镸,使函數(shù)y=ax(a>0且a≠1)的圖象過(guò)區(qū)域M的a的取值范圍為( )A.[1,3] B.[2,]C.[2,9] D.[,9]4.設(shè)變量x,y滿(mǎn)足約束條件則目標(biāo)函數(shù)z=3x-y的取值范圍是( )A. B.C. D.5.某農(nóng)戶(hù)計(jì)劃種植黃瓜和韭菜,種植面積不超過(guò)50畝,投入資金不超過(guò)54萬(wàn)元,假設(shè)種植黃瓜和韭菜的產(chǎn)量、成本和售價(jià)如下表( http: / / www.21cnjy.com / )為使一年的種植總利潤(rùn)(總利潤(rùn)=總銷(xiāo)售收入-總種植成本)最大,那么黃瓜和韭菜的種植面積(單位:畝)分別為( )A.50,0 B.30,20C.20,30 D.0,506.若點(diǎn)(x,y)位于曲線(xiàn)y=|x-1|與y=2所圍成的封閉區(qū)域,則2x-y的最小值為_(kāi)_______.7.若A為不等式組表示的平面區(qū)域,則當(dāng)a從-2連續(xù)變化到1時(shí),動(dòng)直線(xiàn)x+y=a掃過(guò)A中的那部分區(qū)域的面積為_(kāi)_______.B級(jí)8.直線(xiàn)2x+y-10=0與不等式組表示的平面區(qū)域的公共點(diǎn)有( )A.0個(gè) B.1個(gè)C.2個(gè) D.無(wú)數(shù)個(gè)9.若不等式組所表示的平面區(qū)域被直線(xiàn)y=kx+分為面積相等的兩部分,則k的值是( )A.B. C. D.10.設(shè)關(guān)于x、y的不等式組表示的平面區(qū)域內(nèi)存在點(diǎn)P(x0,y0),滿(mǎn)足x0-2y0=2,則m的取值范圍是( )A. B.C. D.11.給定區(qū)域D:.令點(diǎn)集T={(x0, ( http: / / www.21cnjy.com )y0)∈D|x0,y0∈Z,(x0,y0)是z=x+y在D上取得最大值或最小值的點(diǎn)},則T中的點(diǎn)共確定________條不同的直線(xiàn).12.設(shè)z=kx+y,其中實(shí)數(shù)x,y滿(mǎn)足若z的最大值為12,則實(shí)數(shù)k=________.13.若直線(xiàn)y=kx+1與 ( http: / / www.21cnjy.com )圓x2+y2+kx+my-4=0相交于P、Q兩點(diǎn),且P、Q關(guān)于直線(xiàn)x+y=0對(duì)稱(chēng),則不等式組表示的平面區(qū)域的面積是多少?詳解答案典型例題例1 B [不等式(x-y)(x+2y-2)>0等價(jià)于不等式組(Ⅰ)或不等式組(Ⅱ)分別畫(huà)出不等式組(Ⅰ)和(Ⅱ)所表示的平面區(qū)域,再求并集,可得正確答案為B.]變式1 解析 如圖直線(xiàn)AB的方程為x+2y-1=0,直線(xiàn)AC的方程為2x+y-5=0,直線(xiàn)BC的方程為x-y+2=0,INCLUDEPICTURE "F:\\實(shí)習(xí)期文件\\寒假作業(yè)數(shù)學(xué)高二\\數(shù)學(xué)高二寒假作業(yè)(必修5、選修2-1)(理)\\H11.TIF" \* MERGEFORMAT INCLUDEPICTURE "H://必修5、選修2-1(理)/H11.TIF" \* MERGEFORMATINETINCLUDEPICTURE "H://必修5、選修2-1(理)/H11.TIF" \* MERGEFORMATINET INCLUDEPICTURE "H://必修5、選修2-1(理)/H11.TIF" \* MERGEFORMATINET把(0,0)代入2x+y-5=0,得-5<0,所以AC左下方的區(qū)域?yàn)?x+y-5<0.同理可得△ABC區(qū)域(含邊界)為例2 C [畫(huà)出可行域如圖.設(shè)z=x+2y,平行移動(dòng)直線(xiàn)y=-x+z,當(dāng)直線(xiàn)y=-x+過(guò)點(diǎn)M時(shí),z取最大值.]變式2 B [不等式組表示的平面區(qū)域如圖陰影部分所示.易知A(2,0),由得B(1,1).由z=ax+y,得y=-ax+z.