中文字幕精品无码一区二区,成全视频在线播放观看方法,大伊人青草狠狠久久,亚洲一区影音先锋色资源

2019秋人教版九年級數(shù)學上冊教材全解讀

資源下載
  1. 二一教育資源

2019秋人教版九年級數(shù)學上冊教材全解讀

資源簡介

2019秋人教版九年級數(shù)學上冊教材全解讀
教材分析
第二十一章 一元二次方程
【知識網(wǎng)絡(luò)】
【知識解讀】
1.一元二次方程的定義
2.一元二次方程的解法
注意事項:
解一元二次方程常見的思維誤區(qū)是忽略幾個關(guān)鍵:用因式分解法解方程的關(guān)鍵是先使方程的右邊為0;用公式法解方程的關(guān)鍵是先把一元二次方程化為一般形式,正確寫出a、b、c的值;用直接開平方法解方程的關(guān)鍵是先把方程化為(mx-n)?2=h的形式;用配方法解方程的關(guān)鍵是先把二次項系數(shù)化為1,再把方程的兩邊都加上一次項系數(shù)一半的平方.
解具體的一元二次方程時,要分析方程的特征,靈活選擇方法.公式法是解一元二次方程的通法,而配方法又是公式法的基礎(chǔ)(公式法是直接利用了配方法的結(jié)論).分解因式法可解某些特殊形式的一元二次方程.掌握各種方法的基本思想是正確解方程的根本.一般說來,先特殊后一般,即先考慮分解因式法,后考慮公式法.沒有特別說明,一般不用配方法.
3.一元二次方程的實際應用
方程是解決實際問題的有效模型和工具,解方程的技能訓練要與實際問題相聯(lián)系,在解決問題的過程中體會解方程的技巧,理解方程的解的含義.
利用方程解決實際問題的關(guān)鍵是找出問題中的等量關(guān)系,找出題目中的已知量與未知量,分析已知量與未知量的關(guān)系,再通過等量關(guān)系,列出方程,求解方程,并能根據(jù)方程的解和具體問題的實際意義,檢驗解的合理性.
列一元二次方程解應用題的一般步驟可歸納為審、設(shè)、列、解、驗、答.
審:讀懂題目,弄清題意,明確哪些是已知量,哪些是未知量,以及它們之間的等量關(guān)系;
設(shè):設(shè)元,也就是設(shè)未知數(shù);
列:列方程,這是非常重要的關(guān)鍵步驟,一般先找出能夠表達應用題全部含義的一個相等關(guān)系,然后列代數(shù)式表示相等關(guān)系中的各個量,就得到含有未知數(shù)的等式,即方程;
解:解方程,求出未知數(shù)的值;
驗:檢驗方程的解能否保證實際問題有意義;
答:寫出答語.
相等關(guān)系的尋找應從以下幾方面入手:
①分清本題屬于哪一類型的應用題,如行程問題,則其基本數(shù)量關(guān)系應明確(vt=s).
②注意總結(jié)各類應用題中常用的等量關(guān)系.如工作量(工程)問題.常常是以工作量為基礎(chǔ)得到相等關(guān)系(如各部分工作量之和等于整體1等).
③注意語言與代數(shù)式之間的轉(zhuǎn)化.題目中多數(shù)條件是通過語言給出的,我們要善于將這些語言轉(zhuǎn)化為我們列方程所需要的代數(shù)式.
④從語言敘述中尋找相等關(guān)系.如甲比乙大5應理解為 “甲=乙+5”等.
⑤在尋找相等關(guān)系時,還應從基本的生活常識中得出相等關(guān)系.
總之,找出相等關(guān)系的關(guān)鍵是審題,審題是列方程的基礎(chǔ),找相等關(guān)系是列方程解應用題的關(guān)鍵.
【易錯點】
一、忽視一元二次方程定義中的條件
二、用公式法解方程,忽視化方程為一般形式
三、忽視等式性質(zhì)中的條件
四、概念模糊致錯
五、忽視方程有根的具體含義
第二十二章 二次函數(shù)
I.定義與定義表達式