∴當(dāng)a=-2或a=-3時(shí),z=ax+y ( http: / / www.21cnjy.com )在O(0,0)處取得最大值,最大值為zmax=0,不滿(mǎn)足題意,排除C,D選項(xiàng);當(dāng)a=2或3時(shí),z=ax+y在A(2,0)處取得最大值,∴2a=4,∴a=2,排除A,故選B.]例3 7解析 條件5c-3a≤b≤4c-a,可化為,設(shè)=x,=y(tǒng),則題目轉(zhuǎn)化為:已知x,y滿(mǎn)足,求的最大值.作出(x,y)所在平面區(qū)域,可求得的最大值為7.變式3 解析 令f(x)=x2+ax+b, ( http: / / www.21cnjy.com )由題意,得f(1)=1+a+b<0,a2+b2表示點(diǎn)(a,b)到原點(diǎn)距離的平方.原點(diǎn)(0,0)到直線(xiàn)x+y+1=0的距離是,故a2+b2的最小值是.強(qiáng)化提高1.C [INCLUDEPICTURE "F:\\實(shí)習(xí)期文件\\寒假作業(yè)數(shù)學(xué)高二\\數(shù)學(xué)高二寒假作業(yè)(必修5、選修2-1)(理)\\16L26.tif" \* MERGEFORMAT INCLUDEPICTURE "H://必修5、選修2-1(理)/16L26.tif" \* MERGEFORMATINETINCLUDEPICTURE "H://必修5、選修2-1(理)/16L26.tif" \* MERGEFORMATINET INCLUDEPICTURE "H://必修5、選修2-1(理)/16L26.tif" \* MERGEFORMATINET不等式組表示的可行域如圖中陰影部分 ( http: / / www.21cnjy.com )所示.令z=2x+y,則y=-2x+z,作直線(xiàn)2x+y=0并平移,當(dāng)直線(xiàn)過(guò)點(diǎn)A時(shí),截距最大,即z取得最大值,由得所以A點(diǎn)坐標(biāo)為(1,2),可得2x+y的最大值為2×1+2=4.]2.B [由約束條件作出可行域如圖所示,目標(biāo)函數(shù)可化為y=-x+z,在圖中畫(huà)出直線(xiàn)y=-x,INCLUDEPICTURE "F:\\實(shí)習(xí)期文件\\寒假作業(yè)數(shù)學(xué)高二\\數(shù)學(xué)高二寒假作業(yè)(必修5、選修2-1)(理)\\16W117.TIF" \* MERGEFORMAT INCLUDEPICTURE "H://必修5、選修2-1(理)/16W117.TIF" \* MERGEFORMATINETINCLUDEPICTURE "H://必修5、選修2-1(理)/16W117.TIF" \* MERGEFORMATINET INCLUDEPICTURE "H://必修5、選修2-1(理)/16W117.TIF" \* MERGEFORMATINET平移該直線(xiàn),易知經(jīng)過(guò)點(diǎn)A時(shí)z最小.又知點(diǎn)A的坐標(biāo)為(3,0),∴zmin=2×3+5×0=6.故選B.]3.C4.A [作出不等式組表示的可行域,如圖陰影部分所示,作直線(xiàn)3x-y=0,并向左上、右下平移.INCLUDEPICTURE "F:\\實(shí)習(xí)期文件\\寒假作業(yè)數(shù)學(xué)高二\\數(shù)學(xué)高二寒假作業(yè)(必修5、選修2-1)(理)\\H15.TIF" \* MERGEFORMAT INCLUDEPICTURE "H://必修5、選修2-1(理)/H15.TIF" \* MERGEFORMATINETINCLUDEPICTURE "H://必修5、選修2-1(理)/H15.TIF" \* MERGEFORMATINET INCLUDEPICTURE "H://必修5、選修2-1(理)/H15.TIF" \* MERGEFORMATINET由圖可得,當(dāng)直線(xiàn)過(guò)點(diǎn)A時(shí),z=3x-y取最大值;當(dāng)直線(xiàn)過(guò)點(diǎn)B時(shí),z=3x-y取最小值.由解得A(2,0);由解得B.∴zmax=3×2-0=6,zmin=3×-3=-.