一般地,自變量x和因變量y之間存在如下關(guān)系:y=ax^2+bx+c
(a,b,c為常數(shù),a≠0,且a決定函數(shù)的開口方向,a>0時,開口方向向上,a<0時,開口方向向下,IaI還可以決定開口大小,IaI越大開口就越小,IaI越小開口就越大.)則稱y為x的二次函數(shù)。
二次函數(shù)表達式的右邊通常為二次三項式。
II.二次函數(shù)的三種表達式
一般式:y=ax^2+bx+c(a,b,c為常數(shù),a≠0)
頂點式:y=a(x-h)^2+k[拋物線的頂點P(h,k)]
交點式:y=a(x-x?)(x-x?)[僅限于與x軸有交點A(x?,0)和B(x?,0)的拋物線]
注:在3種形式的互相轉(zhuǎn)化中,有如下關(guān)系:
h=-b/2a k=(4ac-b^2)/4a x?,x?=(-b±√b^2-4ac)/2a
III.二次函數(shù)的圖像
在平面直角坐標系中作出二次函數(shù)y=x^2的圖像,可以看出,二次函數(shù)的圖像是一條拋物線。
IV.拋物線的性質(zhì)
1.拋物線是軸對稱圖形。對稱軸為直線x=-b/2a。
對稱軸與拋物線唯一的交點為拋物線的頂點P。特別地,當b=0時,拋物線的對稱軸是y軸(即直線x=0)
2.拋物線有一個頂點P,坐標為:P(-b/2a,(4ac-b^2)/4a)當-b/2a=0時,P在y軸上;當Δ=b^2-4ac=0時,P在x軸上。
3.二次項系數(shù)a決定拋物線的開口方向和大小。
當a>0時,拋物線向上開口;當a<0時,拋物線向下開口。|a|越大,則拋物線的開口越小。
4.一次項系數(shù)b和二次項系數(shù)a共同決定對稱軸的位置。
當a與b同號時(即ab>0),對稱軸在y軸左;
當a與b異號時(即ab<0),對稱軸在y軸右。
5.常數(shù)項c決定拋物線與y軸交點。
拋物線與y軸交于(0,c)
6.拋物線與x軸交點個數(shù)
Δ=b^2-4ac>0時,拋物線與x軸有2個交點。
Δ=b^2-4ac=0時,拋物線與x軸有1個交點。
Δ=b^2-4ac<0時,拋物線與x軸沒有交點。X的取值是虛數(shù)(x=-b±√b^2-4ac的值的相反數(shù),乘上虛數(shù)i,整個式子除以2a)
V.二次函數(shù)與一元二次方程
特別地,二次函數(shù)(以下稱函數(shù))y=ax^2+bx+c,
當y=0時,二次函數(shù)為關(guān)于x的一元二次方程(以下稱方程),即ax^2+bx+c=0
此時,函數(shù)圖像與x軸有無交點即方程有無實數(shù)根。函數(shù)與x軸交點的橫坐標即為方程的根。
1.二次函數(shù)y=ax^2,y=a(x-h)^2,y=a(x-h)^2+k,y=ax^2+bx+c(各式中,a≠0)的圖象形狀相同,只是位置不同,它們的頂點坐標及對稱軸如下表:
當h>0時,y=a(x-h)^2的圖象可由拋物線y=ax^2向右平行移動h個單位得到,
當h<0時,則向左平行移動|h|個單位得到.
當h>0,k>0時,將拋物線y=ax^2向右平行移動h個單位,再向上移動k個單位,就可以得到y(tǒng)=a(x-h)^2+k的圖象;
當h>0,k<0時,將拋物線y=ax^2向右平行移動h個單位,再向下移動|k|個單位可得到y(tǒng)=a(x-h)^2+k的圖象;
當h<0,k>0時,將拋物線向左平行移動|h|個單位,再向上移動k個單位可得到y(tǒng)=a(x-h)^2+k的圖象;
當h<0,k<0時,將拋物線向左平行移動|h|個單位,再向下移動|k|個單位可得到y(tǒng)=a(x-h)^2+k的圖象;
因此,研究拋物線y=ax^2+bx+c(a≠0)的圖象,通過配方,將一般式化為y=a(x-h)^2+k的形式,可確定其頂點坐標、對稱軸,拋物線的大體位置就很清楚了.這給畫圖象提供了方便.
2.拋物線y=ax^2+bx+c(a≠0)的圖象:當a>0時,開口向上,當a<0時開口向下,對稱軸是直線x=-b/2a,頂點坐標是(-b/2a,[4ac-b^2]/4a).
3.拋物線y=ax^2+bx+c(a≠0),若a>0,當x≤-b/2a時,y隨x的增大而減小;當x≥-b/2a時,y隨x的增大而增大.若a<0,當x≤-b/2a時,y隨x的增大而增大;當x≥-b/2a時,y隨x的增大而減小.
4.拋物線y=ax^2+bx+c的圖象與坐標軸的交點:
(1)圖象與y軸一定相交,交點坐標為(0,c);
(2)當△=b^2-4ac>0,圖象與x軸交于兩點A(x?,0)和B(x?,0),其中的x1,x2是一元二次方程ax^2+bx+c=0
(a≠0)的兩根.這兩點間的距離AB=|x?-x?|
當△=0.圖象與x軸只有一個交點;
當△<0.圖象與x軸沒有交點.當a>0時,圖象落在x軸的上方,x為任何實數(shù)時,都有y>0;當a<0時,圖象落在x軸的下方,x為任何實數(shù)時,都有y<0.
5.拋物線y=ax^2+bx+c的最值:如果a>0(a<0),則當x=-b/2a時,y最小(大)值=(4ac-b^2)/4a.
頂點的橫坐標,是取得最值時的自變量值,頂點的縱坐標,是最值的取值.
6.用待定系數(shù)法求二次函數(shù)的解析式
(1)當題給條件為已知圖象經(jīng)過三個已知點或已知x、y的三對對應值時,可設(shè)解析式為一般形式:
y=ax^2+bx+c(a≠0).
(2)當題給條件為已知圖象的頂點坐標或?qū)ΨQ軸時,可設(shè)解析式為頂點式:y=a(x-h)^2+k(a≠0).
(3)當題給條件為已知圖象與x軸的兩個交點坐標時,可設(shè)解析式為兩根式:y=a(x-x?)(x-x?)(a≠0).
7.二次函數(shù)知識很容易與其它知識綜合應用,而形成較為復雜的綜合題目。因此,以二次函數(shù)知識為主的綜合性題目是中考的熱點考題,往往以大題形式出現(xiàn).
第二十三章 旋轉(zhuǎn)
1、定義
把一個圖形繞某一點O轉(zhuǎn)動一個角度的圖形變換叫做旋轉(zhuǎn),其中O叫做旋轉(zhuǎn)中心,轉(zhuǎn)動的角叫做旋轉(zhuǎn)角。
2、性質(zhì)
(1)對應點到旋轉(zhuǎn)中心的距離相等。
(2)對應點與旋轉(zhuǎn)中心所連線段的夾角等于旋轉(zhuǎn)角。
二、中心對稱
1、定義
把一個圖形繞著某一個點旋轉(zhuǎn)180°,如果旋轉(zhuǎn)后的圖形能夠和原來的圖形互相重合,那么這個圖形叫做中心對稱圖形,這個點就是它的對稱中心。
2、性質(zhì)
(1)關(guān)于中心對稱的兩個圖形是全等形。
(2)關(guān)于中心對稱的兩個圖形,對稱點連線都經(jīng)過對稱中心,并且被對稱中心平分。
(3)關(guān)于中心對稱的兩個圖形,對應線段平行(或在同一直線上)且相等。
3、判定
如果兩個圖形的對應點連線都經(jīng)過某一點,并且被這一點平分,那么這兩個圖形關(guān)于這一點對稱。
4、中心對稱圖形
把一個圖形繞某一個點旋轉(zhuǎn)180°,如果旋轉(zhuǎn)后的圖形能夠和原來的圖形互相重合,那么這個圖形叫做中心對稱圖形,這個店就是它的對稱中心。
5、坐標系中對稱點的特征?
1、關(guān)于原點對稱的點的特征
兩個點關(guān)于原點對稱時,它們的坐標的符號相反,即點P(x,y)關(guān)于原點的對稱點為P’(-x,-y)
2、關(guān)于x軸對稱的點的特征