∴z=3x-y的取值范圍是.]5.B [設(shè)種植黃瓜x(chóng)畝,韭菜y畝,則由題意可知求目標(biāo)函數(shù)z=x+0.9y的最大值,根據(jù)題意畫(huà)可行域如圖陰影所示.INCLUDEPICTURE "F:\\實(shí)習(xí)期文件\\寒假作業(yè)數(shù)學(xué)高二\\數(shù)學(xué)高二寒假作業(yè)(必修5、選修2-1)(理)\\263.TIF" \* MERGEFORMAT INCLUDEPICTURE "H://必修5、選修2-1(理)/263.TIF" \* MERGEFORMATINETINCLUDEPICTURE "H://必修5、選修2-1(理)/263.TIF" \* MERGEFORMATINET INCLUDEPICTURE "H://必修5、選修2-1(理)/263.TIF" \* MERGEFORMATINET當(dāng)目標(biāo)函數(shù)線(xiàn)l向右平移,移至點(diǎn)A(30,20)處時(shí),目標(biāo)函數(shù)取得最大值,即當(dāng)黃瓜種植30畝,韭菜種植20畝時(shí),種植總利潤(rùn)最大.]6.-4解析 如圖,曲線(xiàn)y=|x-1|與y=2所圍成的封閉區(qū)域如圖中陰影部分,INCLUDEPICTURE "F:\\實(shí)習(xí)期文件\\寒假作業(yè)數(shù)學(xué)高二\\數(shù)學(xué)高二寒假作業(yè)(必修5、選修2-1)(理)\\G93.TIF" \* MERGEFORMAT INCLUDEPICTURE "H://必修5、選修2-1(理)/G93.TIF" \* MERGEFORMATINETINCLUDEPICTURE "H://必修5、選修2-1(理)/G93.TIF" \* MERGEFORMATINET INCLUDEPICTURE "H://必修5、選修2-1(理)/G93.TIF" \* MERGEFORMATINET令z=2x-y,則y=2x-z,作直線(xiàn)y=2 ( http: / / www.21cnjy.com )x,在封閉區(qū)域內(nèi)平行移動(dòng)直線(xiàn)y=2x,當(dāng)經(jīng)過(guò)點(diǎn)(-1,2)時(shí),z取得最小值,此時(shí)z=2×(-1)-2=-4.7.解析如圖所示,區(qū)域A表示的平面區(qū)域?yàn)椤鱋BC內(nèi)部及其邊界組成的圖形,當(dāng)a從-2連續(xù)變化到1時(shí)掃過(guò)的區(qū)域?yàn)樗倪呅蜲DEC所圍成的區(qū)域.又D(0,1),B(0,2),E,C(-2,0).S四邊形ODEC=S△OBC-S△BDE=2-=.8.B [畫(huà)出可行域如圖陰影部分所示.∵直線(xiàn)過(guò)(5,0)點(diǎn),故只有1個(gè)公共點(diǎn)(5,0).]INCLUDEPICTURE "F:\\實(shí)習(xí)期文件\\寒假作業(yè)數(shù)學(xué)高二\\數(shù)學(xué)高二寒假作業(yè)(必修5、選修2-1)(理)\\A124.TIF" \* MERGEFORMAT INCLUDEPICTURE "H://必修5、選修2-1(理)/A124.TIF" \* MERGEFORMATINETINCLUDEPICTURE "H://必修5、選修2-1(理)/A124.TIF" \* MERGEFORMATINET INCLUDEPICTURE "H://必修5、選修2-1(理)/A124.TIF" \* MERGEFORMATINET9.A [不等式組表示的平面區(qū)域如圖所示.INCLUDEPICTURE "F:\\實(shí)習(xí)期文件\\寒假作業(yè)數(shù)學(xué)高二\\數(shù)學(xué)高二寒假作業(yè)(必修5、選修2-1)(理)\\W352.TIF" \* MERGEFORMAT INCLUDEPICTURE "H://必修5、選修2-1(理)/W352.TIF" \* MERGEFORMATINETINCLUDEPICTURE "H://必修5、選修2-1(理)/W352.TIF" \* MERGEFORMATINET INCLUDEPICTURE "H://必修5、選修2-1(理)/W352.TIF" \* MERGEFORMATINET由于直線(xiàn)y=kx+過(guò)定點(diǎn).