兩個點關(guān)于x軸對稱時,它們的坐標中,x相等,y的符號相反,即點P(x,y)關(guān)于x軸的對稱點為P’(x,-y)
3、關(guān)于y軸對稱的點的特征
兩個點關(guān)于y軸對稱時,它們的坐標中,y相等,x的符號相反,即點P(x,y)關(guān)于y軸的對稱點為P’(-x,y)
第二十四章 圓
一 圓的定理
1.1不共線的三點確定一個圓
經(jīng)過一點可以作無數(shù)個圓
經(jīng)過兩點也可以作無數(shù)個圓,且圓心都在連結(jié)這兩點的線段的垂直平分線上
定理:過不共線的三個點,可以作且只可以作一個圓
推論:三角形的三邊垂直平分線相交于一點,這個點就是三角形的外心
三角形的三條高線的交點叫三角形的垂心
1.2垂徑定理
圓是中心對稱圖形;圓心是它的對稱中心
圓是周對稱圖形,任一條通過圓心的直線都是它的對稱軸
定理:垂直于弦的直徑平分這條弦,并且評分弦所對的兩條弧
推論1:平分弦(不是直徑)的直徑垂直于弦并且平分弦所對的兩條弧
推論2:弦的垂直平分弦經(jīng)過圓心,并且平分弦所對的兩條弧
推論3:平分弦所對的一條弧的直徑,垂直評分弦,并且平分弦所對的另一條弧
1.3弧、弦和弦心距
定理:在同圓或等圓中,相等的弧所對的弦相等,所對的弦的弦心距相等
二 圓與直線的位置關(guān)系
2.1圓與直線的位置關(guān)系
如果一條直線和一個圓沒有公共點,我們就說這條直線和這個圓相離
如果一條直線和一個圓只有一個公共點,我們就說這條直線和這個圓相切,這條直線叫做圓的切線,這個公共點叫做它們的切點
定理:經(jīng)過圓的半徑外端點,并且垂直于這條半徑的直線是這個圓的切線
定理:圓的切線垂直經(jīng)過切點的半徑
推論1:經(jīng)過圓心且垂直于切線的直線必經(jīng)過切點
推論2:經(jīng)過切點且垂直于切線的直線必經(jīng)過圓心
如果一條直線和一個圓有兩個公共點,我們就說,這條直線和這個圓相交,這條直線叫這個圓的割線,這兩個公共點叫做它們的交點
直線和圓的位置關(guān)系只能由相離、相切和相交三種
2.2三角形的內(nèi)切圓
如果一個多邊形的各邊所在的直線,都和一個圓相切,這個多邊形叫做圓的外切多邊形,這個圓叫做多邊形的內(nèi)切圓
定理:三角形的三個內(nèi)角平分線交于一點,這點是三角形的內(nèi)心
三角形一內(nèi)角評分線和其余兩內(nèi)角的外角評分線交于一點,這一點叫做三角形的旁心。以旁心為圓心可以作一個圓和一邊及其他兩邊的延長線相切,所作的圓叫做三角形的旁切圓
2.3切線長定理
定理:從圓外一點引圓的兩條切線,它們的切線長相等,圓心和這一點的連線平分兩條切線的夾角
2.4圓的外切四邊形
定理: 圓的外切四邊形的兩組對邊的和相等
定理:如果四邊形兩組對邊的和相等,那么它必有內(nèi)切圓
三 圓與圓的位置關(guān)系
3.1兩圓的位置關(guān)系
在平面內(nèi),不重合的兩圓。它們的位置關(guān)系,有以下五種情況:外離、外切、相交、內(nèi)切、外切
經(jīng)過兩個圓的圓心的直線,叫做兩圓的連心線,兩個圓心之間的距離叫做圓心距
定理:兩圓的連心線是兩圓的對稱軸,并且兩圓相切時,它們切點在連心線上
(1)兩圓外離d>R+r
(2)兩圓外切d=R+r
(3)兩圓相交R-rr)
(4)兩圓內(nèi)切d=R-r(R>r)
(5)兩圓內(nèi)含dr)
特殊情況,兩圓是同心圓d=0
3.2兩圓的公切線
定理:兩圓的兩條外公切線的長相等;兩圓的兩條內(nèi)公切線的長也相等
第二十五章 概率初步
25.1?隨機事件與概率
25.1.1?隨機事件
知識點一必然事件、不可能事件、隨機事件