因此只有直線(xiàn)過(guò)AB中點(diǎn)時(shí),直線(xiàn)y=kx+能平分平面區(qū)域.因?yàn)锳(1,1),B(0,4),所以AB中點(diǎn)D.當(dāng)y=kx+過(guò)點(diǎn)時(shí),=+,所以k=.]10.C [當(dāng)m≥0時(shí),若 ( http: / / www.21cnjy.com )平面區(qū)域存在,則平面區(qū)域內(nèi)的點(diǎn)在第二象限,平面區(qū)域內(nèi)不可能存在點(diǎn)P(x0,y0)滿(mǎn)足x0-2y0=2,因此m<0.如圖所示的陰影部分為不等式組表示的平面區(qū)域.要使可行域內(nèi)包含y=x-1上的點(diǎn),只需可行域邊界點(diǎn)(-m,m)在直線(xiàn)y=x-1的下方即可,即m<-m-1,解得m<-.]11.6解析 線(xiàn)性區(qū)域?yàn)閳D中陰影部分,取得最小值時(shí)點(diǎn)為(0,1),最大值時(shí)點(diǎn)為(0,4)(1,3)(2,2)(3,1)(4,0),故共可確定6條.INCLUDEPICTURE "F:\\實(shí)習(xí)期文件\\寒假作業(yè)數(shù)學(xué)高二\\數(shù)學(xué)高二寒假作業(yè)(必修5、選修2-1)(理)\\K87.TIF" \* MERGEFORMAT INCLUDEPICTURE "H://必修5、選修2-1(理)/K87.TIF" \* MERGEFORMATINETINCLUDEPICTURE "H://必修5、選修2-1(理)/K87.TIF" \* MERGEFORMATINET INCLUDEPICTURE "H://必修5、選修2-1(理)/K87.TIF" \* MERGEFORMATINET12.2解析 由畫(huà)出可行域如圖,INCLUDEPICTURE "F:\\實(shí)習(xí)期文件\\寒假作業(yè)數(shù)學(xué)高二\\數(shù)學(xué)高二寒假作業(yè)(必修5、選修2-1)(理)\\H17.TIF" \* MERGEFORMAT INCLUDEPICTURE "H://必修5、選修2-1(理)/H17.TIF" \* MERGEFORMATINETINCLUDEPICTURE "H://必修5、選修2-1(理)/H17.TIF" \* MERGEFORMATINET INCLUDEPICTURE "H://必修5、選修2-1(理)/H17.TIF" \* MERGEFORMATINET由z=kx+y即y=-kx+z的最大值為12,知直線(xiàn)y=-kx+12必過(guò)點(diǎn)M(4,4).∴k=2.13.解 P、Q關(guān)于直線(xiàn)x+y=0對(duì)稱(chēng),故PQ與直線(xiàn)x+y=0垂直,直線(xiàn)PQ即為直線(xiàn)y=kx+1,故k=1;又線(xiàn)段PQ為圓x2+y2 ( http: / / www.21cnjy.com )+kx+my-4=0的一條弦,故該圓的圓心在線(xiàn)段PQ的垂直平分線(xiàn)上,即為直線(xiàn)x+y=0,又圓心為(-,-),∴m=-k=-1,∴不等式組為,INCLUDEPICTURE "F:\\實(shí)習(xí)期文件\\寒假作業(yè)數(shù)學(xué)高二\\數(shù)學(xué)高二寒假作業(yè)(必修5、選修2-1)(理)\\H18.TIF" \* MERGEFORMAT INCLUDEPICTURE "H://必修5、選修2-1(理)/H18.TIF" \* MERGEFORMATINETINCLUDEPICTURE "H://必修5、選修2-1(理)/H18.TIF" \* MERGEFORMATINET INCLUDEPICTURE "H://必修5、選修2-1(理)/H18.TIF" \* MERGEFORMATINET它表示的區(qū)域如圖所示,直線(xiàn)x-y+1=0與x+y=0的交點(diǎn)為(-,),∴S△=×1×=.故面積為. 展開(kāi)更多...... 收起↑ 資源預(yù)覽 縮略圖、資源來(lái)源于二一教育資源庫(kù)