在一定條件下,有些事件必然會發(fā)生,這樣的事件稱為必然事件;相反地,有些事件必然不會發(fā)生,這樣的事件稱為不可能事件;在一定條件下,可能發(fā)生也可能不會發(fā)生的事件稱為隨機事件。
必然事件和不可能事件是否會發(fā)生,是可以事先確定的,它們統(tǒng)稱為確定性事件。
知識點二事件發(fā)生的可能性的大小
必然事件的可能性最大,不可能事件的可能性最小,隨機事件發(fā)生的可能性有大有小。不同的隨機事件發(fā)生的可能性的大小有可能不同。
25.1.2?概率
知識點概率
一般地,對于一個隨機事件A,我們把刻畫其發(fā)生可能性大小的數(shù)值,稱為隨機事件A發(fā)生的概率,記作P(A)。
一般地,如果在一次試驗中,有n種可能的結(jié)果,并且它們發(fā)生的可能性都相等,事件A包含其中的m種結(jié)果,那么事件A發(fā)生的概率P(A)=。由m和n的含義可知0≤m≤n,因此0≤≤1,因此0≤P(A)≤1.
當A為必然事件時,P(A)=1;當A為不可能事件時,P(A)=0.
25.2?用列舉法求概率
知識點一用列舉法求概率
?一般地,如果在一次試驗中,有n種可能的結(jié)果,并且它們發(fā)生的可能性都相等,事件A包含其中的m種結(jié)果,那么事件A發(fā)生的概率P(A)=。
知識點二用列表發(fā)求概率
當一次試驗要涉及兩個因素并且可能出現(xiàn)的結(jié)果數(shù)目較多時,為不重不漏地列出所有可能的結(jié)果,通常用列表法。
列表法是用表格的形式反映事件發(fā)生的各種情況出現(xiàn)的次數(shù)和方式,以及某一事件發(fā)生的可能的次數(shù)和方式,并求出概率的方法。
知識點三用樹形圖求概率?
當一次試驗要涉及3個或更多的因素時,列方形表就不方便了,為不重不漏地列出所有可能的結(jié)果,通常采用樹形圖。樹形圖是反映事件發(fā)生的各種情況出現(xiàn)的次數(shù)和方式,并求出概率的方法。
(1)樹形圖法同樣適用于各種情況出現(xiàn)的總次數(shù)不是很大時求概率的方法。
(2)在用列表法和樹形圖法求隨機事件的概率時,應注意各種情況出現(xiàn)的可能性務(wù)必相同。
25.3?用頻率估計概率
知識點
在隨機事件中,一個隨機事件發(fā)生與否事先無法預測,表面上看似無規(guī)律可循,但當我們做大量重復試驗時,這個事件發(fā)生的頻率呈現(xiàn)出穩(wěn)定性,因此做了大量試驗后,可以用一個事件發(fā)生的頻率作為這個事件的概率的估計值。
一般地,在大量重復試驗中,如果事件A發(fā)生的頻率穩(wěn)定于某一個常數(shù)P,那么事件A發(fā)生的頻率P(A)=p?。

展開更多......

收起↑

資源預覽

<pre id="tfb94"><li id="tfb94"></li></pre>

<bdo id="tfb94"><rt id="tfb94"></rt></bdo>
  • <menu id="tfb94"><dl id="tfb94"></dl></menu><i id="tfb94"><acronym id="tfb94"><sub id="tfb94"></sub></acronym></i>

    1. 主站蜘蛛池模板: 沾化县| 宜黄县| 榕江县| 蓬溪县| 腾冲县| 焦作市| 右玉县| 栖霞市| 关岭| 比如县| 张家港市| 青神县| 桃江县| 阳朔县| 翁牛特旗| 尤溪县| 黔南| 田林县| 凌海市| 大埔县| 拜泉县| 浦县| 航空| 启东市| 阜新市| 漯河市| 上思县| 腾冲县| 深水埗区| 集贤县| 诸暨市| 闽侯县| 霍山县| 萍乡市| 衢州市| 呼图壁县| 高要市| 莎车县| 民县| 定陶县| 汝州市|